An example method in accordance with some embodiments may include: a dual-band, tri-band, or higher-order multi-band array of antenna elements, with each element, or subsets of elements, connected to multiple radios at each antenna port. In one embodiment, an array comprises a 128 element Massive MIMO array having 64 horizontally-polarized (H-pol) and 64 vertically-polarized (V-pol) elements configured to provide dual polarization capability.
Some embodiments service two bands. Alternative embodiments service three frequency bands. In a three band system, one band comprises a frequency division duplex scheme referred to here as FDD, operating at 1960-2170 MHz, where the radio technology is fourth generation (4G) at a frequency range of 1960-1980 MHz uplink, 2150-2170 MHz downlink. The second band is a time division duplex channel referred to herein as TDD, operating at a frequency range of 3400-3600 MHz, where the radio technology is also 4G, at a frequency range of 3400-3440 MHz TDD; 3560-3600 MHz TDD. The third band is also TDD, but is fifth generation (5G) technology operating at 3900-4000 MHz.
In some embodiments, each frequency band utilizes a separate radio chipset, such that the array includes three radio chipsets attached to the antenna feed points of many of the array antenna elements. Some antenna elements may be connected to two radio chipsets, while others may be connected to only one chipset or to more than two chipsets. In some embodiments, multiple radio chipsets may be combined into multi-radio transceiver modules.
In some embodiments, the antenna elements are selectively connected to the transceivers via RF switches, tunable capacitors, PIN diodes, or other tuning components. Selective and dynamically configurable connections are used to provide an open circuit condition for neighboring elements of the elements selected for 2 GHz operation. At other frequencies, these elements may provide an impedance matching function. These tuning devices can be placed at the feed port of the antenna. This feature is implemented to overcome the low isolation between elements in the array at 2 GHz due to the small electrical spacing between elements (λ/4).
Furthermore, RF switches, tunable capacitors, PIN diodes, or other tuning components are used in some embodiments to connect or disconnect neighboring elements of the elements selected for 2 GHz operation, and are placed at the top of the slot where one slot transitions into the next slot, or at other locations along the element to element interface. This feature is implemented to overcome the low isolation between elements in the array at 2 GHz due to the small electrical spacing between elements (λ/4).
In some embodiments, a variable impedance is selected to optimize isolation between adjacent elements. The impedance may be capacitive or inductive, and may be embodied as a physical component or as a geometric feature of the antenna element or feed. Within a frequency band, the variable impedance results in a short circuit, open circuit, or intermediate impedance state.
In some embodiments, the antenna element is a tapered slot antenna, commonly referred to as a Vivaldi notch which is used to populate the array. A two-feed approach is used to provide desired performance for feed locations at both 2 GHz and 3.4 to 4.0 GHz frequency bands. Further embodiments may extend this approach to support three or more feeds and/or additional frequency bands. In some embodiments of the 2 GHz transceiver function, H-pol and V-pol elements that are not co-located are used as pairs to provide dual polarization performance. This increases the ability to optimize isolation between 2 GHz elements and neighboring elements.
The antenna array elements may be connected to individual transceiver chipsets, and chipsets or transceiver modules may each be configured with assigned receive signal weighting factors, the transceiver modules interconnected with high-speed data communication buses, and each transceiver module positioned adjacent to a respective antenna element in the antenna array. A method may include configuring the plurality of transceiver modules into inter-communicating module groups by enabling the associated high-speed data communication buses; receiving a plurality of wireless data signals with the plurality of transceiver modules and responsively generating a corresponding plurality of receive baseband data signals; generating a plurality of received beamformed signals by combining subsets of the receive baseband signals within each module group using the assigned receive signal weighting factors by transmitting the receive baseband signals between the transceiver modules within the module group; and demodulating the received beamformed signals.
Some embodiments of the example method may further include: obtaining a plurality of transmit digital baseband signals at the antenna array for transmission by the antenna array; distributing each transmit digital baseband signal to a respective plurality of transceiver modules; and applying a transmit signal weighting factor of the assigned signal weighting factors to the transmit digital baseband signal at each respective transceiver module.
Some embodiments of the example method may further include: generating a transmit modulated signal from the transmit digital baseband signal at each transceiver using a digital modulator and power amplifier; and combining the transmit modulated signals.
An example additional method in accordance with some embodiments may include: receiving a desired signal at an array of transceiver modules arranged on a panel array, each module positioned adjacent to one or more antenna elements on the panel array, wherein each transceiver module comprises a plurality of digital demodulators, which may include a baseband signal combiner; generating a demodulated baseband modulated signal from each of the transceiver modules; and combining the digital baseband signals at the panel array using the baseband signal combiners. For some embodiments of the example additional method, the signal combiners may be configured by a signal weighting factor. For some embodiments of the example additional method, the signal weighting factor may include a beam forming weight. For some embodiments of the example additional method, the beam forming weight may be a column weighting factor, a row weighting factor, or both.
