1. Statement of the Technical Field
The inventive arrangements relate generally to methods and apparatus for antennas and feed systems, and more particularly to ring focus antennas and feed systems that can operate in multiple frequency bands.
2. Description of the Related Art
It is often desirable for microwave satellite communication antennas to have the ability to concurrently operate on multiple frequency bands. In those situations where a single coaxial feed for multiple bands is desired, it can be challenging to maintain existing system performance specifications without changing the design of an existing main reflector. Further, space limitations associated with existing designs can severely restrict design options with regard to the form factor of the sub-reflector and feed horns.
U.S. Pat. No. 6,211,834 B1 to Durham et al. (hereinafter Durham), concerns a multi-band shaped ring focus antenna. In Durham, a pair of interchangeable, diversely shaped, close proximity-coupled sub-reflector-feed pairs are used for operation at respectively different spectral frequency bands. Swapping out the subreflector/feed pairs changes the operational band of the antenna. Accordingly, that system does not offer concurrent operation on spectrally offset frequency bands.
U.S. Pat. No. 5,907,309 to Anderson et al. and U.S. Pat. No. 6,323,819 to Ergene each disclose dual band multimode coaxial antenna feed horns. However, one problem with coaxial horns of this type is that there is a substantial tendency of horns for different bands to interact with one another due to their coaxial arrangement. These interactions can be exacerbated by co-locating the horn apertures at a substantially common plane. Still, substantially co-located horn apertures have proven to be necessary in many instances due to the need to maintain a common phase center.
The necessity to maintain a common phase center for each horn typically arises where the horns are used to feed a conventional reflector type antenna system. For example, the combination of a particular main reflector and sub-reflector pair for a ring focus antenna will generally establish a required phase center for the feed horns. Where a coaxial horn feed system is used, each horn in the coaxial feed must satisfy the common phase center location requirements.
The invention concerns a multi-band ring focus antenna system. The system includes a main reflector that is operable at a plurality spectrally offset frequency bands. A first feed for the main reflector is provided for operation of the main reflector on a first RF frequency band. The first feed includes a first feed horn and a first sub-reflector, which are positioned spaced apart from each other at respective locations along a boresight axis of the main reflector. The locations are selected so that the first feed horn and the first sub-reflector share a commonly located first phase center.
A second feed is also provided for the main reflector. The second feed is designed for operation on a second RF frequency band spectrally offset from the first band. The second feed includes a second feed horn and a second sub-reflector, each positioned at a location along the boresight axis of the main reflector so that they share a commonly located second phase center. Further, the first and second vertexes of the respective first and second sub-reflectors are substantially co-located at an equal distance from the main reflector.
According to one aspect, the first and second sub-reflectors each form a focal ring respectively for each of the first and second bands. The focal rings are formed at a predetermined common location spaced from the main reflector for concurrently illuminating the main reflector on the first and second bands. In order to achieve this result, at least one of the first and second sub-reflectors can be a frequency selective surface.
At least a portion of the second feed horn can be coaxially positioned within the first feed horn. Further, the first and second sub-reflectors can each define a shaped surface of revolution about the boresight axis of the main reflector. The shaped surface of revolution can be selected so as to have no continuous surface portion thereof shaped as a regular conical surface of revolution. Similarly, the main reflector can define a shaped surface of revolution about the boresight axis having no continuous surface portion thereof shaped as a regular conical surface of revolution.
According to one aspect of the invention, at least a portion of the shaped surface of revolution that comprises the second sub-reflector can be interposed between the first horn and the first sub-reflector. In that case, the second sub-reflector is advantageously formed as a frequency selective surface.
According to another aspect of the invention the first feed horn can be a corrugated horn and the second feed horn can be a smooth walled or modal horn.
Further, each of the first and second feed horns can be decoupled from the first and second sub-reflectors.
The invention can also concern a method for multi-band operation of a ring focus antenna. The method can include the steps of feeding a main reflector of the ring focus antenna on a first RF frequency band using a first feed horn spaced apart from a first sub-reflector, where each is positioned along a boresight axis of the main reflector; and feeding the main reflector on a second RF frequency band spectrally offset from the first band using a second feed horn spaced apart from a second sub-reflector, where each is positioned along the boresight axis. The method can further include the steps of co-locating a vertex of the first and second sub-reflector at a substantially equal distance from the main reflector to form with the first and second sub-reflectors a focal ring for each of the first and second bands at a common predetermined location spaced from the main reflector for concurrently illuminating the main reflector on the first and second bands. Finally, the method can also include the step of positioning the first and second feed horns so that the phase center of each feed horn is located at a respectively different distance from the co-located vertexes.
In order to achieve the foregoing, the first sub-reflector can be shaped to have a phase center corresponding to a position of the phase center of the first horn. Likewise, the second sub-reflector can be shaped to have a phase center corresponding to a position of the phase center of the second horn. The method can include the step of forming the first and second sub-reflectors so that each defines a shaped surface of revolution about the boresight axis of the main reflector having no continuous surface portion thereof shaped as a regular conical surface of revolution. Similarly, the method can include selecting the main reflector to define a shaped surface of revolution about the boresight axis having no continuous surface portion thereof shaped as a regular conical surface of revolution.
