1. Field of the Invention
The invention relates to the field of antenna. More specifically, a multi-band antenna operates at various wireless communication bands.
2. The Related Art
A portable communication device has an antenna that supports wireless communication in multiple bands, such as global system for mobile communications (GSM). Wireless communication bands include global system for mobile communications (GSM) band about 850 mega-hertz (MHz), extended global system for mobile communications (EGSM) band about 900 MHz, digital cellular system (DCS) band about 1800 MHz and personal conferencing specification (PCS) band about 1900 MHz.
Many different types of antennas for the portable communication device are used, including helix, monopole, inverted-F, dipole, patch, loop and retractable antennas. Helix antenna and retractable antenna are typically installed outside the portable communication device. Inverted-F antenna, monopole antenna, patch antenna, loop antenna and dipole antenna are typically embedded inside the portable communication device case or housing.
Generally, embedded antennas are preferred over external antennas for the portable communication device owing to mechanical and ergonomic reasons. Embedded antennas are protected by the portable communication device case or housing and therefore tend to be more durable than external antennas. Therefore, embedded antenna capable of operating at various wireless communication bands such as GSM band, EGSM band, DCS band and PCS band is an essential component for the portable wireless communication device.
An object of the present invention is to provide a multi-band antenna having a first radiating conductor, a second radiating conductor, a third radiating conductor, a fourth radiating conductor, a fifth radiating conductor, a feeding conductor and a short conductor. The first radiating conductor defines a first side connected to the feeding conductor and the short conductor, and a second side opposite to the first side and connected to the second radiating conductor, the third radiating conductor and the fourth radiating conductor. The second radiating conductor is arranged between the third radiating conductor and the fourth radiating conductor.
The length of the first radiating conductor and the second radiating conductor resonates at a first frequency range and a second frequency range which is double frequency higher than the first frequency range. The length of the first radiating conductor and the third radiating conductor resonates at a third frequency range higher than and close to the second frequency range.
The present invention will be apparent to those skilled in the art by reading the following description of a preferred embodiment thereof, with reference to the attached drawings, in which:
Structures of the multi-band antenna described herein are sized and shaped to tune the multi-band antenna for operation in wireless telecommunication bands. In an embodiment of the invention described in detail below, the multi-band antenna has structure which is primarily associated with operating bands covering GSM band, EGSM band, DCS band and PCS band.
Please refer to
The first radiating conductor 1 defines a first side 10, a second side 11 opposite to the first side 10, a third side 12 and a fourth side 13 opposite to the third side 12. The feeding conductor 2 and the short conductor 3 connect the first side 10 of the first radiating conductor 1, which are arranged close to the third side 12 of the first radiating conductor 1. The feeding conductor 2 is arranged close to the short conductor 3. The second radiating conductor 4, the third radiating conductor 5 and the fourth radiating conductor 6 connect the second side 11 of the first radiating conductor 1. The second radiating conductor 4 is arranged between the third radiating conductor 5 and the fourth radiating conductor 6.
The second radiating conductor 4 has a first portion 40 defining opposite ends and a second portion 41 defining opposite ends. In this case, one end of the first portion 40 of the second radiating conductor 4 connects the second side 11 of the first radiating conductor 1, which is close the fourth side 13 of the first radiating conductor 1. The other end of the first portion 40 connects vicinity of one end of the second portion 41 to form an angle between the first portion 40 and the second portion 41. The other end of the second portion 41 is at the same level with the third side 12 of the first radiating conductor 1. In this case, the second radiating conductor 4 is formed as a L-shape.
The third radiating conductor 5 has a third portion 50 defining a first outer side 500, a fourth portion 51 defining an second outer side 510 and a fifth portion 52. The third portion 50 of the third radiating conductor 5 connects the second side 11 of the first radiating conductor 1. In this case, the first outer side 500 of the third portion 50 of the third radiating conductor 5 is at the same level with the third side 12 of the first radiating conductor 1.
The fourth portion 51 connects the third portion 50 and the fifth portion 52. In this case, the fourth portion 51 of the third radiating conductor 5 is spaced from the second portion 41 of the second radiating conductor 4, the second outer side 510 of the fourth portion 51 faces the second portion 41 of the second radiating conductor 4. The fifth portion 52 of the third radiating conductor 5 is arranged between the third portion 50 of the third radiating conductor 5 and the first portion 40 of the second radiating conductor 4. In this case, the third radiating conductor 5 is formed as an U-shape.
