Multi-basket clot capturing device

Information

  • Patent Grant
  • 11844538
  • Patent Number
    11,844,538
  • Date Filed
    Tuesday, December 3, 2019
    4 years ago
  • Date Issued
    Tuesday, December 19, 2023
    4 months ago
Abstract
A multi-basket clot capturing device that includes a distal basket connected to a wire. The distal basket may be positionable distal of the clot and operable to capture a distal portion of a clot. A proximal basket may be connected to a hypotube that is slidably axially connected to the wire. The proximal basket may be positionable proximal of the clot and operable to capture a proximal portion of the clot. A cage can form between the proximal and distal baskets around multiple portions of the clot for capturing the clot. Sliding the wire distally, or microcatheter proximally, relative to the clot causes the distal basket to move from a collapsed state to an expanded state. The cage may be around at least two portions of the clot that are opposed.
Description
FIELD

The present disclosure relates generally to medical devices for treating an embolus or blood clot in a blood vessel.


BACKGROUND

One common way for a blood vessel to become obstructed is from deposition of clot inside the lumen of the blood vessels. A clot is understood throughout this application as a product of a blood coagulation in hemostasis. Clots can restrict the antegrade blood flow through the lumens of these blood vessels to the body tissues. To that end, any blockage or obstruction of a blood vessel can lead to many serious medical complications. For example, tissue may become damaged due to the decrease in the oxygen that often results from the obstructions in the vessel. Similarly, brain circulation can be affected and result in an ischemic stroke.


In order to restore flow restoration, the clot needs to be removed from the vasculature. Current clot retrieval devices on the market are constructed of a single tube that acts to retrieve a blood clot by enrapturing the clot through the struts of the stent. Such devices then drag the blood clot through the vasculature and out of the body.


Unfortunately, such approaches can only capture clots from a single tube or catheter and/or from a single side that in turn rely upon the outward force of the stent, and the ability of the struts to latch onto and entrap the clot. The problem with these types of retrievers is that they entrap the clot from the inside of the clot, and not from the outside. Capturing the clot from the inside can present difficulties for several reasons. Most notably, as the clot adheres to the vessel wall, the single-tube device may not have enough force to grasp the clot off of its wall.


Other known approaches have suffered from using fixed basket shapes or delivering baskets to a region of interest in the vasculature unsafely, such as U.S. Pat. Pub. 2015/0265299A1 to the University of Toledo or U.S. Pat. No. 9,358,022 to Inoha LLC. For example, these disclosures deliver a first fixed basket proximally relative to the clot and then deliver a second fixed basket distal of the clot. During positioning of the second fixed basket, however, these approaches tend to puncture the clot and risk injury to the patient by permitting particles dislodged from the clot to enter the flow of blood in the vasculature.


Previously known solutions have therefore depended on factors such as material, size, cell design, pre-determined basket size, unsafe deliveries, and internal friction of the clot retrievers. Previous approaches have also focused heavily on extra manipulation by the end-user to precisely, safely, and reliably arrange and position the clot capturing devices within the vasculature without rupturing the vessel wall or allow particles of the clot to enter the flow of blood in the vasculature. In turn, success and safety has relied heavily on end-user accuracy during delivery. Such approaches therefore unnecessarily increase risk of injury to the patient. Moreover, such clot capturing devices can be difficult to recapture after being delivered and/or deployed to vasculature areas of interest further risking detrimental effects of brain and/or cardiac function, including fatality, can result.


Therefore, prior approaches for removal of such clots have suffered from being too intrusive, unsafe, lack control and exert too much pressure on the vessel itself. Accordingly, there remains a need for new devices to safely and effectively remove an obstructing clot within the blood vessel wall.


