The present disclosure generally relates to multi-band Planar Inverted-F Antennas (PIFAs) with improved and/or good isolation, which are suitable for multi-antenna applications that use more than one antenna.
This section provides background information related to the present disclosure which is not necessarily prior art.
Examples of infrastructure antenna systems include customer premises equipment (CPE), satellite navigation systems, alarm systems, terminal stations, central stations, and in-building antenna systems. With the fast growing technologies, antenna bandwidth has become a great challenge along with the requirement to miniaturize CPE device size or antenna system size in order to maintain a low profile. In addition, multi-antenna systems having more than one antenna have been used to increase capacity, coverage, and cell throughput.
Also with the fast growing technologies, many devices have gone to multiple antennas in order to satisfy the end customers' demand. For example, multiple antennas are used in multiple input multiple output (MIMO) applications in order to increase user capacity, coverage, and cell throughput. With the current market trend towards economical, small, and compact devices, it is not uncommon to use multiple antennas identical in form that are placed in very close proximity to each other due to size and space limitations. Moreover, antennas for customer premises equipment, terminal stations, central stations, or in-building antenna systems must usually be low profile, light in weight, and compact in physical volume, which makes PIFAs particularly attractive for these types of applications.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
According to various aspects, exemplary embodiments are disclosed of multi-band Planar Inverted-F antennas (PIFAs) and antenna systems including the same. In an exemplary embodiment, a PIFA generally includes a planar radiator or upper radiating patch element having a slot. A lower surface of the PIFA is spaced apart from the upper radiating patch element. First and second shorting elements electrically connect the planar radiator to the lower surface. The second shorting element may be configured to have a length greater than a spaced distance separating the upper radiating patch element and lower surface. The PIFA also includes a feeding element electrically connected between the upper radiating patch element and the lower surface.
Another exemplary embodiment includes an antenna system operable within at least a first frequency range and a second frequency range different than the first frequency range. In this embodiment, the system generally includes a ground plane and first and second planar inverted-F antennas (PIFAs). Each PIFA includes a planar radiator having a slot and a lower surface spaced apart from the planar radiator, which is also mechanically and electrically connected to the ground plane. First and second shorting elements electrically connecting the planar radiator to the lower surface of each PIFA. Also, a feeding element is electrically connected between the upper radiating patch element and the lower surface of each PIFA. The system may also include a first isolator disposed between the first and second PIFAs, and a second isolator extending outwardly from the ground plane.
In a further exemplary embodiment, there is an antenna system operable within at least a first frequency range and a second frequency range different than the first frequency range. In this example, the system generally includes a ground plane, first and second PIFAs, and first and second isolators. The first isolator includes a vertical wall portion disposed between first and second PIFAs such that the first and second PIFAs are symmetrically arranged about and spaced equidistant from opposite sides of the first isolator. The second isolator includes a first portion extending outwardly from the ground plane and a second portion generally parallel to the ground plane.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Example embodiments will now be described more fully with reference to the accompanying drawings.
As described above in the Background,
The inventors hereof disclose exemplary embodiments multi-band PIFA type antennas (e.g., 100 (
According to exemplary embodiments, there is disclosed herein a PIFA antenna that includes double shorting and a radiating element with a slot to excite multiple frequencies while enhancing the bandwidth of the antenna. In some embodiments, a multiple antenna system includes two of such PIFA antennas that are symmetrically placed relatively close to each other on a ground plane.
The inventors have recognized, however, that, isolation between antennas may deteriorate due to mutual coupling between the respective radiating elements of the antennas when antennas are placed close together. The inventors hereof have thus added isolators to their antenna systems such that isolation between the antennas is improved. This isolation improvement allows the inventors to place more antenna radiating elements in the same volume of space. The isolation improvement also allows for a smaller overall antenna assembly, such as for an end use where space is limited or compactness is desired.
Further, the inventors' have disclosed spoiler-shaped isolators that electrically increase the ground surface length, which, in turn, leads to bandwidth improvement especially for low band operations. The large bandwidth associated with exemplary embodiments of the antenna system allows multiple operating bands for wireless communications devices. By way of example, an antenna system having multi-band PIFAs as disclosed herein may be configured to be operable or cover the frequencies or frequency bands listed immediately below in Table 1.
