Multi-battery fuel saving and emission reduction system for automotive vehicles

Information

  • Patent Grant
  • 6466024
  • Patent Number
    6,466,024
  • Date Filed
    Wednesday, November 23, 1994
    30 years ago
  • Date Issued
    Tuesday, October 15, 2002
    22 years ago
Abstract
A multi-battery charging system for reduced fuel consumption and emissions for an automotive vehicle. The system starts the vehicle with a start battery in a fuel savings manner, removing electrical torque from the alternator shaft, and allows a second (run) battery to provide all or some of the current required by the vehicle loads as a fuel savings measure. The system also utilizes an electrically heated catalytic converter (EHC) and a third (EHC or storage) battery to provide a 3 to 15 second preheat and/or a 20 second current, during vehicle start, to the EHC heater coil, e.g., of a small EHC located in series with a standard catalytic converter for emissions reduction to reduce emissions during start. The start battery is recharged after start and switched out of the system fully charged for future vehicle starts. The run battery is recharged when its charge level drops below a predetermined level with an on board battery charging device powered from a 115 volt or 220 volt ac power line source external to the vehicle.
Description




FIELD OF THE INVENTION




This invention relates to a multi-battery operating system for automotive vehicles that provides improved fuel economy and reduced emissions during operation and during starting, more particularly a three battery system having a start battery for starting the vehicle, a run battery for providing the vehicle load and accessory current, and a storage battery for preheating a catalytic converter during starting.




BACKGROUND OF THE INVENTION




In the normal operation of an automotive vehicle, a fully charged six cell battery having between 2.05 and 2.1 volts per cell (hereinafter referred to as a “start” battery) is used to start the engine and to operate accessory loads when the engine is not running. The conventional start battery is well suited to provide large start currents to the start motor on the order of 150 to 250 amperes.




The start battery is provided with thin plates between its individual cells that provides for a rapid, large current, shallow discharge during vehicle start. Unfortunately, the start battery cannot be deeply discharged in a repetitive manner without damaging the thin cell separator plates.




It has long been the practice to provide an alternator driven by the engine that can be used to recharge the start battery after vehicle start and provide current to both the vehicle run and accessory loads. It has also been the practice to maintain the alternator charging voltage at a nominal value of 14.0 volts at an ambient temperature of 85 degrees F. The nominal value is raised to 14.6 volts at minus 20 deg. F. and lowered to 13.6 volts at 140 deg. F. This provides adequate charge current as a function of ambient temperature and thereby extends battery life.




A voltage regulator is used to inject a controlled current into the alternator rotor. This in turn provides a controlled current in the stationary (stator) field coils. This in turn yields the rectified dc output voltage required for battery recharge after start and to supply the required vehicle load currents.




OBJECTS AND SUMMARY OF THE INVENTION




It has been realized by the inventor that the conventional operation of a start battery and alternator based electrical system of an automotive vehicle wastes energy. First, the alternator requires the engine to provide fuel consuming torque to operate the alternator at a nominal value, e.g., a 14.6 volt dc output level, in order to recharge the start battery and provide the required current to the vehicle loads. Second, the vehicle electronic circuits contain power consuming voltage regulator circuits that reduce the alternator output voltage to a 12 or 5 volt level. Third, the alternator places a mechanical torque on the engine as a function of the alternator output voltage and the current drawn to supply the load requirements and to charge the start battery. The fuel consumed by the engine to overcome the alternator counter torque is an unnecessary expense. Fourth, the vehicle engine and alternator are substantially less than 100% efficient and consume a correspondingly greater amount of fuel.




In addition, the inventor has realized that if the state of charge of the vehicle batteries are reliably and accurately determinable over their useful life it is possible to control the alternator output voltage, as required, either to charge the vehicle batteries or to allow one or more batteries to provide all the current required by the vehicle loads.




It is a further object of the invention to increase alternator output voltage during deceleration of an automotive vehicle, thereby using vehicle momentum to provide an increased torque load that is used to charge a battery.




It is another object of the invention to turn off selected vehicle accessory loads when the vehicle is parked and to turn off selected vehicle accessory loads when the state of charge of the battery providing current drops below a selected level.




It is another object of the invention to provide a storage battery for providing the current required to heat an electrically heated catalytic converter (EHC) during or prior to vehicle start when the engine temperature is below a selected level.




In accordance with the present invention, apparatus, systems, and methods are provided for providing sufficient electrical power to start and run an engine, to reduce the energy expended and fuel consumed and associated emission by-products in starting and running the engine, and optionally in operating a battery charging device to maintain a sufficient charge on each battery for the range of operating load conditions.




One aspect of the invention concerns a battery charging and run system for starting the engine of an automotive vehicle and operating the electrical loads of the automotive vehicle with improved fuel economy.




One embodiment of this aspect of the invention concerns a battery charging system for an automotive vehicle having:




a start battery for use in starting the vehicle engine;




a run battery for operating the vehicle accessory and non accessory loads;




a battery charging device, such as an alternator, having a controllable output voltage when the vehicle is running;




a first BSOC channel for monitoring the state of charge of the start of battery;




a second BSOC channel for monitoring the state of charge of the run battery; and




a first circuit, such as a voltage regulator, for controlling the output of the battery charging device to provide one of a first output voltage that varies in a first range as a function of ambient temperature when the sensed start battery state of charge level is below a first charge level and a second output voltage when the battery state of charge level is above the first charge level, a third output voltage to recharge the run battery when the run battery state of charge is below a second charge level, and a fourth output when the run battery state of charge is above the second charge level.




Preferably a switch is provided to switch the start battery out of the system after it is recharged. The switch is responsive to the sensed state of charge of the start battery and open circuits the start battery upon reaching the first charge level.




In operation, the start battery is employed to start the vehicle engine. Its state of charge thus falls below the first charge level (corresponding to the prestart charge level). This causes the control circuit/voltage regulator to control the battery charging device to provide a first output voltage to recharge the start battery, e.g., between 16.4 and 13.6 volts dc, according to the ambient temperature in the conventional manner.




When the sensed state of charge of the start battery is at the first charge level, the control circuit/voltage regulator may then control the battery charging device to provide the second output voltage level to maintain a full charge on the start battery. In a preferred embodiment, the switch is configured to respond automatically to the start battery state of charge returning to the first charge level and switch the start battery out of the charging system in a fully charged state. Alternatively, the switch may be manually operated by the operator who acts in response to a prompt, such as a light, audible tone, or battery state of charge display.




When the start battery is switched out, the two battery system then may operate in one of two modes. In the first preferred mode of operation, the automotive vehicle electrical load is run off the run battery entirely. In this mode, once the start battery is switched out (and, as described below, an ECH battery is switched out), the control circuit controls the battery charging device to provide the fourth output by reducing the field current until the bridge rectifier diodes become back-biased. When the control circuit is a controllable voltage regulator, the battery charging device is an alternator, and the voltage regulator output into the alternator rotor coil is about zero, there is little, if any alternator counter torque on the engine and the rectified alternator output bridge diodes are backed biased and provide no current. Accordingly, the run battery will discharge to operate the vehicle load. During this discharge, the absence of the alternator counter torque results in improved fuel economy.




However, when the state of charge of the run battery falls to the second charge level, which corresponds to a low charge (deep discharge) level that will not damage the run battery, the control circuit/voltage regulator controls the battery charging device to provide the third output voltage. The third output voltage is then used to provide power for the vehicle load.