SUMMARY

In some aspects, the present disclosure relates to a multi-basket clot capturing device that includes a distal basket connected to a wire. The distal basket may be operable to capture a distal portion of a clot. A proximal basket may be connected to a hypotube that is slidably axially connected to the wire. The proximal basket may be operable to capture a proximal portion of the clot. A cage can form between the proximal and distal baskets around multiple portions of the clot for capturing the clot. Moving from collapsed to expanded states may be accomplished by moving the microcatheter proximally relative to the clot or by moving the guide wire or hypotube distally relative to the clot.


In some examples, the cage forms around at least two portions of the clot that are opposed. The distal and/or proximal baskets can include a closed end opposite an open end. A frame of the respective basket may be defined between the closed and open end thereby forming a chamber or void operable to capture a portion of the clot (e.g. the distal portion or proximal portion of the clot). The frame may also be adjustable between a plurality of sizes or be constructed from material that conforms to the size and shape of the clot.


A microcatheter may be included with the multi-basket clot capturing device, the microcatheter being deliverable to a region of interest in the vasculature. In this regard, the hypotube and the wire may be slidably axially within the microcatheter. Moving the wire distally away from the microcatheter can cause the distal basket to move from a collapsed state to an expanded state so the frame of the distal basket is capable of capturing a distal portion of the clot. In certain embodiments, moving the microcatheter proximally, away from the distal basket, can cause the proximal basket to move from a collapsed state to an expanded state whereby the proximal basket is capable of capturing a proximal portion of the clot opposite the distal portion of the clot.


In certain examples, a plurality of struts of the distal basket are included that are operable to capture the clot. A plurality of spoke members can be pivotally connected between the struts and a distal end of the hypotube. In this respect, moving the hypotube distally can cause the spoke members to expand the distal basket. A plurality of interstices can be formed from or between the struts. The spoke members may be formed by cutting or etching into the hypotube. The spoke members may also be removably attached to the hypotube. The spoke members may be radially spaced about the hypotube. In certain examples, the hypotube may be axially connected to the proximal basket. The wire may also be axially connected to the distal basket.


In other examples, a method is disclosed for removing a clot from vasculature of a patient. The method may include some or all of the following steps: introducing a multi-basket clot capturing device into a region of interest of the vasculature distal of the clot, the device comprising a distal basket connected to a wire and a proximal basket connected to a hypotube that is axially and slidably connected to the wire, the distal basket being operable to capture a distal portion of the clot; moving the wire connected to the distal basket distal to the clot thereby causing the distal basket to expand away from a microcatheter connected to the wire and hypotube; moving the wire until the distal basket captures the distal portion of the clot; moving the microcatheter proximally causing a proximal basket of the clot capturing device to expand, the proximal basket being operable to capture a proximal portion of the clot; moving the wire connected to the distal basket until contacting a distal end of the hypotube forming a cage around the clot between the proximal and distal baskets.


The method may also include: removing the clot from the region of interest of the vasculature; forming a plurality of interstices on the distal and/or proximal baskets for capturing the clot; pivotally connecting a plurality of spoke members of the hypotube to a plurality of struts of the distal basket; and/or moving the hypotube towards the distal basket away from the microcatheter, while keeping the wire connected to the distal basket in place, thereby causing the distal basket to expand. The method may also include: forming a plurality of interstices from the struts; forming the spoke members by cutting or etching into the distal end of the hypotube; radially spacing the spoke members about the hypotube. The method may also include attaching the spokes to the distal basket by glue, welding, adding a hinge joint between one or more strut of the distal basket and a respective spoke of the hypotube. The method may also include axially connecting the hypotube to a central vertex of the proximal basket; and/or axially connecting the wire to a central vertex of the distal basket.


A method for deploying a basket of a multi-basket clot capturing device is also disclosed. The method can include expanding a frame of a first basket about a first portion of a clot, the frame being slidably axially connected to a hypotube and a wire, the frame being expanded by: sliding outwardly a distal end of the hypotube about the wire when the frame is collapsed and aligned with the hypotube and wire; and radially pivoting a plurality of spokes attached between a distal end of a hypotube and a plurality of struts of the basket.


Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.



FIG. 1 is a perspective view of an example of the dual basket device.



FIG. 2 is a perspective view of an exemplary distal basket.



FIG. 3 is a perspective view of an exemplary proximal basket.



FIG. 4 is a view of an exemplary dual basket device when collapsed in an exemplary microcatheter.



FIG. 5 depicts a side plan view of an exemplary dual basket device prior to capturing a blood clot.



FIG. 6 depicts a side plan view of the device of FIG. 5, wherein the distal basket is deployed and in contact with the blood clot.



FIG. 7 depicts a side plan view of the device of FIGS. 5-6, wherein the proximal basket is being deployed.



FIG. 8 depicts a side plan view of the device of FIGS. 5-7, wherein each of the proximal and distal baskets are in contact with and capable of removing the blood clot.



FIG. 9 is an exemplary depiction of an adjustable handle for use with one embodiment of the dual basket device.



FIG. 10 is side plan cross-section view of the handle of FIG. 9.



FIG. 11 is a schematic overview of one example method of deploying an exemplary dual basket device into vasculature of a patient.



FIG. 12 is a schematic overview of another example method of deploying an exemplary dual basket device into vasculature of a patient.





DETAILED DESCRIPTION

Although examples of the disclosed technology are explained in detail herein, it is to be understood that other examples are contemplated. Accordingly, it is not intended that the disclosed technology be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The disclosed technology is capable of other examples and of being practiced or carried out in various ways.


It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. By “comprising” or “containing” or “including” it is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.


In describing examples, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method may be performed in a different order than those described herein without departing from the scope of the disclosed technology. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.


As discussed herein, vasculature of a “subject” or “patient” may be vasculature of a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like). It should be appreciated that the subject may be any applicable human patient, for example.


As discussed herein, “operator” may include a doctor, surgeon, or any other individual or delivery instrumentation associated delivery of microcatheter(s) and removal of clots from vasculature of a subject.


The herein disclosed clot capturing device 100 resolves known problems in the field by providing a multi-tubed, multi-basket approach that adjustably and safely captures the clot from multiple opposed sides. In certain examples, device 100 is operable to capture a clot that is in a blood vessel from outside of the clot 10, meaning, from opposite sides of the same clot 10. It is understood that device 100 is capable of being used within a blood vessel having diameters ranging between 2 and 5.5 mm approximately. However, the device 100 is not so limited and device 100 may be scaled for use within any vasculature as needed or required. FIG. 1 more clearly shows device 100 in a perspective view of an example embodiment where device 100 is a dual-basket device having a distal basket 30 and a proximal basket 20. The distal basket 30 may be operable to capture a distal portion of the clot 10 whereas the proximal basket 20 may be operable to capture a proximal portion of the clot 10.


Baskets 20 and 30 may be axially aligned and connected through a hypotube 40 and wire 50. Hypotube 40 may be slideably inserted over wire 50 though device 100 is not so limited and wire 50 may be slideably inserted over hypotube 40. As described more particularly below, moving hypotube 40 and/or wire 50 may in turn cause corresponding baskets 20 and 30 to move from collapsed states to one or more expanded states. In certain examples, only one expanded state may exist for each basket or one or both baskets 20 and 30 may be adjusted between a plurality of different expanded states according to the size of the clot 10.


As can be seen in FIGS. 1 and 2, the distal basket 30 may have a frame that includes a closed distal end defined by central vertex 35 and an open proximal end 33. The cavity or void of basket 30 in certain examples can be formed by open end 33, a plurality of struts 34, and interstices 37 formed therebetween. Struts 34 may be separately assembled with each other, integrally formed from a single piece, or some combination thereof. In FIG. 2, a perspective close-up view of basket 30 is shown in communication with hypotube 40 slideably inserted over wire 50. One or more of the struts 34 can be pivotally attached to respective spokes 44 of hypotube 40. As shown, one or more spokes 44 may be radially spaced about hypotube 40, wherein a respective spoke 44 can be attached to a distal end of hypotube 40 to form a hypotube-wire junction 45. Each spoke 44 may be pivotable so that as hypotube 40 is caused to slide along wire 50, strut 34 causes basket 30 to expand by urging open corresponding spokes 44 of the frame of basket 30.