In exemplary embodiments, an antenna system that includes multi-band PIFAs may be operable for covering all of the above-listed frequency bands with good voltage standing wave ratios (VSWR) and with relatively good efficiency. Alternative embodiments may include an antenna system operable at less than or more than all of the above-identified frequencies and/or be operable at different frequencies than the above-identified frequencies.
Additionally, exemplary embodiments of the inventors' multi-band PIFAs may be formed by using a single stamping. For example, a single piece of material may be stamped and formed (e.g., bent, folded, etc.) to form a PIFA as disclosed herein. In such embodiments, the PIFA may not include any dielectric (e.g., plastic) substrate that mechanically supports or suspends the upper radiating patch element above the lower surface or ground plane of the PIFA. Instead, the upper radiating patch element of the PIFA may be mechanically supported above the lower surface by the PIFA's shorting elements. Accordingly, the PIFA may be considered as having an air-filled substrate or air gap between the upper radiating patch element and lower surface, which allows for cost savings due to the elimination of a dielectric substrate. Alternative embodiments may include a dielectric substrate that supports the upper radiating patch element above the ground plane or lower surface of the PIFA.
With reference now to the figures,
The radiating patch element 102 includes a slot 104 for forming multiple frequencies (e.g., frequencies from 698 megahertz to 960 megahertz and from 1710 megahertz to 2700 megahertz, etc.) and for frequency tuning at the high band. The slot 104 may be configured such that the PIFA 100 improved the return loss level at high frequencies or high frequency bands for a higher patch. For a lower profile patch option, a slot may not be needed to improve high band in other embodiments. In this illustrated example embodiment, the slot 104 is generally rectangular and divides the radiating patch element 102 so as to configure the PIFA 100 to be resonant or operable in at least a first frequency range and a second frequency range, which is different (e.g., non-overlapping, higher, etc.) than the first frequency range. For example, the first frequency range may be from about 698 megahertz to about 960 megahertz, while the second frequency range is from about 1710 megahertz to about 2700 megahertz. But the slot 104 may be configured for different frequency ranges and/or have any other suitable shape, for example a line, a curve, a wavy line, a meandering line, multiple intersecting lines, and/or non-linear shapes, etc, without departing from the scope of this disclosure. The slot 104 is an absence of electrically-conductive material in the radiating patch element 102. For example, the radiating patch element 102 may be initially formed with the slot 104, or the slot 104 may be formed by removing electrically-conductive material from the radiator 102, such as etching, cutting, stamping, etc. In still yet other embodiments, the slot 104 may be formed by an electrically nonconductive or dielectric material, which is added to the upper radiating patch element 102 such as by printing, etc.
The radiating patch element 102 is spaced apart from and disposed above a lower surface 106 of the PIFA 100. By way of example only, the radiating patch element may include a top surface that is about 20 millimeters above the bottom of the lower surface (see
In this example, the radiating patch element 102 and lower surface 106 are rectangular surfaces generally parallel to each other and that are also planar or flat. Alternative embodiments may include different configurations, such as non-planar or non-flat, non-rectangular, and/or non-parallel radiating elements and lower surfaces.
With continued reference to
The PIFA 100 also includes a first shorting element 108 (
With continued reference to
The second shorting 110 is configured or formed to enhance or improve bandwidth of the PIFA 100 at a first, low frequency range or bandwidth (e.g., frequencies from 698 megahertz to 960 megahertz, etc.). Thus, the second shorting 110 may allow a smaller patch to be used by broadening the bandwidth.