The third output voltage level may be selected as follows. It may be a level that will power the vehicle load and maintain the run battery at the second charge level. This selected level may be adjusted to prevent any further reduction in the state of charge of the run battery. In this case, the third output voltage may be on the order of 12 volts, as adjusted for ambient temperature conditions. Alternatively, the third output voltage may be a level that will power the vehicle level and recharge the run battery to a fully charged state, e.g., a voltage between 13 and 14.6 volts dc, as a function of ambient temperature. Once the run battery is recharged, it is allowed to discharge down to the second charge level, during which time the vehicle loads are again run exclusively off the run battery. Thus, whenever the alternator output voltage is reduced from the conventional full charging state, the alternator counter torque on the engine is less and there is improved fuel economy.




In all cases, the run battery is preferably recharged using a conventional battery charger which is powered from an external line source, e.g., a 220 or 115 volt ac line power supply. This permits replacing the amp-hour charge that was removed from the run battery by the vehicle loads with a source of electricity external to the vehicle. The external electricity source typically costs less per unit of energy than petroleum and alcohol based fuels and avoids consuming the incremental fuel that was saved during discharge of the run battery to generate the power needed to recharge the run battery. Such a battery charger may be mounted on or off the vehicle.




In another mode of operation, after the start battery and run batteries are recharged, the start battery is switched out and the battery charging device is operated to provide a fifth output voltage level and current for operating the vehicle accessory load. The fifth output voltage level is preferably selected to provide just enough current to operate the vehicle accessory loads, e.g., 12 volts for a 12-volt system and also applies a trickle charge current on the run battery. This mode also reduces the energy consumed as compared to prior voltage regulator start battery alternator systems that always produced more voltage than was required by the vehicle loads.




Switches and control circuits may be used to control automatically and/or manually the battery charging device and to connect selectively the battery charging device to one or both of the run and start batteries, and to provide the desired output voltage(s) and current(s) to recharge the batteries, singly or jointly, to operate the accessory and non accessory loads. A microprocessor may be used to control the various battery state of charge monitors, control circuits, and switches. Alternatively, a logic circuit network or a state machine comprising discrete and solid state components may be used as a control circuit. In addition, an operator display and manual switching system may be used.




Another aspect of this invention concerns providing a switch to connect one battery in place of the other battery if one of the batteries should fail to hold an adequate charge, and to use both batteries in parallel or in series when conditions so require. This is particularly useful in very cold weather when an additional source of start current is desired, and where one battery either fails or is not fully recharged before the engine is turned off.




Optionally, a measure of the amplitude and direction of the current flow into or out of the run battery or the start battery may be included for decision making purposes in selecting a voltage level. A large start battery discharge current may confirm a starting operation and raise the alternator output voltage level. An increased flow of current out of the run battery, i.e., a load current that might deplete charge from the run battery if the trickle charging voltage was maintained, could result in raising the trickle charging voltage, the load current and the battery state of charge.




Preferably, the start battery is a conventional automotive battery having thin cell plates and the run battery is a deep discharge, marine or cycle-proof battery. Such run batteries have thick cell plates and can be deep discharged to levels repeatedly, without seriously shortening their useful life. The thick plate construction also allows longer operation as an energy source than comparable thin cell plate starter batteries. However, run batteries typically cannot develop the high discharge currents suitable for starting the engine of an automotive vehicle. Other types of run batteries which are capable of repeated deep discharge are becoming available and may be used. For example, Ford Motor Company has announced such a high charge storage run battery for use in its forthcoming electric vehicle. Other batteries, such as sodium sulphur batteries having increased amp-hour ratings, as compared to lead acid batteries, also may be used. Further, when deemed appropriate, the size of run battery


20


may be reduced to a five cell battery to have a 12 volt rating or increased to 24-25 volt with a DC/DC convertor to increase the time for running off run battery


20


, and to reduce the size of the alternator.




Advantageously also, it has been discovered that a fuel and cost savings can be achieved by the reduced alternator mechanical load on the engine and lower fuel consumption whenever, and to the extent that, the alternator field current is decreased to back bias the output rectifier diodes. Another advantage results from recharging a discharged battery using lower cost electricity from a source external to the vehicle.




Preferably, the state of charge of each battery used is monitored by a battery state of charge (BSOC) monitoring circuit channel. Any device capable of reliably integrating the net charge over time may be used. Preferably, the BSOC circuit includes a section of the battery return cable as a shunt or a shunt resistor in series with the battery negative terminal and a circuit having a very large capacitance for integrating the current through the shunt continuously. See e.e., the circuits disclosed in the aforementioned U.S. Pat. No. 4,968,941 and copending and commonly assigned U.S. patent applications Ser. Nos. 07/607,237 and 07/919,011, which patent and applications are expressly incorporated herein by reference in their entirety.




Another aspect of the invention concerns apparatus and methods for controlling the charging voltage level applied to a battery in an automotive vehicle in response to the deceleration of the vehicle. Broadly, this aspect of the invention concerns sensing the deceleration of a vehicle and causing the battery charging device to produce a high level charging voltage for rapidly recharging a battery during deceleration. When the vehicle is decelerating, the alternator is driven by the momentum of the vehicle turning the wheels, drive shaft, and, hence, the engine, and not by the engine burning fuel. Thus, during deceleration some of the energy stored in the momentum of the vehicle can be converted by the alternator to energy which is stored in the run battery.




Accordingly, during deceleration events, the control current to the alternator rotor is increased. This raises the alternator output voltage and results in an increased resistance to rotation of the alternator rotor coil. As a result, the charge on the battery is rapidly increased without consuming incremental fuel to do so. Another advantage is that the increased alternator counter torque load on the engine aids in slowing the vehicle without increased brake wear or effort.




The deceleration feature is particularly useful in stop and go traffic such that the battery charging device is turned off during steady state and accelerating driving conditions and is turned on to provide a high charging voltage during deceleration. The recharging during each deceleration will effectively prolong the time the vehicle can operate solely off the run battery. It also is useful when operating the battery charging device at a charging voltage just to maintain a charge on the run battery, for recharging start batteries, whether in the two battery charging system or a single battery charging system.




During the onset of deceleration, it may be desirable to ramp the control signal to raise the battery charging device output to a high voltage to minimize slippage and wear on the alternator. A switch may be provided to disable temporarily the deceleration feature when desired so that, for example, a driver can coast.




The various aspects of the invention are not limited to battery charging systems for automotive vehicles. They are applicable to any apparatus having a start battery that consumes energy to charge an electrical energy storage device that is connected to operate an electrical load or device, including without limitation, electrically starting combustion engines such as a generator for household (or industrial) current, a gas operated lawn mower, a powered vehicle or device, aircraft, spacecraft, watercraft, emergency lighting or power plants.




A further aspect of the invention provides a battery which provides a very high current to a heating coil of an electrically heated catalytic converter (EHC) unit which performs the emission control functions of a standard catalytic converter that is heated by the engine. This battery is referred to as an “EHC” battery or a “storage” battery. The EHC unit may be a small catalytic converter that is placed in series with a standard catalytic converter, or it may be incorporated into an otherwise standard catalytic converter by, for example, the introduction of suitable heating coils as a part of the catalytic converter unit.