This slidable, pivoting expansion can be best understood with how a conventional umbrella moves from being collapsed to expanded. The distal basket 30 may be axially aligned and attached to wire 50 at its central vertex 35. The distal basket 30 may also be fastened to hypotube 40 (e.g. being threaded thereto) to which the proximal basket 20 is attached on the opposite, proximal portion of hypotube 40 as shown in FIG. 1. The void or chamber of distal basket 30 that is formed by its frame defined by open end 33, struts 34 and interstices 37 can be used to externally capture the distal portion of the clot 10 and remove the clot 10 off of the vessel wall. This approach is particularly advantageous since it permits basket 30 and its corresponding void or chamber be controlled by spokes 44 for expansion between one of a plurality of different diameters at end 33 or across different portions of basket 30 to affect both void size and frame shape as described more particularly below.


Turning to FIG. 3 is a close-up perspective view of proximal basket 20. Similar to distal basket 30, proximal basket 20 may be axially connected to the opposite portion of hypotube 40 at its central vertex 25. As shown, basket 20 may be closed at central vertex 25 and opened at its opposite open end 23. The proximal basket 20 may also include a frame that includes open end 23, a plurality of struts 24, and corresponding interstices 27 that together form a void or chamber operable to capture the opposite, proximal portion of the clot 10. Struts 24 may be separately assembled with each other, integrally formed from a single piece, or some combination thereof. During deployment, the proximal basket 20 may be positioned with respect to the proximal portion of clot 10 so that respective ends 23 and 33 communicate to form cage 60 around clot 10 (see FIGS. 4-8). In some examples, ends 23 and 33 may be operable to removably attach to each other through one or more removable fasteners (e.g. one or more bolts, clamps, cables, couplings, dowels, hooks, joints, keys, latches, nuts, pins, magnets, click-fit connectors, hook and loop fasteners, etc.). A volume or shape of cage 60 may be adjustable or conformable to various sized clots. The proximal basket 20 can therefore be used to encase the proximal portion of the clot 10 so that the entire clot 10 is enclosed therein as the clot 10 is traveling through the increasingly larger vasculature.


Each basket 20 and/or 30 can be made of rigid material such as Nitinol and formed (e.g. heat set) to include a cavity, chamber, or void operable to capturing and retaining a blood clot therein (e.g. a basket shape). When assembled, device 100 can be activated between collapsed and deployed states. For example, in a collapsed state one or both basket can be stowed in or along hypotube 40 and wire 50 of device 100. In contrast, in a deployed state, baskets 20 and/or 30 may be moved along hypotube 40 and/or wire 50 to slide therealong and expand until forming its respective void or chamber.


Specifically, hypotube 40 can be attached to the proximal basket 20 and may be cut to create spokes 44 that can be attached to struts 34 of the distal basket 30. The hypotube 40 can be moved (e.g. pushed) relative to a wire 50 that is axially and/or slidably connected therewith as shown particularly in FIG. 2. To collapse the distal basket 30, the hypotube 40 can be pulled relative to the wire 50, thus moving the spokes 44 inward, and collapsing the basket 30 as shown more particularly below in FIG. 2. The basket 30 may be grafted with a polymer to aid in covering and capturing more of the clot 10.


