1. Field of the Invention
The present invention relates generally to a multi-band antenna, and more particularly to a multi-band antenna used for electronic devices, such as notebook.
2. Description of the Prior Art
As communication technology is increasingly improved, the weight, volume, cost, performance, and complexity of a communication system also become more important, so antennas that transmit and receive signals in a wireless communication system especially draw designers attention. At present the wireless local area network (WLAN) and General Packer Radio Service (GPRS), because the space for setting up an antenna is limited and the antenna should transmit a large amount of data, the antenna should be carefully designed.
Planar Inverted-F Antenna (PIFA) is a kind of small size antennas used for mobile communication terminal. The antenna has light weight, good impedance, compact size, reduced manufacture cost and perform a double-band or a multi-band antenna easily. CN pat. No. 2593384 discloses a Planar Inverted-F Antenna, it comprises two radiating elements each of which respectively extends along different directions, a grounding element, and a connecting element connecting the radiating elements and the grounding element. This antenna can performs multi-band frequency, but the whole length of the connecting element is so long that this antenna takes up big space in the notebooks or the carry-home electric devices. So, this kind antenna is not propitious to the smaller-device trend.
Hence, an improved antenna is desired to overcome the above-mentioned shortcomings of the existing antennas.
A primary object, therefore, of the present invention is to provide a multi-band antenna having low profile with simple structure, and reduced size.
In order to implement the above object and overcomes the above-identified deficiencies in the prior art, the multi-band antenna comprises a radiating element, a connecting element and a grounding element; the radiating element is made from metal plate, and comprises a first radiating portion and a second radiating portion having an end connect to one end of the first radiating portion. The first radiating portion, the second radiating portion and the connecting element is on the same planar, and the first radiating portion and the second radiating portion surround a rectangle rim.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of a preferred embodiment when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to a preferred embodiment
Reference to
The radiating element 11 comprises a first radiating portion 16 and a second radiating portion 17. The first radiating portion 16 is a high-frequency radiating portion which is worked at 5 GHz, and the second portion 17 is low-frequency radiating portion which is worked at 2.4 GHz. The radiating portion 17 comprises a horizontal first radiating arm 171, a second radiating arm 172 extending from left end of the first radiating arm 171 and perpendicular to the first radiating arm 171, and a horizontal third radiating arm 173 extending from the second radiating arm 172 in the neighborhood of the first radiating arm 171 and perpendicular to the second radiating arm 172, and a fourth radiating arm 174 extending downwardly from the right end of the third radiating arm 173 in the neighborhood of the first radiating arm 171 and perpendicular to the third radiating arm 173. The first radiating portion 16 extends from the right end of the first radiating arm 171 of the second radiating portion 17 opposite to the left end of the first radiating arm 171 connecting the second radiating arm 172. The first radiating portion 16 and the second radiating portion 17 form a rectangle frame with formed between the first radiating portion 16 and the fourth radiating arm 174, so that the total length of the multi-band antenna 10 is reduced. The radiating element 11 and the connecting element 12 are in the same plane, and the first radiating portion 16 and the fourth radiating arm 174 of the radiating element 11 are located at the same of the connecting element 12, so that the total height of the multi-band antenna 10 could be reduced.
The grounding element 13 comprises a first grounding portion 131 and a second grounding portion 132 perpendicular to the first grounding portion 131. The first grounding portion 131 is perpendicular to the second grounding portion 132.
The connecting element 12 is Z shape, and the radiating element 11 and the first grounding portion 131 are all in the same plane. The connecting portion 12 comprises a first section 121, a third section 123 connecting the joint of the second radiating arm 171 of the second radiating portion 17 and the third radiating arm 173, and a vertical second portion 122 connecting the first portion 121 and the third portion 123.
The feeding point 4 is located at the joint of the first radiating portion 16 and the second radiating portion 17. The feeding line 5 comprises an inner conductor 51 soldered on the feeding point 4, an inner isolator 52 covering the inner conductor 51, an outer conductor layer 53 soldered on the second grounding portion 132 and an outer isolator 54 encircling the outer conductor 53. The two setting elements 15 respectively extend from opposite ends of the grounding element 13 and each of them respectively has a circular aperture to assemble the multi-band antenna 10 to the electric device. The radiating element 11 and the pair of the setting elements are in the same plane which is perpendicular to the plane on which the second grounding portion is located. And the height of the radiating element is lower than the height of the setting element.
Reference to
The radiating element 11′ comprises a first radiating portion 16′ and a second radiating portion 17′. The second radiating portion 16′ comprises a horizontal first radiating arm 171′, a second radiating arm 172′ extending from left end of the first radiating arm 171′ in the vertical direction, a third horizontal radiating arm 173 ′ extending from one end of the second radiating arm 172′ in the neighborhood of the first radiating arm 171′ in the perpendicular direction to the second radiating arm 172′, and a fourth radiating arm 174′ extending from the third radiating arm 173′ in the neighborhood of right end of the first radiating arm 171′ and in the vertical direction to the third radiating arm 173′. The grounding element 13′ comprises a first grounding section 131′ and a second grounding section 132′. A protrude 141′ extends from the second grounding section 132 located between the two setting elements 15′ and one end of the connecting element 12′ to fasten the feed line. The connecting element 12′ extends from one end of the second radiating arm 172′ and aligned with the second radiating arm 172′ in the vertical direction. The length of the connecting element 12′ in the vertical direction is the same as the length of the least distance between the radiating element 11′ and the grounding element 13′. The connecting element 12′and the radiating element 11′ are in the same plane and connect with the grounding element 13′ in another end thereof.
While the foregoing description includes details which will enable those skilled in the art to practice the invention, it should be recognized that the description is illustrative in nature and that many modifications and variations thereof will be apparent to those skilled in the art having the benefit of these teachings. It is accordingly intended that the invention herein be defined solely by the claims appended hereto and that the claims be interpreted as broadly as permitted by the prior art.
Number | Date | Country | Kind |
---|---|---|---|
94139851 | Nov 2005 | TW | national |