In operation, the EHC battery is switched, for about 20 seconds, to the EHC unit heater coil during the vehicle start operation. This provides a very high discharge current at a selected level, on the order of 500 to 650 amps, preferably 600 amps. The current discharge is high enough for the heater coil to heat rapidly at the EHC unit to its effective operating temperature and maintain it there during the heating period. The EHC battery may be disconnected after a preset time period, after the engine temperature exceeds a selected threshold, or when the state of charge of the EHC battery falls to a selected charge level. Further, the EHC battery may be switched to the EHC heater until the engine temperature is suitably high. This provides for preheating the catalytic converter so that it reaches an effective operating temperature sooner than conventional catalytic converter systems, which rely solely on engine temperature to heat the catalytic converter. Advantageously, by preheating the catalytic converter electrically, vehicle emissions are substantially reduced during vehicle starting, particularly in cold operating conditions. A third BSOC circuit channel could be used to monitor the EHC battery state of charge. If a BSOC channel is used, the control circuit is preferably responsive to the sensed EHC battery state of change (with appropriate switches) to recharge the EHC battery if its charge level is below the predetermined level. Provision also is made to recharge the ERC battery with an on or off-board battery charger from a source of 220 or 115 volt ac line power.




Furthermore, the EHC battery may be periodically switched to the EHC heater coil during operating conditions whenever the engine operating temperature is insufficient to heat the catalytic converter to its effective operating condition. This mode of operation may be selectively enabled or disabled, and the EHC battery may be recharged whenever its state of charge falls below a selected charge threshold.




Although each of the EHC battery system, the two-battery charge system, and the deceleration recharging system may be used separately, they are preferably combined to provide a more fuel efficient and reduced emission automotive vehicle.











BRIEF DESCRIPTION OF THE DRAWINGS




Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the invention, in which like reference numerals refer to like elements, and in which:





FIG. 1

is a block diagram of a non-microprocessor controlled three battery fuel saving and reduced emission operating and battery charging system in accordance with a first embodiment of the invention;





FIG. 2

is a circuit diagram of a battery state of charge circuit of

FIGS. 1 and 7

;





FIG. 3A

is a circuit and schematic of a first solid state switch of

FIGS. 1 and 7

;





FIG. 3B

is a circuit and schematic of a second solid state switch of

FIGS. 1 and 7

;





FIG. 3C

is a circuit and schematic of a third solid state switch of

FIGS. 1 and 7

;





FIG. 4

is a circuit diagram of the thermistor circuits of

FIGS. 1 and 2

;





FIG. 5

is a circuit diagram of the deceleration circuit shown in

FIG. 1

;





FIG. 6

is a circuit diagram of the non-microprocessor controlled voltage regulator and alternator of

FIG. 1

;





FIG. 7

is a block diagram of a microprocessor controlled three battery fuel saving and reduced emission operating and battery charging system in accordance with a second embodiment of the invention; and





FIGS. 8 and 9

are measured fuel consumption runs for two different vehicles under different operating conditions showing load current in amperes versus miles per gallon and indicating the fuel savings obtained with the non-microprocessor controlled system of FIG.


1


.











DETAILED DESCRIPTION OF THE INVENTION




Referring to

FIG. 1

, an apparatus for a three battery charging system in accordance with a first embodiment of the present invention is shown. The apparatus includes a start battery


10


, a run battery


20


, an EHC battery


300


, battery state of charge (BSOC) channels


60




a


,


60




b


, and


60




c


, an alternator


40


, a voltage regulator


42


, a pendulum circuit


70


and vehicle deceleration circuit


90


, and an ignition switch


30


including ganged wipers W


1


, W


2


, W


3


and W


4


. When wiper W


1


of ignition switch


30


is placed in the start position at contact


32


, current is provided from start battery


10


on line L


1


to start solenoid


31


. Start solenoid


31


is thus energized and closes contact


52


. This switches start battery


10


to start motor


50


on line L


2


and provides the required current to turn over start motor


50


.




When the engine (not shown) starts, wiper W


1


is conventionally returned to the run position, contact


35


. A signal is then applied from start battery


10


on line L


3


through wiper W


1


and line L


35


that turns on a solid state switch


32


SB. When start battery


10


is less than fully charged, the BSOC channel


60




a


output on line L


25


is low and switch


32


SB is conducting. Solid state switch


32


SB connects start battery


10


to the output of alternator


40


on line L


5


. This allows alternator


40


to recharge start battery


10


. When start battery


10


is recharged the output voltage on line L


25


from BSOC channel


60




a


switches to high. A high signal on line L


25


turns switch


32


SB off, thus disconnecting fully charged start battery


10


from the system. A fully charged start battery


10


is one that has an arbitrary high percentage of its actual full charge, e.g., 90% of full charge.




In the run position, wiper W


2


of ignition switch


30


is at contact


34


. This connects run battery


20


to output line L


5


of alternator


40


, to vehicle run load R


L


, and to vehicle accessory load R


A


through solid state accessory switch


34




ac


. In this condition, run battery


20


is being recharged by alternator


40


, in the event that it happened to be partially discharged, and vehicle loads R


L


are placed across the output L


5


of alternator


40


. For maximum safety, the vehicle lamps, illustrated as HL, are connected directly off both the run and start batteries


10


and


20


through manual switch S


1


.




Switch


34


AC is controlled by a NAND Gate G


2


which receives one input from a “park” position indicator


15


corresponding to the vehicle being parked (a logical high state), e.g., the shift lever being in the park position in a vehicle having an automatic transmission. The second input is from the BSOC channel


60




b


output line L


7


, which indicates when the state of charge of run battery


20


is above (logical high state) or below (logical low state) the second predetermined charge level. Thus, when the vehicle is not in park and the run battery


20


state of charge is above the preselected charge level, switch


34


AC is closed and accessory circuits R


A


are switched to battery


20


. Otherwise, switch


34


AC is open and circuits R


A


are switched out. In this embodiment, accessory circuits R


A


are noncritical accessory devices the loss of which will not impair driving safety. A warning alarm device ACW is connected to the output of NAND gate G


2


to produce a visual or audible alarm when switch


34


AC switches out accessory circuits R


A


. Critical accessory load are always connectable to a battery and manually operable, e.g., headlights.




When run battery


20


has been recharged in accordance with ambient temperature requirements, the output voltage on line L


6


from BSOC channel


60




b


switches from a low state to a high state. BSOC channel


60




b


also has output line L


7


which indicates, by changing from high to low states, when run battery


20


discharges below a preselected charge level.




When EHC battery


300


is fully recharged, the signal on output line L


306


from BSOC channel


60




c


switches from a low state to a high state. At this event, the three signals on lines L


6


, L


7


and L


306


, which are inputs to logic NAND gate G


1


, are in the high state. NAND gate G


1


is a part of voltage regulator


42


(see

FIG. 6

) of which only a portion is illustrated in FIG.


1


. (If no BSOC channel


60




c


is used, NAND gate G


1


may have only two inputs, i.e., lines L


6


and L


7


.)




Referring to

FIGS. 1 and 6

, the above set of high state input conditions causes the output of NAND gate G


1


in voltage regulator


42


to switch to the low state. This reduces the field current I


F


in alternator


40


to zero and back biases the bridge rectifier output diodes. This prevents alternator


40


from delivering current to output line L


5


, which connects to run battery


20


and the vehicle loads R


L


and accessory circuits R


A


. With alternator


40


unable to provide current to line L


5


, run battery


20


is required to provide all the current to the vehicle loads R


L


and R


A


until run battery


20


discharges to a predetermined level. When this occurs, the voltage on output line L


7


from BSOC channel


60




b


drops from a high to a low state. A low state on line L


7


causes the output of NAND gate G


1


to switch to the high state, thus increasing the field current I


F


of alternator


40


from zero to its normal operating level. This forward biases the rectifier diodes. Alternator


40


is now able to recharge run battery


20


and provide the load current required to operate the vehicle. During this time, switch


34


AC will remain closed when the vehicle is not in park and the run battery is above a predetermined charge level.