Turning to FIGS. 4-8 is an exemplary depiction of device 100 being assembled through a series of steps around clot 10 with baskets 20 and 30. Specifically, baskets 20 and 30 can be seen moving between collapsed in microcatheter 70 to expanded states capable of capturing respective portions of clot 10. In FIG. 4, baskets 20 and 30 can be seen collapsed within microcatheter and ready for deployment to a region of interest in the vasculature to capture clot 10. Basket 30 may be capable of sliding distally along hypotube 40 and/or wire 50 to initiate distal deployment of basket 30.


In FIG. 5, a side plan view of device 100 can be seen being positioned for use with hypotube 40 and wire 50. Microcatheter 70 as previously shown in FIG. 4 has now been delivered to the region of interest of the vasculature through so that hypotube 40 and wire 50 may slideably move relative to each other to deploy respective baskets 20 and 30. It can be seen that hypotube 40 and wire 50 may be axially and/or slideably connected to each other as well as microcatheter 70.


Distal basket 30 may be deployed and moved distally from a collapsed state within microcatheter 70 to an expanded stated with its basket chamber ready for capturing a distal portion of clot 10. As previously described, positioning basket 30 distal of clot 10 in this manner without puncturing clot 10 is particularly advantageous as this can provide an added level of safety. Whereas prior approaches have punctured or otherwise contacted clot 10 during removal, this distal deployment of basket 30 prevents any particles from being dislodged from clot 10 during delivery and entering the bloodstream. The only puncturing, if any, would be caused by the initial microcatheter 70 puncturing the clot 10. Basket 30 may be deployed to the expanded stated by moving and/or sliding forward wire 50 relative to hypotube 40 to cause spokes 44 to pivot outwards the frame of basket 30. It is understood that any other mode of expansion can be used to move basket 30 from its collapsed to expanded states and/or multiple settings of basket 30's frame may be used for varying sized basket chambers or voids to correspond to similarly sized clots. Once deployed from the microcatheter 70, the distal basket 30 can be seen distal of the clot ready to adhere, contact, capture, or otherwise communicate with the distal portion of clot 10. In certain examples, the distal basket 30 can be expanded and/or collapsed completely or partially back into the microcatheter 70.


In FIG. 6, wire 50 can be seen having been moved (e.g. pulled back) causing basket 30 and its corresponding chamber to contact and capture the distal portion of clot 10. It can be understood any particles dislodged from clot 10 will be captured by basket 30 and that the frame of basket 30 in FIGS. 4-8 may be relatively angled or triangular. Device 100 is not so limited, however, and the frame of either basket 20 or 30 can be rounded (e.g. elliptical, hemispherical, etc.), rectangular, or any other shape as desired or needed that is operable to surround and capture a respective portion of clot 10 when moved into contact.


In FIG. 7, proximal basket 20 has now been deployed and moved to an expanded stated by moving the microcatheter 70 away from clot 10. Basket 20 is now capable of being positioned to contact the proximal portion of clot 10. In FIG. 8, wire 50 may be moved towards the proximal portion of clot 10 until contacting distal end 45 of hypotube 40. Upon contacting distal end 45, a cage 60 can be formed between each basket 20 and 30. Specifically, since baskets 20 and 30 have been expanded and/or positioned with regards to respect to proximal and distal portions of clot 10 and drawn towards the other, they effectively assemble to form a cage 60 around clot 10 for capturing and removing the clot from the vasculature. Once the cage 60 is formed, the clot 10 can be safely removed from the vasculature. Since the clot 10 is now being pulled from multiple opposed directions, lesser stresses are placed on the blood vessel wall where the clot 10 may have been secured and particles of clot 10 are prevented from entering the bloodstream thereby reducing the risk of injury to the patient.


In certain embodiments, adjusting the size of basket 30 can be achieved by the operator or physician controlling the hypotube 40 and/or wire 50 relative to the other. For example, the hypotube 40 and/or wire 50 may have a plurality of predefined notches or positions associated with respective volumes of basket 30 and/or 20. In this respect, the operator can move an alignment mechanism between respective notches or positions of hypotube 40 and/or wire 50 to easily and precisely adjust the volume of a respective basket.