The fourth radiating conductor 6 has a sixth portion 60 and a seventh portion 61. In this case, the sixth portion 60 of the fourth radiating conductor 6 connects the corner of the first radiating conductor 1 which is surrounded by the second side 11 and the fourth side 13. The sixth portion 60 of the fourth radiating conductor 6 also connects the first portion 40 of the second radiating conductor 4. The seventh portion 61 connects the sixth portion 60 and spaces from the first portion 40 of the second radiating conductor 4. In this case, the seventh portion 61 is arranged at the same direction in relation to the first portion 40 of the second radiating conductor 4.
In this case, antenna characteristic of the first radiating conductor 1 and the second radiating conductor 4 is similar to an inverted-F antenna. The length of the first radiating conductor 1 and the second radiating conductor 4 resonate at a first frequency range covering GSM band and EGSM band and a second frequency range covering DCS band. In this case, the first radiating conductor 1 and the second radiating conductor 4 obtain a quarter wavelength corresponding to the first frequency range.
Furthermore, antenna characteristic of the first radiating conductor 1 and the third radiating conductor 5 is similar to a loop antenna. The length of the first radiating conductor 1 and the third radiating conductor 5 resonate at a third frequency range covering PCS band. In this case, the first radiating conductor 1 and the third radiating conductor 5 obtain a half wavelength corresponding to the third frequency range.
The size, the shape and the length of the second radiating conductor 4 have a most pronounced effect on antenna characteristics in the first frequency range and the second frequency range as well as antenna gain and coving scope of the first frequency range and the second frequency range. Also, the size, the shape and the length of the third radiating conductor 5 have a most pronounced effect on antenna characteristics in the third frequency range. In this case, the size, the shape and the length of the fourth radiating conductor 6 have a minor effect on antenna characteristics in the third frequency range.
Please refer to
In this case, the multi-band antenna 100 and the dielectric element 7 can be received in the first electric portion or the second electric portion of the mobile phone. In this case, the dielectric element 7 has a top surface 70, a bottom surface 71 and a through hole 72 opened through the top surface 70 and the bottom surface 71. The first radiating conductor 1, the second radiating conductor 4, the third radiating conductor 5 and the fourth radiating conductor 6 are arranged on the top surface 70 of the dielectric element 7. The bottom surface 71 of the dielectric element 7 is attached on the printed circuit board 8.
The feeding conductor 2 is bent towards the printed circuit board 8 and electronically connected to a signal pad (not shown in figures) for transmission of the signal between multi-band antenna 100 and a signal processor (not shown in figures) electronically connected to the signal pad. The short conductor 3 is bent towards the printed circuit board 8 and electronically connected to a ground pad for electronically coupling ground portion of the printed circuit board 8. Part of the fifth portion 52 of the third radiating conductor 5 is bent towards the printed circuit board 8 through the through hole 72 of the dielectric element 7 and electronically connected to the ground pad for electronically coupling ground portion of the printed circuit board 8.
Please refer to
Please refer to
As described in
Therefore, the multi-band antenna 100 obtains three frequency range covering 850 MHz, 900 MHz, 1800 MHz and 1900 MHz corresponding to GSM band, EGSM band, DCS band and PCS band in wireless telecommunication. Due to the multi-band antenna 100 obtains stable and preferred VSWR value both in standby of the mobile phone and in telecommunication of the mobile phone, the mobile has a preferred quality of wireless telecommunication.
Furthermore, the present invention is not limited to the embodiments described above; various additions, alterations and the like may be made within the scope of the present invention by a person skilled in the art. For example, respective embodiments may be appropriately combined.
Number | Name | Date | Kind |
---|---|---|---|
7161541 | Chen | Jan 2007 | B2 |
7388543 | Vance | Jun 2008 | B2 |
7564411 | Piisila et al. | Jul 2009 | B2 |
20090002243 | Dahlstrom et al. | Jan 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090046014 A1 | Feb 2009 | US |