In this particular illustrated embodiment, the first shorting element 108 is generally flat or planar, rectangular, and perpendicular to the upper radiating patch element 102 and lower surface 106. Alternative embodiments may include a first shorting element configured differently than what is illustrated in
The illustrated second shorting element 110 is configured such that it has an overall length greater than the spaced distance or gap separating the radiating patch element 102 and the lower surface 106. in this example, the second shorting element 110 has a non-planar or non-flat configuration. As shown in
The illustrated first and second shorting elements 108, 110 are but mere examples of possible shapes that may be used for the shorting elements. For example,
The PIFA 100 also includes a feeding element 114. The feeding element 114 is electrically connected to and extends between the radiating patch element 104 and the lower surface 106. In this exemplary embodiment, the feeding element 114 is electrically connected to and extends between the edges of the radiating patch element 102 and lower surface 106. In other embodiments, however, the feeding element may be electrically connected to the radiating patch element and/or lower surface of the PIFA at a location inwardly spaced from an edge.
In this example embodiment, the bottom of the feeding element 114 may provide a feeding point 115, for example, for connection to a coaxial cable, transmission line, or other feed. in this illustrated embodiment of the PIFA 100 (
Also shown in
In this illustrated embodiment, the tapering features 116 comprise upper side edge portions of the feeding element 114 that are slanted or angled inwardly towards the middle of feeding element 114. Stated differently, the upper side edge portions 116 of the feeding element 114 are slanted or angled inwardly toward each other along these edge portions 116 in a direction from the radiating patch element 102 downward towards the lower surface 106. Accordingly, the upper portion of the feeding element 102 adjacent and connected to the radiating patch element 102 decreases in width due to the tapering features or inwardly angled upper side edge portions 116. In alternative embodiments, the feeding elements 114 may include only one or no tapering features.
As shown in
The PIFA 100 also includes flaps or tabs 122 with thru-holes configured for adding holders, carriers, standoffs, supports, etc. (e.g., standoffs 236 shown in
In exemplary embodiments, the inventors' multi-band PIFAs (e.g., PIFA 100 shown in
An exemplary manufacturing process or method of making the PIFA 100 will now be provided. At a first step, operation, or process, a single piece of material may be stamped so as to create a partial profile for the PIFA 100. The stamped partial profile includes the flat, unfolded, or unbent pattern that includes the radiating patch element 102, slot 104, lower surface 106, shorting elements 108, 110, feeding element 114, capacitive loading element 118, capacitive loading elements 120, and tabs 122. The pattern stamped into the piece of material will also include the portions of these elements, such as the tapering features 116 of the feeding element 114. This stamping may occur via a single stamping or progressive stamping techniques in which the piece of material is fed or advanced through numerous operations of a progressive stamping die in a reciprocating stamping press.
After stamping, the piece of material may be trimmed or cut off to remove excess material. The stamped piece of material may then be formed (e.g., bent, folded, etc.) to provide the PIFA 100 with the configuration shown in
In this illustrated embodiment of the antenna system 200, the PIFAs 224 are identical or substantially identical to each other. Also, the PIFAs 224 are identical to or substantially identical to the multi-band, PIFA 100 described herein and shown in
The configuration of the ground plane 226 may depend, at least in part, on the particular end use intended for the antenna system 200. Thus, the particular shape, size, and material(s) (e.g., sheet metal, etc.) of the ground plane 226 may be varied or tailored to meet different operational, functional and/or physical requirements. But in view of the relatively small lower surfaces of the PIFAs 224, the ground plane 226 is configured to be sufficiently large enough to be a fully effective ground plane for the antenna system 200.
In the illustrated embodiment of
With continued reference to
The first and second isolators 228, 230 may be coupled (e.g., soldered, electrically-conducive adhesive, etc.) to the ground plane 226. As another example, either or both isolators 228, 230 may include tabs along the bottom thereof that are configured to be inserted or positioned within slots or holes in the ground plane 226 for aligning and mechanically mounting the isolators 228, 230.
In this illustrated embodiment, the first isolator 228 comprises a vertical wall isolator similar to or identical to the vertical rectangular wall isolator 328 shown in
Alternative embodiments may include an isolator between the PIFAs 224 that is configured differently (e.g., non-rectangular, non-perpendicular to the ground plane 226, taller or shorter, etc.) than what is illustrated. For example,
The vertical wall isolator 228 is mounted to the rectangular portion 227 of the ground plane 226 between the PIFAs 224. The vertical wall isolator 228 is generally perpendicular and vertical relative to the ground plane 226. In this particular illustrated embodiment, the PIFAs 224 are spaced equidistant from the vertical wall isolator 228. The PIFAs 224 are symmetrically arranged on opposite sides of the vertical wall isolator 228 about an axis of symmetry through or defined by the vertical wall isolator 228, such that each PIFA 224 is essentially a mirror image of the other.