As seen in FIG. 9, adjustment of baskets 20 and/or 30 between being stowed, deployed, and/or basket volume can be controlled from a handle 80 operatively connected to hypotube 40 and wire 50. Handle 80 can include a body 86 with a slidable member 82 slidably attached thereon. Member 82 may be operatively attached to an adjustment mechanism 84 through one or more interlinking members. Mechanism 84 may be a rounded axial member and capable of rotating about an axis in a manner that can cause member 82 to move when mechanism 84 is rotated. In certain embodiments, mechanism 94 can act as a thumb wheel to directly drive 82. As shown in FIGS. 9-10, mechanism 84 may be constructed from one or more outer rotational members interconnected by an axial member that is rotatably connected to a lower attachment of member 82. Mechanism 84 can be externally positioned on and detachably connected to member 82. Rotating the axial member of mechanism 84 can cause member 82 to be moved along body 86. In turn, moving member 82 can cause hypotube 40 to be moved thereby incrementally adjusting basket 30 between one of a plurality of different volumes or shapes and deploying basket 30 about clot 10.


This can be more clearly seen in FIG. 10 where a side-plan cross-section view is shown of handle 80 assembled with hypotube 40 and wire 50. Hypotube 40 is secured within 82, and wire 50 is secured within 86 at rear portion 89. Body 86 may also include one or a series of indentations, channels, grooves, or notches 77. Mechanism 82 may further include an extruded member 87 (such as a ball spring plunger) that is operable to move between and land within respective notches 77. It is understood that in certain embodiments, causing mechanism 82 to move incrementally between notches 77 distally away from rear portion 86 can cause basket 30 to be deployed distal of clot 10 and/or be adjusted between one of a plurality of different volumes and/or shapes.


Each notch 77 may be separated a distance and aligned to receive corresponding notch 87 of member 82. In certain embodiments, handle 80 includes a series of notches 87 corresponding to predetermined sizes of basket 30. For example, sliding 82 between a first notch and a second notch may cause corresponding basket 30 to expand from a first volume to a second volume. The solution of device 100 is not limited to the foregoing approaches to adjustment and other modes of adjustment are also contemplated for use with device 100 as needed or required.



FIG. 11 depicts a schematic overview of one exemplary method 200 of using device 100. Specifically, the method can include step 210 where device 100 may be introduced to a distal region of clot 10 and wire 50 may be moved causing distal basket 30 to move and expand away from the clot 10 and microcatheter 70. In certain examples, moving the hypotube 40 towards the distal basket 30 can cause the spokes 44 pivotally connected to struts 34 of basket 30 to expand the distal basket 30 from being collapsed within or along hypotube 40. In step 220, wire 50 can be moved until the distal basket 30 captures the distal portion of the clot 10. In step 230, the microcatheter 70 can be moved proximally away from distal basket 30 and clot 10 causing proximal basket 20 to move from a collapsed state to an expanded state. In step 240, wire 50 can be moved until contacting a distal end of hypotube 40 thereby forming cage 60 around clot 10, cage 60 being formed between the opposed basket frames of baskets 20 and 30. In other words, the open ends 23 and 33 of baskets 20 and 33 may now be in communication with each other to form cage 60 about clot 10. In step 250, once cage 60 is formed between baskets 20 and 30, clot 10 can be safely removed from the vasculature.


Turning to FIG. 12 is a schematic overview of deploying the one of the herein disclosed baskets of the multi-basket clot capturing device 100. The method can include step 310, wherein a frame of a basket, such as basket 20 or 30, is expanded about a first portion of clot 10. The frame of the respective basket may be slidably axially connected to hypotube 40 and/or wire 50. In step 320, the frame of the respective basket can be expanded by sliding outwardly a distal end of the hypotube 40 along the wire 50 when the frame is collapsed and aligned with the hypotube 40 and/or wire 50. The basket may be collapsed completely or partially within microcatheter 70 and/or hypotube 40. In step 330, a plurality of spokes 44 can be pivoted radially outward from hypotube 40 as the hypotube 40 slides along the wire 50 in a predetermined direction (e.g. distally) away from clot 10, spokes 44 being attached between a distal end of hypotube 40 and struts of the basket that form its frame. In turn, the frame of the basket is caused to expand and be ready to surround and capture a respective portion of clot 10.