In summary, the following task sequence is accomplished by the system:




1) started the vehicle with start battery


10


when ignition switch


30


was placed in the start position;




2) recharged start battery


10


to its original state, recharged run battery


20


, if necessary, and recharged EHC battery


300


after it has provided a 20 second duration 600 amp heater current to an electrically heated catalytic converter (EHC)


320


;




3) switched the alternator


40


out of the system after recharging batteries


10


,


20


, and


30


by reducing field current I


F


to zero, thus preventing it from generating current to output line L


5


;




4) allowed the run battery


20


to provide all the current required on line L


5


to operate vehicle loads R


L


and R


A


under all operating conditions (except as noted);




5) switched alternator


40


back into the system after run battery


20


was discharged to a predetermined level by the vehicle loads R


L


and R


A


; and




6) recharged the run battery


20


and provided required load currents with alternator


40


in its normal operating state until an external power source can be obtained.




Preferably, run battery


20


is recharged as soon as possible with a conventional battery charger


91


, also referred to as a “line power charger”, which is optimally mounted on board the vehicle, after the charge level of run battery


20


drops to the predetermined charge level where a recharge is required. The normal battery recharge procedure from a conventional external 115 or 220 volt power outlet


90


would be to connect a power cord


93


between outlet


90


and a vehicle connector


92


and provide battery charge current with on board battery charger


91


.




Run battery


20


may be recharged using alternator


40


when an external source is not available. However, this essentially eliminates the fuel and cost savings obtained by using run battery


20


to power the vehicle loads R


L


and R


A


. The output line L


7


of BSOC channel


60




b


may be used to provide a recharge warning signal for a display located on the instrument panel, e.g., illuminating a lamp, tone generator, or other indicator (not shown). This warning signal advises the vehicle operator that run battery


20


requires a recharge and that an external wayside or garage power outlet


90


should be located to recharge run battery


20


as soon as possible. Alternately, the recharge warning would be activated based on a charge level that is above the predetermined charge level or which causes output line L


7


to switch to a low state, thus giving the operator time to locate a power supply before alternator


40


is automatically switched in to recharge run battery


20


. Further, a charge level gauge, similar to a fuel gauge, could be used to display the state of charge of one or more batteries.




Non-Microprocessor Three Battery Version




Advantageously, a considerable emissions reduction can be realized by heating a small insulated electrically heated converter (EHC) that operates in series with the conventional catalytic converter (not shown) or a standard catalytic converter, collectively illustrated as EHC heater coil


320


in FIG.


1


. The problem with heating the EHC coil


320


during start with conventional battery charging systems that have only a start battery is that approximately 600 amperes of current is drawn from the battery during and after start for approximately 20 seconds. This current load would prevent start motor


50


from turning over.




It has been realized by the inventor that by using a dedicated heater storage battery, e.g., EHC battery


300


, a 600 ampere current draw for twenty seconds reduces the amp-hour charge level in such a battery by only four amp-hours. It also has been realized by the inventor that a 24 volt 120 amp-hour very high discharge EHC battery


300


can produce such a four amp-hour charge, which charge can be replaced by a normal alternator


40


or by an externally powered battery charger


91


, in a relatively short period of time, e.g., between ten to forty minutes, more typically about fifteen minutes.




Both the non microprocessor and microprocessor based systems described herein can be configured to either recharge EHC heater battery


300


after each 20 second heating period during vehicle start, or allow EHC battery


300


to be deeply discharged (i.e., down to a preselected charge level) before recharging it, preferably from an external power line source


90


, or from alternator


40


.




The EHC heater system of the present invention also could be used to inhibit vehicle start for 15 seconds, as is done with diesel engine vehicles to preheat the glow plugs, to apply a preheat to the EHC coil


320


for this period and for a 3 to 5 second period after start. The Table I below indicates the relatively reduced emission levels obtained during vehicle start with normal operation and with the preheat operation of the EHC


320


.

















TABLE I











Preheat Time




Post Heat




Hydrocarbons




Carbon Monoxide







seconds




Time




grams/mile




grams/mile





























 0




18




0.025




0.5







15




3




0.017




0.42















In comparison, the emission levels during start when the same vehicle engine is at ambient temperature are: 1 gram of hydrocarbons per mile, and 29 grams of carbon monoxide per mile. Thus, during the period until the vehicle engine temperature reaches the steady state temperature level where the conventional catalytic converter properly functions, the EHC battery


300


and coil


320


provide for substantially reduced emissions.




EHC Battery Control System




When wiper W


1


of ignition switch


30


is turned to the start position at contact


32


, a high state voltage turn-on signal is sent to a timer circuit


352


. The turn-on signal initiates a twenty second output pulse on output L


52


of timer


352


. The twenty second pulse has a high state which turns on a solid state switch


332


EHC for the duration of the twenty second period.




At this time, the engine temperature is monitored by a thermistor circuit


350


. Circuit


350


provides a low state output voltage when the engine temperature is below a predetermined level which is not high enough to heat sufficiently the catalytic converter and a high state output voltage when the engine temperature is above the predetermined level, e.g., 500° F. In the instance where the engine temperature is low, engine thermistor circuit


350


sends a low state signal on output line L


18


to solid state switch


331


EHC, which turns switch


331


EHC on. Assuming that the twenty second period has not ended, this completes the path for current flow from EHC battery


300


which energizes EHC solenoid coil


323


. The solenoid coil


323


pulls in contacts


322


and


324


which are ganged together. EHC battery


300


is preferably a 24 volt battery and closing contact


322


delivers 600 amperes of current (I


EHC


) to EHC heater coil


320


. Closing contact


324


shorts the shunt


303


in series with battery


300


to avoid over heating shunt


303


during the period that battery


300


is delivering 600 amperes. When shunt


303


is a length of wire between two contact pins, or when no BSOC channel


60




c


is used, contact


324


may be omitted.




At the end of the twenty (20) second timing period, the output voltage on output line L


52


of timer


352


drops from a high to a low state. Consequently, solid state switch


332


EHC is turned off and contacts


322


and


324


both open. This removes the EHC heater current I


EHC


to coil


323


and switches out battery


300


.




In the event that the engine temperature is above the predetermined level, it is not necessary to apply heater current to EHC heater coil


320


. In this case, although the output voltage from timer circuit


352


on line L


52


is in the high state (during the pulse period) and switch


332


EHC is on, solid state switch


331


EHC is turned off. This inhibits current flow to solenoid


323


and leaves contact


322


open.




The release of contact


324


also places shunt


303


to EHC battery


300


in the line. The voltage across shunt


303


can therefore be monitored during recharge of battery


300


by BSOC channel


60




c


to determine when battery


300


is fully charged (e.g., when a 4 amp-hour charge per EHC


320


heating event has been restored), and apply a high state input to NAND gate G


1


in voltage regulator


42


. Because the load current drawn from EHC battery


300


by coil


320


and the time period are known, the amp-hour charge lost can be simulated by a suitable “start” circuit in BSOC channel


60




c


, which removes an amount of charge from the BSOC integrator capacitive storage element corresponding to the heater current delivered. Alternately, BSOC channel


60




c


may simply measure when either a 4 amp-hour recharge has been delivered or the charging current to battery


300


has dropped to a trickle charge, after each start operation.




The high state voltage output line L


306


from BSOC channel


60




c


also is transmitted to solid state switch


334


EHC which turns it on and allows the recharge from alternator


40


to be stepped up by circuit


340


from 12 volts dc to 24 or 25 volts dc, in order to recharge EHC battery


300


.