During operation, the vertical wall isolator 228 improves isolation. The frequency at which the isolator 228 is effective is determined primarily by the length of the horizontal section and height of the isolator 228. The horizontal section is generally parallel to the ground plane 226 in this illustrated embodiment.
With ground planes, the length may be increased or maximized to increase bandwidth. As noted above, however, the ground plane 226 may be sized small enough so that it may be confined within a relatively small radome assembly. For example, an exemplary embodiment may include the ground plane 226 being configured (e.g., shaped and sized) so as to be mounted on the circular radome base 438 (shown in
The inventors hereof recognized that a small ground plane may not have sufficient electrical length for some end use applications. Thus, the inventors added or introduced the second isolator 230 along or adjacent the leading free edge of the trapezoidal portion 227 of the ground plane 226. In use, the second isolator 230 serves the purpose of bandwidth enhancement by increasing the electrical length of the ground plane 226 and improving isolation.
In this illustrated embodiment, the second isolator 230 comprises a T-shaped or spoiler-shaped isolator similar to or identical to the T-shaped/spoiler-shaped isolator 330 shown in
The first and second portions 232 and 234 of the isolator 230 are illustrated as being coupled (e.g., soldered, etc.) to each other. The first portion 232 of the isolator 230 is also coupled (e.g., soldered, etc.) to the ground plane 226. In alternative embodiments, the second isolator may be integrally or monolithically formed (e.g., stamped, bent, folded, etc.) from the ground plane as shown in
The PIFAs 224 include flaps or tabs with thru-holes configured for adding holders, carriers, standoffs, mechanical supports, etc. For example,
As noted above in regard to
More specifically,
As shown in
During operation, the vertical wall isolator 328 improves isolation. The frequency at which the isolator 328 is effective is determined primarily by the length of the horizontal section and height of the isolator 328. The horizontal section of the isolator 328 is generally parallel to the ground plane 326 in this illustrated embodiment.
Alternative embodiments may include an isolator between the PIFAs 324 that is configured differently (e.g., non-rectangular, non-perpendicular to the ground plane 326, taller or shorter, etc.) than what is illustrated. For example,
The shape of the second shorting element 310 illustrated in
As shown in
More specifically,
With continued reference to
Also shown in
An antenna system (e.g., 200, 300, 400, etc.) may be configured for use as an omnidirectional MIMO antenna, although aspects of the present disclosure are not limited solely to omnidirectional and/or MIMO antennas. An antenna system (e.g., 200, 300, 400, etc.) disclosed herein may be implemented inside an electronic device, such as a computer, laptop, etc. In which case, the internal antenna components would typically be internal to and covered by the electronic device housing. As another example, the antenna system may instead be housed within a radome, which may have a low profile. In this latter case, the internal antenna components would be housed within and covered by the radome.
A wide range of materials may be used for the components of the antenna systems disclosed herein. By way of example, the PIFAs, isolators, and ground plane may be formed from brass sheet, such as in the exemplary antenna system 300 (
Numerical dimensions and values are provided herein for illustrative purposes only. The particular dimensions and values provided are not intended to limit the scope of the present disclosure.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The disclosure herein of particular values and particular ranges of values for given parameters are not exclusive of other values and ranges of values that may be useful in one or more of the examples disclosed herein. Moreover, it is envisioned that any two particular values for a specific parameter stated herein may define the endpoints of a range of values that may be suitable for the given parameter. The disclosure of a first value and a second value for a given parameter can be interpreted as disclosing that any value between the first and second values could also be employed for the given parameter. Similarly, it is envisioned that disclosure of two or more ranges of values for a parameter (whether such ranges are nested, overlapping or distinct) subsume all possible combination of ranges for the value that might be claimed using endpoints of the disclosed ranges.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/MY2011/000014 | 2/18/2011 | WO | 00 | 5/17/2013 |