The specific configurations, choice of materials and the size and shape of various elements can be varied according to particular design specifications or constraints requiring a system or method constructed according to the principles of the disclosed technology. Such changes are intended to be embraced within the scope of the disclosed technology. The presently disclosed examples, therefore, are considered in all respects to be illustrative and not restrictive. It will therefore be apparent from the foregoing that while particular forms of the disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope of the disclosure and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.

Claims
  • 1. A multi-basket clot capturing device, comprising: a wire;a hypotube that is slidably axially connected to the wire;a distal basket connected to the wire and the hypotube, the distal basket being positionable distal of a clot and operable to capture a distal portion of the clot by moving the wire distally, the distal basket comprising a proximal open end;a proximal basket connected to the hypotube, the proximal basket being positionable proximal of the clot and operable to capture a proximal portion of the clot, the proximal basket comprising a distal open end;a microcatheter deliverable to a region of interest in a vasculature, the hypotube and the wire being axially slidable within the microcatheter, and the distal and proximal baskets being collapsible within the microcatheter; anda cage formable between the proximal and distal baskets such that the proximal open end of the distal basket attaches to the distal open end of the proximal basket, the cage being formable around multiple portions of the clot for capturing the clot;wherein a distal end of the hypotube comprises a plurality of spoke members pivotally connected to a plurality of struts of the distal basket such that moving the hypotube distally relative to the wire causes the plurality of spoke members to expand the distal basket from a collapsed state to an expanded state distal of the clot; andwherein the device is configured so that after the distal basket is in the expanded state, retracting the microcatheter proximally or further distally moving the hypotube causes the proximal basket to move from a collapsed state to an expanded state whereby the proximal basket is capable of capturing a proximal portion of the clot opposite the distal portion of the clot.
  • 2. The device of claim 1, wherein the cage forms around at least two portions of the clot that are opposed.
  • 3. The device of claim 1, wherein the distal and proximal baskets comprise a closed end and an open end; and wherein a frame of the respective basket is defined between the closed and open end of the respective basket thereby forming a chamber operable to capture a portion of the clot.
  • 4. The device of claim 3, wherein the frame is adjustable between a plurality of sizes.
  • 5. The device of claim 3, wherein open ends of the respective baskets are in contact and comprise substantially similar diameters.
  • 6. The device of claim 1, wherein a plurality of interstices is formed from the plurality of struts.
  • 7. The device of claim 1, wherein the spoke members are formed by cutting or etching into the hypotube.
  • 8. The device of claim 1, wherein the spoke members are radially spaced about the hypotube.
  • 9. The device of claim 1, wherein the hypotube is axially connected to the proximal basket.
  • 10. The device of claim 1, wherein the wire is axially connected to the distal basket.
  • 11. A multi-basket clot capturing system, comprising: a wire;a hypotube that is slidably axially connected to the wire;a distal basket axially connected to the wire and the hypotube, the distal basket being positionable distal of a clot and operable to capture a distal portion of the clot by moving the wire distally, the distal basket comprising a proximal open end;a proximal basket axially connected to the hypotube, the proximal basket being positionable proximal of the clot and operable to capture a proximal portion of the clot, the proximal basket comprising a distal open end;a microcatheter deliverable to a region of interest in a vasculature, the hypotube and the wire being axially slidable within the microcatheter, and the distal and proximal baskets being collapsible within the microcatheter; anda cage formable around multiple portions of the clot and between the proximal and distal baskets such that the proximal open end of the distal basket attaches to the distal open end of the proximal basket;wherein a distal end of the hypotube comprises a plurality of spoke members pivotally connected to a plurality of struts of the distal basket such that moving the hypotube distally relative to the wire causes the plurality of spoke members to expand the distal basket from a collapsed state to an expanded state distal of the clot; andwherein after the distal basket is in the expanded state, the microcatheter is retracted proximally or the hypotube is moved further distally, causing the proximal basket to move from a collapsed state to an expanded state whereby the proximal basket is capable of capturing a proximal portion of the clot opposite the distal portion of the clot.
  • 12. The system of claim 11, wherein the distal and proximal baskets comprise a closed end and an open end, a frame of the respective basket being defined between the closed and open end of the respective basket thereby forming a chamber operable to capture a portion of the clot.
  • 13. The system of claim 12, wherein the frame is adjustable between a plurality of sizes.
  • 14. The system of claim 12, wherein open ends of the respective baskets are in contact and comprise substantially similar diameters.
  • 15. The system of claim 11, wherein the spoke members are radially spaced about the hypotube.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. patent application Ser. No. 15/334,984 filed Oct. 26, 2016. The entire contents of which are hereby incorporated by reference.