Module Circuit Descriptions





FIG. 2

illustrates a schematic of the battery state of charge circuit channels


60




a


,


60




b


and


60




c


, which are preferably identical. The circuits shown on the schematic of

FIG. 2

, except current monitoring amplifiers A


1


through A


4


, may be constructed as described in the aforementioned U.S. Pat. No. 4,968,940, and application Ser. Nos. 607,237 and 919,011.




The integrator amplifier


361


in each BSOC channel is an analog type that integrates the battery charge current I


CH


and discharge current I


DC


through its shunt (i.e., shunts


11


,


21


and


303


and shown in FIG.


1


), over time. The voltage drop V


S


across the shunt is proportional to the current flowing through it. An arbitrary shunt may be selected, e.g., to produce 2.3 millivolts per amp of current, more preferably, a length of battery return cable between two contact pins. A battery charging current I


CH


through the shunt produces a positive output voltage V


S


and a discharge current I


DC


produces a negative V


S


as illustrated in FIG.


2


.




A positive voltage V


S


causes the integrator output V


A


to rise as the battery charges. A negative V


S


causes V


A


to drop in the negative direction over time as the battery discharges. The battery state of charge can therefore be displayed on a meter in the same manner as a fuel gauge displays the amount of fuel in the tank. Any type of integrator, including digital types, will operate equally well in the circuit.




The integration slope of each integrator circuit


361


has been arbitrarily established to provide a 2 volt dc output signal to the vehicle display on the output line (lines L


361


, L


362


and L


363


) when its battery (batteries


10


,


20


or


300


, respectively, in

FIG. 1

) is fully charged and an arbitrary low voltage output when the associated battery charge drops to a level where a recharge is required.




The integrator output voltage V


A


ramps up and down very slowly over time and therefore cannot be easily used to operate circuit devices that perform command functions etc.




Consequently, it is necessary to employ switching circuits that either rise from a low to a high voltage or drop from a high to low voltage when the output voltage V


A


is at predetermined points on the rising or falling voltage ramp as the battery is being charged or discharged.




Amplifier A


4


switches from zero volts to 10 volts dc when the battery is fully charged and the integrator output voltage V


A


is 2 volts dc. This signals voltage regulator


42


(

FIGS. 1

,


6


) that the battery being monitored is fully charged.




Amplifier A


3


switches from 10 volts dc to 0 volts when the state of the battery being monitored drops to an arbitrary, e.g., 50% for a run battery


20


, discharge level. This occurs when the integrator output voltage V


A


drops to 1 volt dc. This signals voltage regulator


42


that a battery is discharged to the point where alternator


40


must be used to recharge it.




Amplifiers A


1


and A


2


provide a dc output voltage proportional to the charge and discharge currents through the shunt. These currents vary quite rapidly and consequently produce a rapidly changing positive and negative going output voltages at the output of A


2


. The integrator smooths these rapid changes over time and thus provides a slowly moving output voltage V


A


.




The current amplifiers are used to provide display information that indicates the direction and magnitude of current flow into and out of the batteries. The output of amplifier A


4


could be used to provide an indication of battery charge level if desired. The charge current I


CH


into a battery from alternator


40


is very high, approximately 30 amps at the start of recharge, and drops to a level of approximately 2 to 3 amperes when the battery is fully charged. The shunt voltages V


S


corresponding to these currents could therefore be monitored by amplifier A


1


and the output voltage of amplifier A


4


used to indicate ful battery charge to voltage regulator


42


in

FIG. 1

if desired.




Bad battery cell circuit


364


switches from a zero output voltage to 10 volts dc in the event that the battery being monitored has a bad cell. The operation of this circuit is explained in the referenced patent applications.




The automatic turn on—turn off circuit


362


senses when a small charge or discharge current produces a small positive or negative voltage V


S


across the battery current shunt and applies battery voltage (e.g., 12 volts) to all the battery state of charge channel circuits. In the turn off state (standby state) each BSOC channel


60


draws approximately 1 milliampere from the battery, e.g., run battery


20


. This allows the BSOC channel


60


to be permanently wired to the battery terminals. When the BSOC channel senses current through the battery, the turn on circuit


362


energizes an internal BSOC power supply that provides approximately 50 milliamperes of current from the battery to the remainder of the BSOC channel circuits.




Battery capacity versus temperature circuit


365


provides a signal corresponding to the change in battery capacity with sensed ambient temperature. This is a conventional circuit that is commonly used in existing voltage regulator systems.




Start circuit


363


ensures, during vehicle start, that the integrator amplifier


361


of BSOC channel


60




a


measures the proper amount of charge removed from start battery


10


by starter motor


50


. In the case that shunt


303


is a resistor in series with EHC battery


300


, a similar start circuit


363


may be used to simulate the discharge of current across shorted shunt


303


for EHC battery


300


so that integrator amplifier circuit


361


of BSOC channel


60




c


measures the proper amount of charge removed from battery


300


by EHC coil


320


.




Referring to

FIG. 3A

, solid state start battery switch


32


SB, includes two pnp transistors


3


AQ


1


and


3


AQ


3


which are in the on state when both npn transistors


3


AQ


2


and A


3


Q


4


are conducting. This occurs when the input on line L


3


(i.e., the input from wiper W


1


of ignition switch


30


) is high and the input on line L


25


(i.e., the output from BSOC channel


60




a


) is low. Switch


32


SB is off for all other input conditions.




Referring to

FIG. 3B

, solid switches


332


EHC and


34


AC each include a pnp transistor


3


BQ


1


, which is in the conducting state when npn transistor


3


BQ


2


is conducting. This occurs when the respective input, line L


52


from timer circuit


352


or line L


34


from NAND gate G


2


, is high.




Referring to

FIG. 3C

, solid state switch


331


EHC includes transistor


3


CQ


1


which is in the on state when transistor


3


CQ


2


is conducting. This occurs when the input on line L


18


from engine thermistor circuit


350


is low.




Engine thermistor switching circuit


350


is shown in FIG.


4


. Circuit


350


senses the temperature of the engine housing near the electrically heated catalytic converter. The thermistor TR


2


is a negative coefficient type device having a series resistance that reduces as engine temperature rises. When the engine temperature has reached a predetermined level, the resistance of thermistor TR


2


drops to the point where the voltage on line L


51


drops below the reference voltage on line L


49


. This causes the output line L


18


of operational amplifier


4


A


1


to switch from a low to a high voltage state. The reference voltage may be provided in any manner, e.g., a voltage divider between a +12 volt source across a 10 kΩ resistor and a 4v zener diode as illustrated in FIG.


4


.




Pendulum circuit


70


, shown in

FIGS. 1 and 5

, includes a potentiometer


71


having its wiper W-


71


operated by a pendulum


72


. When the vehicle decelerates, pendulum


72


swings in the “vehicle forward” direction and moves wiper W-


71


of potentiometer


71


in a direction that produces a sudden change, e.g., an increase in both the rate of change and magnitude of the voltage output on line L


45


. The sudden change in magnitude and rise time of the voltage on line L


45


is sensed by deceleration circuit


90


and the output voltage on output line L


46


switches from a low state to a high state output voltage.




Proper selection of the resistive and capacitor components in deceleration circuit


90


will cause the output of switching amplifier


5


A


3


to switch when vehicle deceleration exceeds any predetermined rate. In this regard, capacitor C


1


, resistors R


1


and R


2


and amplifier


5


A


1


comprise a conventional differentiator circuit that will not produce an output voltage unless the vehicle decelerates at a rate greater than a predetermined level. The magnitude of the voltage at the output of amplifier


5


A


1


is given by:






Eout=


R




1


×


C




1


×(


E




2





E




1


)/(


t




2





t




1


)






Proper selection of component values in the differentiating equation will produce an output voltage having the proper magnitude for a predetermined vehicle deceleration rate.