An example apparatus in accordance with some embodiments may include: a plurality of transceiver modules in an antenna array, each transceiver having an assigned receive signal weighting factor, each transceiver module positioned adjacent to a respective antenna element in the antenna array; a plurality of high-speed data communication buses connected to the plurality of transceiver modules; a controller configured to transmit control signals to group the transceiver modules into inter-communicating module groups; a plurality of accumulators associated with the transceiver module groups configured to receive a plurality of receive baseband data signals and to apply the assigned receive signal weighting factors to form receive beamformed signals; and a demodulator configured to demodulate the received beamformed signals.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
The entities, connections, arrangements, and the like that are depicted in—and described in connection with—the various figures are presented by way of example and not by way of limitation. As such, any and all statements or other indications as to what a particular figure “depicts,” what a particular element or entity in a particular figure “is” or “has,” and any and all similar statements—that may in isolation and out of context be read as absolute and therefore limiting—may only properly be read as being constructively preceded by a clause such as “In at least one embodiment, . . . ” For brevity and clarity of presentation, this implied leading clause is not repeated ad nauseum in the detailed description of the drawings.
Disclosed herein is a Massive MIMO array design targeting an application where dual-band or tri-band performance is provided. The array elements are designed to populate the array to cover multiple frequency bands. In some embodiments, the individual array elements are Vivaldi notch elements. For the 3.9 GHz 5G application, all elements of the array can be used. For the 4G applications at 2.0 GHz and 3.6 GHz, one or more subsets of elements in the array are combined to form one or. more fixed or scanned beams. The multi-band array of one embodiment contains 8×8 (64 dual-linearly polarized) elements with all elements used in a 5G Massive MIMO application. Sixteen of the elements can simultaneously be used as a sub-array for use at the 3.4 to 3.6 GHz band for 4G application. Additionally, in some embodiments, two pairs of elements, each in a 2×4 configuration are used to provide fixed beams for use at 2 GHz.
The dual-band array can be configured to meet the following requirements:
Thus, some embodiments are configured to operate such that a center frequency of the first frequency band is approximately twice a center frequency of the second frequency band. Alternatively, some embodiments are configured such that a spacing between adjacent antenna elements is substantially equal to λF1/2, where λF1 is a wavelength of a center frequency of the first frequency band, and a spacing between alternate antenna elements is substantially equal to λF2/2, where λF2 is a wavelength of a center frequency of the second frequency band.
In some embodiments, separate feed ports are incorporated in the dual band elements to allow attachment to separate radio transceivers for each band of operation, or alternatively, for each mode of operation.
Some embodiments of the array of tapered slot antenna elements are configured such that each antenna element has a horizontal polarization portion and a vertical polarization portion. Each portion of each antenna element has a first tapered slot formed by a gap in a metallization layer positioned on a first side of a dielectric substrate, and an associated first feedline port formed from a first metallization stripline positioned on a second side of the dielectric substrate, the first metallization stripline crossing over the first gap in the metallization layer to couple electromagnetic radiation from the antenna element to free space within a first frequency band. At least a subset of the antenna elements, and in some cases all of the antenna elements, have a second slot joined to the first slot that is formed by a second gap in the metallization layer positioned on the first side of the dielectric substrate, and an associated second feedline port formed from a second metallization stripline positioned on the second side of the dielectric substrate, the second metallization stripline crossing over the second gap in the metallization layer to couple electromagnetic radiation from the antenna element to free space within a second frequency band, the second frequency band being lower than the first frequency band.
The array may be configured with individual transceivers to operate each antenna element. In some embodiments, the first feedline of each element of the array of tapered slot antenna elements is connected to a respective radio frequency transceiver operating within the 3400 to 4000 MHz frequency band, and each second feedline of each antenna element of the subset of antenna elements is connected to a respective radio frequency transceiver operating within the 1960 to 2170 frequency band.
Furthermore, each radio frequency transceiver operating within the 1960 to 2170 MHz frequency band may be connected to the corresponding antenna element using a diplexer to allow simultaneous signal transmission within a first sub-band of 1960 to 2170 MHz frequency band, and signal reception within a second sub-band of the 1960 to 2170 MHz frequency band.
As shown schematically by
Other embodiments may incorporate other active components in antenna elements, as one example a PIN switching diode to additionally direct or isolate signals in various modes of operation. Switching or tuning control may be implemented using DC signals superimposed on the RF feeds, or by control signals separate from the RF feeds.
As will be apparent to one familiar with the art, the described attachment of two feed ports on selected antenna elements may be extended to support elements incorporating more than two feed ports. Similarly, operation in more than two frequency bands, additional emission patterns, and/or attachment to different numbers of radio systems may be accommodated using the methods and apparatus described herein.
Additional modes of antenna array operation may be obtained by selectively driving subsets of antenna elements, as shown in
In some embodiments, the groups of elements associated with each sub-array share at least one common feed port configuration, such that the sub-array may be selected by selecting that common feed port. In an alternative embodiment, said common feed port configuration may physically span a greater number of elements, with frequency-selective elements such as the previously described frequency-depended filters (e.g. stripline stubs) and/or active switching elements (e.g. PIN diodes) in selected antenna elements subsequently limiting the set of active elements to the desired sub-array within a particular frequency band.