According to another aspect, the method can include the step of forming the second sub-reflector as a frequency selective surface. In that case, at least a portion of the second sub-reflector can be interposed between the first sub-reflector and the first feed horn. Finally, the method can also include the step of positioning each of the first feed horn and the second feed horn respectively at a distance from the first and second sub-reflectors so that they are decoupled.
Shaped ring focus antennas typically have an approximately split parabolic main reflector and an approximately ellipsoidal subreflector. Advantageously, the conical properties of the ellipsoid-shaped subreflector provide a dual focus characteristic, with one of its foci displaced toward the vicinity of the aperture of the main reflector where a feed horn is installed. The other focus is symmetric about the antenna axis in the form of a ring, which enables the antenna to obtain a substantially uniform amplitude distribution in the aperture plane. As a consequence of this geometry, the antenna is more compact than a conventional center-fed structure.
A simple ray diagram for a conventional ring-focus reflector antenna system is illustrated in
For the transmit path, RF energy is transmitted from a feed phase center 104 toward the sub-reflector 102 and is reflected as shown. The transmitted RF energy is shown as ray R1. The reflected RF energy from the sub-reflector 102 forms a focal ring extending radially about the x axis. The focal ring coincides with the size and location focal ring of the main reflector for illuminating the main reflector 100. The reflected RF energy from the sub-reflector 102 is identified as ray R2 in
Received signals generally also traverse the path identified by rays R3, R2, and R1. Received signals strike the main reflector 100, are reflected and pass through the focal ring, are reflected by the sub-reflector 102, and finally arrive at the feed phase center 104. The feed for ring-focus reflector antennas is typically a microwave horn. The phase center of the feed horn is advantageously positioned so as to coincide with the phase center 104 of the sub-reflector. In general, radiated fields measured on the surface of a sphere whose center coincides with the phase center 104 have the same phase.
The exact location of the phase center relative to any feed horn will be determined by a variety of factors, including the dimensions of the horn and its flare angle. Generally, the phase center will be located somewhere between the throat of the horn and its aperture. For convenience, the phase center of the feed horns described herein shall be assumed to be at or near the aperture of the horn. However, the invention is not limited in this regard.
The sub-reflector 102 and main reflector 100 in the ring-focus antenna system of
While the boundary conditions may be selected to define a regular conical shape, such is not the intent of the shaping of the invention. The ultimate shape of each subreflector and the main reflector are whatever the parameters of the operational specification of the antenna dictate, when applied to the directivity pattern relationships and boundary conditions.
Once the shapes of a subreflector and main reflector pair have been generated, the performance of the antenna is subjected to computer analysis, to determine whether the generated antenna shapes will produce a desired directivity characteristic. If the design performance criteria are not initially satisfied, one or more of the parameter constraints are adjusted, and performance of the antenna is analyzed for the new set of shapes. This process is typically repeated iteratively, until the shaped pair meets the antenna's intended operational performance specification.
Referring now to
Once a sub-reflector/main reflector pair have been defined utilizing the computer analysis described above, the main reflector focal ring is fixed; i.e. unless the main reflector is modified, optimum antenna performance can only be achieved by utilizing a sub-reflector that has a focal ring that closely matches the main reflector focal ring.
The process to reshape the sub-reflector for a fixed main reflector can be summarized as follows:
Since it is possible to shift the sub-reflector vertex slightly with respect to the back of the main reflector (there is some degree of freedom if a slight antenna performance degradation is permitted), it can be advantageous to shape two new sub-reflectors (as opposed to utilizing the original+new) for some applications.
The ability to independently vary the phase center of a sub-reflector has important implications in the reflector antenna field. For example,
In a coaxial horn arrangement, it can be advantageous for the aperture of the inner coaxial horn to be positioned substantially outside the aperture of the outer horn 301. This concept is illustrated in
The foregoing problem can be overcome with the arrangement illustrated in
The focal rings produced by the sub-reflectors 403, 404 can be formed at a predetermined common location spaced from the main reflector for concurrently illuminating the main reflector on the first and second bands. Sub-reflectors 403, 404 can be shaped using the processed described herein to each define focal ring that is substantially co-located and spatially coincident with a focal ring of the main reflector 408. Further, the first and second vertexes 406, 407 of the respective first and second sub-reflectors can be substantially co-located at an equal distance from the main reflector. Shaping the sub-reflectors with a focal ring that satisfies the focal ring requirements of the main reflector and co-locating the vertex of each sub-reflector 406, 407 will allow each of the sub-reflectors 403, 404 to operate in conjunction with the main reflector 408.
Using techniques previously described in relation to
In order to permit sub-reflectors 403, 404 to overlap one another as shown, it is desirable that at least one of the sub-reflectors be formed of a frequency selective surface that reflects RF signals having a first frequency and passes RF signals having a second frequency. Frequency selective surfaces are well known in the art. Sub-reflector 404 can be formed of any suitable frequency selective surface that passes signals associated with feed horn 301 but reflects signal associated with feed horn 302. Sub-reflector 403 can be formed of so as to reflect signals associated with feed horn 301 and does not need to be a frequency selective surface.
As illustrated in
Referring now to