The voltage at the output of amplifier


5


A


1


is amplified by amplifier


5


A


2


and applied to the non-inverting input of amplifier


5


A


3


. When the applied voltage exceeds the reference voltage provided on the inverting input of amplifier


5


A


3


, amplifier


5


A


3


switches from a low state to a high state.




Alternately, pendulum circuit


70


can be replaced with any type of vehicle deceleration detection circuit device, including wheel speed pickoff types, that can be modified to provide an output voltage having a magnitude and rise time sufficiently proportional to vehicle deceleration to operate with deceleration circuit


90


.




Referring now to

FIG. 6

, voltage regulator


42


, in accordance with the non-microprocessor controlled version of the present invention, is similar to many off-the-shelf type of voltage regulators that control the magnitude of the output voltage V


A


of alternator


40


. The regulation principle is well known and has been in use almost as long as the automobile has been in existence. Early voltage regulator circuits sensed the level of the output voltage V


A


from the alternator


40


and commanded a relay contact to remain closed for a longer period of time than open when the output voltage V


A


was below a preset level, such as 14.0 volts dc. When the sensed output voltage V


A


was above the reference level, the contact was commanded to remain open for a longer period of time than closed. This switching action maintained the output voltage V


A


in the vicinity of 13.6 volts dc in a reasonable manner.




The voltage regulator circuit also sensed the ambient temperature and modified the on-off switching time as a function of temperature. It also modified the switching on-off time to cause the contact to remain on for a slightly longer period when ambient temperature was low and to remain off for a slightly longer period of time when the ambient temperature was high. This raised alternator nominal 14.0 volt dc output level to 14.8 volts at low temperatures and reduced the nominal 14.0 volt output to 13.6 volts dc at high ambient temperatures. The nominal output voltage, when raised to 14.8 volts dc, provided more current to the alternator rotor coil


44


R at low ambient temperatures and less current when it was reduced to 13.6 volts at high ambient temperatures, thus maintaining a proper charging current to the start battery under all driving and ambient temperature conditions.




Relay contact controlled voltage regulators have been replaced with more reliable transistor switching types that control the alternator rotor, and thus field current, in much the same manner as described above, i.e., by changing the duty cycle of the current.




In accordance with the present invention, referring to

FIG. 6

, voltage regulator


42


includes an on-off switching circuit comprised of a logic NAND gate G


1


, a pnp transistor Q


606


, temperature sensitive diodes


6


D


1


,


6


D


2


, zener diode


6


Z


1


, operational amplifier


6


A


1


, voltage divider resistors


6


R


1


,


6


R


2


and darlington power switching transistors


6


Q


1


and


6


Q


2


.




When wiper W


3


of ignition switch


30


is placed in the run position (contact


37


) prior to start, an exciter current from start battery


10


is delivered through rotor coil


44


R of alternator


40


and series transistor


6


Q


2


to ground. This provides sufficient current to overcome the residual magnetism in rotor coil


44


R which allows coil


44


R to develop the required current to operate properly alternator


40


.




There are a variety of solid state switching voltage regulators in operation at the present time. Most of them can be activated and deactivated to switch the current into rotor


44


R on and off by grounding a key signal line in the circuit. This can be manually done with a switch and automatically done with inputs of the type illustrated in

FIGS. 1 and 6

or with a microprocessor.




When the output voltage V


A


of alternator


40


is below a nominal 14.0 volt dc level, zener diode


6


Z


1


does not conduct current. Consequently, the voltage at its base on top of resistor


6


R


3


is zero. The sensed alternator output voltage V


A


is, however, present at the non-inverting input to amplifier


6


A


1


, thus causing it to switch to a high state output voltage level. This causes transistors


6


Q


1


and


6


Q


2


to turn on. This in turn causes current to flow through rotor coil


44


R which raises the current in field windings


703


. The increased current in field windings


703


(stator coils


44


S) raises the alternator output voltage V


A


above 14.0 volts. The output voltage V


A


is produced by the phase rectifier bridge comprising diodes


7


D


4


,


7


D


5


,


7


D


6


,


7


D


7


,


7


D


8


, and


7


D


9


(and the feedback output voltage V


A2


is provided by an exciter bridge comprising diodes


7


D


1


,


7


D


2


,


7


D


3


) in a conventional manner.




When output voltage V


A


rises above 14.0 volts, zener diode


6


Z


1


conducts current and a voltage appears at the inverting input of amplifier


6


Al that is higher than the voltage on the non-inverting input. This causes amplifier


6


A


1


to switch from a high voltage state to a low voltage state, thus turning transistors


6


Q


1


and


6


Q


2


off. This reduces the output voltage V


A


below 14.0 volts.




This on-off switching action maintains the alternator output voltage V


A


at 14.0 volts dc, regardless of changes in the alternator shaft rotational speed.




The forward voltage drop of diodes


6


D


1


and


6


D


2


decreases at high temperature which increases the voltage level at the top of zener diode


6


Z


1


. This causes zener diode


6


Z


1


to turn off the voltage regulator


42


earlier in the switching cycle. This causes the nominal alternator output charging voltage to drop to a selected level below 14.0 volts.




The forward voltage drop of diodes


6


D


1


and


6


D


2


increases in a low ambient temperature which decreases the voltage level at the top of zener diode


6


Z


1


. This causes zener diode


6


Z


1


to conduct later in each switching cycle. This causes the nominal alternator output charging voltage to increase above the 14.0 level.




Diode


6


D


1


could be placed near start battery


10


to obtain a better measure of battery temperature. Alternately, a more suitable temperature sensitive circuit could be used in its place.




The voltage regulator circuit


42


described above is disabled by reducing the base voltage of transistor Q


606


to zero. This occurs when all the inputs to NAND gate G


1


are in a high state and the input on line L


46


is a low state. This set of conditions causes the output of NAND gate G


1


to switch to the low state and turn transistor Q


606


on. When transistor Q


606


switches on it reduces the voltage level on line L


606


to the non-inverting input of amplifier


6


A


1


to zero. This prevents amplifier


6


A


1


from turning voltage regulator


42


on.




When the overriding deceleration input from circuit


90


on line L


46


goes to the high state during vehicle deceleration, the base of transistor Q


606


is raised, regardless of the input signal levels to NAND gate G


1


. This causes transistor Q


606


to turn off, thus allowing amplifier


6


A


1


to operate voltage regulator


42


as required. When any of the lines L


6


, L


7


and L


306


are in the low state, the output of NAND gate G


1


switches high to the state, thus raising the base of transistor Q


606


, and enabling voltage regulator


42


. When all three lines L


6


, L


7


and L


306


are in the high state, regulator


42


is disabled (unless overridden by a high state input on line L


46


from the deceleration circuit


90


).




Logic NAND gate G


1


can be replaced, if desired, by a manual switch operated by the driver. A manual switch can be used to turn voltage regulator circuit


42


on and off in order to switch alternator


40


in and out of the system. A second manual switch could be used to turn solid state switch


32


SB on and off to switch start battery


10


in and out of the system.




A meter indicating the state of charge of each battery could be located along with manual solid state switch controls on the instrument panel of the vehicle or in another suitable location. It is to be understood that all of the functions described above and illustrated in

FIGS. 1-6

could be performed by manually operated switches if desired.




MICROPROCESSOR SYSTEM CONTROLLED EMBODIMENT OF THE INVENTION




Vehicle Run and Battery Charge Control with a Microprocessor




The non-microprocessor embodiment of the invention described above does not require the sophistication of a microprocessor to control the level of alternator current required to provide rectified output current to the batteries and vehicle loads or alternately to allow the run battery to provide all the vehicle load current.




