The present invention has referred a Disclosure Document No. 583370 on Aug. 4, 2005.
1. Field of the Invention
The present invention relates generally to an antenna, and more particularly to a multi-band antenna used in a portable electronic device.
2. Description of the Prior Art
With the development of wireless communication, more and more portable electronic devices, such as a notebook, install an antenna system for working in a Wireless Local-area Network (WLAN). Transmitting and receiving signals plays an important role in wireless communication process. In recent years, a majority of WLAN bases on Bluetooth technical standard or 802.11 technical standard. Antenna in Bluetooth technical standard is based on 2.4 GHz frequency band, and in 802.11 technical standard is based on 2.4 GHz and 5 GHz. So, antenna in notebook mostly works at the above frequency bands at the present time.
PIFA (Planar Inverted-F Antenna) is a kind of minitype antenna usually used in the portable electronic devices. PIFA has compact structure, light weight, perfect impedance match, desired horizontal polarization and vertical polarization, and is easy to achieve multi-band. So, more and more PIFAs are used in the portable electronic devices.
However, the feeding point of an ordinary PIFA is difficult to achieve. In other words, the feeding line of the PIFA is difficult to be soldered at the feeding point according to calculation. For example, U.S. Pat. No. 6,861,986 B2 discloses a PIFA comprising a radiating element, a connecting element, a grounding element, a feeding point on the connecting element and a feeding line. The feeding line of the PIFA is difficult to be soldered at the feeding point according to calculation because there is no mark on the location of the feeding point on the connecting element, thus, the accurate soldering between the feeding line and the PIFA is hard to achieve. Accordingly, the input impedance of the PIFA is likely to do not match with the impedance of the feeding line.
Hence, in this art, a multi-band antenna to overcome the above-mentioned disadvantages of the prior art will be described in detail in the following embodiment.
A primary object, therefore, of the present invention is to provide a multi-band antenna with a feeding cap for soldering a feeding line thereon.
In order to implement the above object and overcome the above-identified deficiencies in the prior art, a multi-band antenna formed in a metal patch, comprises a grounding element, a radiating element, a connecting element connecting the radiating element and the grounding element; and a feeding cap being a protruding metal extending vertically from the radiating element or a joint of the radiating element and the connector element and locating at a position of the feeding point according to calculate.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of a preferred embodiment when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to a preferred embodiment of the present invention.
Referring to
The radiating element 2 comprises a first radiating section 21 operating at a higher frequency, a second radiating section 22 operating at a lower frequency with longer length than that of the first radiating section 21, and an L-shape third radiating section 23 enhancing the higher frequency. The first radiating section 21 and the second radiating section 22 connect each other and extend along a longitudinal direction. The third radiating section 23 comprises a first radiating arm 231 extending vertically from the joint of the first radiating section 21 and the second radiating section 22 and a second radiating arm 232 extending vertically from the first radiating arm 231. The first radiating section 21 and the second radiating arm 232 are parallel to each other and locate at common side of the first radiating arm 231.
The grounding element 4 comprises a first grounding section 41 coplanar with the radiating element 2 and a bigger second grounding section 42 extending vertically from the first grounding section 41.
The connecting element 3 is Z-shape and coplanar with the radiating element 2 and the first grounding section 41 and comprises a first part 31 extending from the joint of the first radiating arm 231 and the second radiating arm 232, a third part 33 connecting to the first grounding section 41, and a second part 32 connecting the first part 31 and the third part 33.
The feeding cap 1 is a protruding rectangular metal is perpendicular to the plane in which the radiating element 2 and extends outwardly from an upper edge of the joint of the first radiating section 21, the second radiating section 22, and the third radiating section 23. The feeding cap 1 locates at a position of the feeding point according to calculation and the location thereof is immovable. A feeding line of an ordinary antenna is difficult to solder at the feeding point of the calculation, and any weak excursion can make the input impedance being not match with the impedance of the feeding line. A feeding line (no shown) comprising an inner conductor and a shielding braid of the multi-band antenna 10 in accordance with the present invention is capable of soldering inerrably at the feeding point according to calculation, accordingly, the multi-band antenna 10 can achieve a good performance of operation. The shielding braid is capable soldering to the first grounding section 41 or the second grounding section 42.
The pair of installing elements 5, the radiating element 2, and the first grounding section 41 are coplanar. The pair of installing elements 5 extend vertically from the two ends of the second grounding section 42 along an upwards direction. Each installing element 5 has a circular hole 51 for permitting a screw protruding though to fasten the multi-band antenna 10 onto the portable electrical device.
Referring to
The radiating element 2′ comprises an L-shape first radiating section 21′ operating at a higher frequency, an L-shape second radiating section 22′ operating at a lower frequency, and a flat third radiating section 23′ enhancing the higher frequency. The first radiating section 21′ comprises a first radiating branch 211′ and a second radiating branch 212′ perpendicular to the first radiating branch 211′. The second radiating section 22′ comprises the common first radiating branch 211′ and a third radiating branch 223′ extending along a direction reverse to the second radiating branch 212′. The third radiating section 23′ extends vertically from the first radiating branch 211′. The third radiating section 23′ and the second radiating branch 212′ are parallel to each other and locate at common side of the first radiating branch 211′.
The grounding element 4′ comprises a first grounding section 41′ coplanar with the radiating element 2′ and a bigger second grounding section 42′ extending vertically from the first grounding section 41′.
The connecting element 3′ is Z-shape and has the substantially same structure as that of 3.
The feeding cap 1′ is a protruding rectangular metal is perpendicular to the plane in which the radiating element 2′ and extends outwardly from an upper edge of the joint of the third radiating section 23′, the first radiating branch 211′, and the connecting section 3′. The feeding cap 1′ locates at a position of the feeding point according to calculation and the location thereof is immovable. A feeding line of an ordinary antenna is difficult to solder at the feeding point according to calculation, and any weak excursion can make the input impedance being not match with the impedance of the feeding line. A feeding line (no shown) comprising an inner conductor of the multi-band antenna 10′ in accordance with the present invention is capable of soldering inerrably at the feeding point according to calculation, accordingly, the multi-band antenna 10′ can achieve a good performance of operation.
The pair of installing elements 5′, the radiating element 2′, and the first grounding section 41′ are coplanar. The pair of installing elements 5′ has the substantially same structure as that of the pair of installing elements 5.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
94139847 | Nov 2005 | TW | national |