For some embodiments of a method, one or more transceiver modules may be configured with a weighting factor used for beam forming.
Some embodiments of a method may include receiving a desired signal at an array of transceiver modules arranged on a panel array, each module positioned adjacent to an antenna element on the panel array, wherein each transceiver module may include a plurality of digital demodulators, and may include a baseband signal combiner; generating a demodulated baseband modulated signal from each of the transceiver modules; and combining the digital baseband signals at the panel array using the baseband signal combiners.
In some embodiments of a method, the signal combiners may be configured by a signal weighting factor. In some embodiments of a method, the signal weighting factor may include a beam forming weight. In some embodiments of a method, the beam forming weight may be a column weighting factor, a row weighting factor, or both.
Some embodiments of an apparatus may include: a plurality of transceiver modules configured in an antenna array; a synchronization transmission circuit configured to transmit a synchronization signal to the plurality of transceiver modules; a receive carrier generation circuit configured to generate a receive carrier reference signal; and a synchronization processing circuit configured to process the synchronization signal and to align a phase of the receive carrier reference signal.
Some embodiments of an apparatus may include: a plurality of transceiver modules arranged in an array and configured to receive a digital baseband signal; a plurality of digital modulators and power amplifiers each configured to generate a transmit modulated signal from the digital baseband signal; and a combiner configured to combine the transmit modulated signals.
Some embodiments of an apparatus may include: a plurality of antenna elements on a panel array; a plurality of transceiver modules arranged on the panel array to be adjacent to one of the plurality of antenna elements and configured to receive a desired signal, wherein each transceiver module may include a plurality of digital demodulators, and includes a baseband signal combiner; a demodulation circuit configured to generate a demodulated baseband signal from each of the transceiver modules; and a combiner configured to combine the digital baseband signals at the panel array using the baseband signal combiners.
In further embodiments, a method comprises providing a plurality of first transmit signals in a first frequency band to an array of tapered slot antenna elements, each antenna element having a horizontal polarization portion and a vertical polarization portion. Each of the plurality of first transmit signals being provided between a metallization layer of each antenna element having a first tapered slot formed by a gap in a metallization layer positioned on a first side of a dielectric substrate, and an associated first feedline port formed from a first metallization stripline positioned on a second side of the dielectric substrate, the first metallization stripline crossing over the first gap in the metallization layer to couple electromagnetic radiation from the antenna element to free space within the first frequency band. Further, the plurality of second transmit signals in a second frequency band may be provided to at least a subset of the antenna elements having a second slot joined to the first slot and formed by a second gap in the metallization layer positioned on the first side of the dielectric substrate, and an associated second feedline port formed from a second metallization stripline positioned on the second side of the dielectric substrate, the second metallization stripline crossing over the second gap in the metallization layer to couple electromagnetic radiation from the antenna element to free space within the second frequency band, the second frequency band being lower than the first frequency band.
The method may include using at least a subset of the antenna elements that comprises alternately-spaced antenna elements or elements such that a center frequency of the first frequency band is approximately twice a center frequency of the second frequency band.
The method may include spacing adjacent antenna elements to be substantially equal to λF1/2, where λF1 is a wavelength of a center frequency of the first frequency band, and spacing alternate antenna elements to be substantially equal to λF2/2, where λF2 is a wavelength of a center frequency of the second frequency band.
Some methods may generate the first plurality of transmit signals by a respective first plurality of radio frequency transceivers operating within the 3400 to 4000 MHz frequency band, and generating the plurality of second transmit signals by a respective second plurality of transceivers operating in a frequency division duplex mode within the 1960 to 2170 MHz frequency band.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art would appreciate that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover, in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has,” “having,” “includes,” “including,” “contains,” “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about”, or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
It will be appreciated that some embodiments may comprise one or more generic or specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.
Accordingly, some embodiments of the present disclosure, or portions thereof, may combine one or more processing devices with one or more software components (e.g., program code, firmware, resident software, micro-code, etc.) stored in a tangible computer-readable memory device, which in combination form a specifically configured apparatus that performs the functions as described herein. These combinations that form specially programmed devices may be generally referred to herein as “modules.” The software component portions of the modules may be written in any computer language and may be a portion of a monolithic code base, or may be developed in more discrete code portions such as is typical in object-oriented computer languages. In addition, the modules may be distributed across a plurality of computer platforms, servers, terminals, and the like. A given module may even be implemented such that separate processor devices and/or computing hardware platforms perform the described functions.
Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage media include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
This application claims the benefit of U.S. provisional application 62/927,109, filed Oct. 28, 2019, entitled “Multi-Band Massive MIMO Antenna Array”, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US20/57782 | 10/28/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62927109 | Oct 2019 | US |