Nevertheless, there are advantages afforded by using a microprocessor controlled voltage regulator including the ability to operate a complex voltage regulator, to operate a complex display, complex decision making capability, reprogramming flexibility, and a less complex vehicle installation (both as original vehicle equipment and as an aftermarket retrofit apparatus) than the non-microprocessor version.




Most four to sixteen bit microprocessors having suitable memory capacity can be used to replace the discrete circuit non-microprocessor based voltage regulator described in the non-microprocessor system version of the invention, as will be clear from the following.




Referring to

FIG. 7

, one suitable microprocessor


200


is a 16-bit microprocessor, Model No. 8397-90, which is available from Intel. This model microprocessor includes a 10-bit analog-to-digital converter, interrupt source inputs, a pulse width modulated output port, a 232 byte register, memory to memory architecture, a 16×16 bit multiplier, a 32 by 16 bit divider, a full duplex serial port, five 8 bit input/output ports, watchdog timers, four 16 bit timers, two external 64K (8K by 8 bits) memory devices, a one milliamp standby current drain, and a display driver interface including an eight segment liquid crystal display


80


and a 6×6 button keyboard


82


.




One suitable memory device


845


for use with microprocessor


200


is EPROM Model P27C64/87C64, which is available from Intel. This device includes two 64K (8K×8 bit) memory units which are conventionally connected to the Intel model 8397-90 microprocessor. The pin designations are those provided by the manufacturer. Instructions for programming the Intel Model 8397-90 microprocessor can be found on pages 19-10 through 19-27 of the Intel Automotive Handbook, part order number 231792-002, available from Intel.




In the preferred embodiment, microprocessor


200


is provided with suitable software program instructions in memory so that the vehicle operator can obtain and display information regarding time, date, an alarm function, estimated time of arrival, time on remaining fuel to recharge station, time on remaining fuel to an empty fuel tank, the remaining distance to go on a trip, the distance to travel since the fuel tank was last filled, and the distance to travel on the remaining fuel. Many of these functions may be programmed in a conventional manner by a person of ordinary skill in the art. Devices commonly referred to as trip computers, which incorporate many of these functions, have been commercially available in automotive vehicles at least since 1986.




In accordance with the present invention, microprocessor


200


also may be programmed to provide information regarding fuel efficiency and fuel being consumed in the fuel tank (based on the octane reading of the fuel). This would include average fuel efficiency and miles per gallon, the instantaneous fuel efficiency, the total fuel used on the trip since the trip began, the fuel used since the tank was last refilled, and the fuel left in the tank. Also, the microprocessor


200


may provide information regarding how long the vehicle may continue operating until an external battery recharge is required, the time required to recharge run battery


20


after alternator


40


is switched back in to recharge run battery


20


, and how long the vehicle may safely operate in the run state before requiring a recharge. It is noted that in the run state refers to alternator


40


being either switched out or operating at a reduced voltage output that merely maintains a trickle charge on run battery


20


without attempting to fully recharge battery


20


.




Also, microprocessor


200


may provide information regarding average vehicle speed and may include an anti-theft capability, based on requiring the driver to enter a code on the keyboard


82


prior to starting the vehicle. Microprocessor


200


also may be utilized to monitor vehicle inputs not indicated above for vehicle diagnostic purposes. By sampling the alternator output load conditions, battery current levels, battery state of charge levels (in amp-hours), and alternator voltage levels, in addition to other vehicle sensory inputs, microprocessor


200


can perform many useful diagnostic functions. For example, a gradual inability to recharge properly any of the batteries, or for any battery to provide appropriate load currents upon demand in certain situations, can result in a diagnostic message indicating a problem with either the given battery, alternator


40


, the wiring harness of the vehicle, vehicle loads (R


L


and R


A


), or even battery terminal connections. Microprocessor


200


also can be programmed to identify the following diagnostic conditions: a bad battery, a malfunctioning alternator, a short in a vehicle accessory or wiring harness causing excessive current drain, a bad diode bridge, the onset of a load dump condition, and other related diagnostic matters based on sensed states-of-charge, voltages and currents over time. The bases for these determinations are more fully described in the copending and commonly assigned application Ser. No. 07/919,011.




The input/output circuits


744


,


745


,


746


, and


747


which interface microprocessor


200


and the vehicle sensor signals, are standard scaling, gain, and reset circuits. The design and construction of these circuits as well as the programming of microprocessor


200


are within the abilities of the person of ordinary skill in the art, are well known, and do not require elaboration.




In this embodiment, a pulse width modulated signal is output on line L


39


at pin


39


of microprocessor


200


, when it passes through input output interface circuit


747


. The corresponding pulse width modulated output from circuit


747


on line L


747


, which is input to the darlington drive transistors


7


Q


1


and


7


Q


2


, is a pulse train having a fixed period of 256 state times and a programmable width of from 0 to 255 state times. Pulse width is programmed by loading the desired value for optimum fuel economy, as determined by microprocessor


200


, into a microprocessor pulse width modulation (PWM) control register (not shown). The varied number of state pulses over the 256 pulse period determines the average current provided by drive transistors


7


Q


1


and


7


Q


2


in

FIG. 7

to the coil of rotor


44


R of alternator


40


. Rotor


44


R generates a conventional three phase electromagnetic field voltage in the stator coils


44


S (see also coils


703


in

FIG. 6

) having a magnitude proportional to the level of the dc input field current I


F


. The alternating field current of the stator coils


44


S is then rectified by diode bridges


740


(diodes


7


D


1


,


7


D


2


,


7


D


3


) and


742


(diodes


7


D


4


,


7


D


5


,


7


D


6


,


7


D


7


,


7


D


8


,


7


D


9


) to provide the dc output voltage V


A


on line L


5


.




Preferably, microprocessor


200


is programmed for receiving and processing the various sensor input parameters and controlling the alternator


40


output voltage V


A


on line L


5


between alternator


40


and run battery


20


over the range of 0 to 17 volts, according to a set of defined operating conditions stored in a look-up table or an algorithm. Preferably, look-up tables are used which comprise data curves of, for example, alternator output voltages (start and run conditions, including EHC preheat operations) versus various vehicle load and ambient temperature conditions, states of charge, and other data useful for the aforementioned diagnostic purposes. The data curves preferably correlate the range of sensor parameters and predetermined operating conditions and, in response to the determined inputs, provide a suitable output voltage to maximize fuel economy. The look-up tables utilized by the microprocessor may be empirically derived according to the specific vehicle operating conditions, operating mode, and battery characteristics.




In this embodiment, microprocessor


200


may monitor ambient temperature conditions and engine speed and regulate the bias of the alternator output voltage in a conventional manner. In accordance with the present invention, microprocessor


200


also may monitor the charging current I


CH


by sensing the voltage signal representing the deceleration of the vehicle, and the state of charge and current signals charge/discharge from BSOC channels


60




a


,


60




b


and


60




c.






These sensed parameters are then compared to data in the look-up tables and an appropriate output voltage is selected. The look-up table and data stored in memory device


845


provide fuel economy calculation information. Software for microprocessor


200


and the look up tables and algorithms may be created in a conventional manner using an emulator board and stored in memory


845


.




A watchdog circuit (not shown in FIG.


7


), is located between pins


55


and


45


of Intel model 8377-90 microprocessor


200


and provides a graceful recovery from software errors. In this regard, a 16 bit counter in microprocessor


200


will count state times until it overflows. If an overflow occurs prior to correction of an error, microprocessor


200


is reset. A clock


204


is used for state timing and other signal processing functions. Preferably a 12 MHz clock


204


is employed.