US Referenced Citations (170)
Number Name Date Kind
6066149 Samson et al. May 2000 A
6210370 Chi-Sing et al. Apr 2001 B1
6391037 Greenhalgh May 2002 B1
6485502 Don Michael et al. Nov 2002 B2
7214237 Don Michael et al. May 2007 B2
8088140 Ferrera et al. Jan 2012 B2
8945172 Ferrera et al. Feb 2015 B2
9232992 Heidner Jan 2016 B2
9351749 Brady et al. May 2016 B2
9358022 Morsi Jun 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9743944 Bonneau et al. Aug 2017 B1
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9833252 Sepetka Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
20020062135 Mazzocchi et al. May 2002 A1
20020072764 Sepetka Jun 2002 A1
20050038447 Huffmaster Feb 2005 A1
20060015136 Besselink Jan 2006 A1
20060064151 Guterman Mar 2006 A1
20070078481 Magnuson Apr 2007 A1
20080281350 Sepetka Nov 2008 A1
20100268265 Krolik et al. Oct 2010 A1
20100324649 Mattsson Dec 2010 A1
20110202088 Eckhouse Aug 2011 A1
20110213403 Aboytes Sep 2011 A1
20120116443 Ferrera et al. May 2012 A1
20120283768 Cox et al. Nov 2012 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140135812 Divino et al. May 2014 A1
20140142598 Fulton, III May 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140249565 Laine Sep 2014 A1
20140316428 Golan Oct 2014 A1
20150196744 Aboytes Jul 2015 A1
20150223829 Aboytes Aug 2015 A1
20150265299 Cooper et al. Sep 2015 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160206344 Bruzzi et al. Jul 2016 A1
20160354098 Martin et al. Dec 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
Foreign Referenced Citations (8)
Number Date Country
104159525 Nov 2014 CN
104768479 Jul 2015 CN
105208950 Dec 2015 CN
1 452 142 Aug 2004 EP
2001-522639 Nov 2001 JP
2009-509719 Mar 2009 JP
2010102307 Sep 2010 WO
2014055609 Apr 2014 WO
Non-Patent Literature Citations (2)
Entry
Extended European Search Report dated Jan. 23, 2018 during the prosecution of European Patent Application No. 17198329.9 (parent U.S. Appl. No. 15/334,984).
Chinese Search Report issued in Chinese Application No. 201711020378.8 dated Nov. 20, 2021, English translation only.
Related Publications (1)
Number Date Country
20200100887 A1 Apr 2020 US
Continuations (1)
Number Date Country
Parent 15334984 Oct 2016 US
Child 16702034 US