Referring to

FIG. 7

, the interconnection between microprocessor


200


, keyboard


82


and display


80


is shown. In this embodiment, keyboard


82


is a conventional 6×6 keyboard having vertical and horizontal contact lines laid out in a 6×6 grid, and an associated eight character LCD display


80


. Such keyboard devices can be readily implemented using the Intel 8397-90 microprocessor. Six of the keyboard lines are connected along line L


32


B-A, which is a parallel data bus, to pins P


2


.


6


, P


2


.


7


, P


4


.


7


, P


4


.


0


, P


0


.


1


, and P


0


.


0


on microprocessor


200


. The pin numbers are not shown in

FIG. 7

for clarity of illustration. The other six keyboard lines are connected by line L


32


B-B, also a parallel data bus, to pins P


4


.


1


-P


4


.


6


on microprocessor


200


. The key designation of keyboard


82


is selected by appropriate programming of intersecting contact lines.




Outputs P


1


.


0


-P


1


.


4


of microprocessor


200


are connected by line L


24


B-A, a parallel data bus, to a binary coded decimal digit driver circuit


81


, which in turn is connected to display


80


. Also, microprocessor


200


outputs P


3


.


0


-P


3


.


7


are connected along line L


24


B-B, a parallel data bus, to segment driver


83


, which, in turn, provides information to display


80


.




In this driver interactive system, the driver may select which condition of the vehicle or which diagnostic parameter or trip computer function to display at any given time. Accordingly, specific keys in keyboard


82


may be dedicated for displaying state of charge of run battery


20


, start battery


10


or EHC battery


300


upon actuation. Alternatively, the key functions may be selected according to a displayed menu of selections, such that different keys have different functions depending on the menu selected.




In addition, microprocessor


200


may be programmed to display the state of charge measures automatically when the state of charge of the respective battery falls below a preselected level or to display an appropriate message when a diagnostic routine indicates that a problem has been detected. Such an automatic display may be accompanied by a warning indication, e.g., a indicator light on the instrument panel or an audible tone. A distinctive warning could be used to indicate to the driver that the vehicle has switched from run battery operation only to running on the alternator, e.g., during a recharge of run battery


20


. A suitable message also may be displayed to indicate how long it will take to recharge the battery with the alternator before automatically switching back to run battery operation. Other variations may be selected as a matter of design choice, provided that the selected microprocessor


200


and memory


845


have sufficient processing capability.




The previously discussed microprocessor pulse width modulation (PWM) circuit output on pin


39


and line L


39


of microprocessor


200


smoothly varies the current to driver transistors


7


Q


1


and


7


Q


2


, which in turn smoothly varies the current into rotor


44


R in response to system sensor inputs and the dc output level (V


A2


) of alternator


40


on line L


602


.




Microprocessor


200


compares the level of alternator voltage V


A2


on line L


602


(through interface circuit


747


) with a reference voltage level stored in memory. When V


A2


is higher than the reference voltage, e.g., a nominal 14.6 volts dc, the duty cycle of the PWM output is lowered until V


A2


returns to 14.6 volts dc. When V


A2


is below 14.6 volts dc, microprocessor


200


increases the duty cycle until V


A2


is at 14.6 volts dc. The nominal 14.6 volt level may be altered if required with a software change.




Microprocessor


200


also senses a signal on line L


748


from ambient temperature sensor circuit


748


, which is passed through input output interface circuit


745


for scaling and shaping, and accordingly adjusts the duty cycle of its PWM output on line L


39


to vary the alternator charging voltage (V


A2


) between 16.4 and 13.6 volts in accordance with conventional battery charging current versus temperature requirements.




When wiper W


1


of ignition switch


30


is turned to the start position, as shown in

FIG. 1

, ignition switch contact


32


provides current to actuate start solenoid


31


which pulls in contact


52


thus allowing start battery


10


to provide the current required to operate start motor


50


. Microprocessor


200


also actuates EHC solenoid coil


323


during vehicle start by turning on solid state switches


331


EHC and


332


EHC for a selected timing period of twenty seconds. When switches


331


EHC and


332


EHC are turned on, as noted, solenoid


323


pulls in ganged power contacts


322


and


324


. Power contact


322


routes heater current from EHC battery


300


to the EHC heater coil


320


and contact


324


shorts out shunt


303


. At the end of the selected timing period, microprocessor


200


opens solid state switches


331


EHC and


332


EHC. In the event that microprocessor


200


detects a signal from engine thermistor circuit


350


that corresponds to the engine temperature being above a preselected “hot” temperature, microprocessor


200


opens solid state switch


331


EHC, which prevents current from reaching the EHC solenoid coil


323


, thus preventing heater current from flowing into the EHC heater coil


320


. Separate control lines L


331


and L


332


respectively connect microprocessor


200


to switches


331


EHC and


332


EHC. It should be understood that, rather than a timing period, a first signal could be used to close switches


331


EHC and the thermistor circuit


350


could be used to open circuit the switch once the engine has reached the desired temperature.




When wiper W


1


is returned to the run position, as indicated in

FIG. 7

, a high input signal is applied on line L


35


through I/O circuit


745


. This high signal is sensed by microprocessor


200


which, in response, monitors the outputs of BSOC channels


60




a


,


60




b


and


60




c


on lines L


25


, L


6


and L


306


respectively, and maintains the output voltage of alternator


40


at a level required to recharge the start, run and EHC batteries


10


,


20


and


300


in accordance with ambient temperature requirements. This charging continues until their respective charge levels are above a predetermined point. Again, as in the non-microprocessor version, contact


324


may be omitted where the shunt


303


is a length of battery cable, and BSOC channel


60




c


may be omitted.




When microprocessor


200


receives signals on lines L


25


, L


6


and L


306


from BSOC channels


60




a


,


60




b


and


60




c


respectively indicating that all three batteries are recharged, it reduces the PWM duty cycle on line L


39


to cause the alternator output voltage V


A


to drop to a level low enough to allow the terminal voltage of run battery


20


to back bias the rectifier diodes


742


on line L


5


. This removes the engine torque from the shaft of alternator


40


and allows the run battery


20


to provide all the vehicle load current. This is the preferred mode of operation for maximum fuel savings.




Thereafter, when microprocessor


200


receives a signal on line L


7


from BSOC channel


60




b


that indicates run battery


20


state of charge is below a predetermined charge level, microprocessor


200


increases the alternator output voltage to a point where it can operate the vehicle in such a manner that it provides the required load current and a recharge current to run battery


20


. (Alternately, the alternator output voltage is raised to a point where run battery


20


does not discharge further, but is not necessarily recharged.) The driver is also warned by display


80


that a source of charge external to the vehicle should be located as soon as possible to recharge run battery


20


. An on board battery charger is preferably provided (not shown in

FIG. 7

, see FIG.


1


).




Microprocessor


200


also monitors battery recharge current on lines L


390


, L


391


and L


392


which are respectively passed through input output circuit


744


, to determine when recharge occurs. (See the output of amplifier A


2


on FIG.


2


).




In this embodiment, a wheel speed indicator circuit


95


is provided. Circuit


95


includes a permanent magnet


96


on a wheel speed or transmission shaft


97


. It produces pulses proportional to wheel speed which are sensed each time magnet


96


passes a stationary pickup coil


98


. Consequently, a train of pulses having a period inversely proportional to wheel speed is transmitted on line L


95


to a pulse squaring circuit


99


. The output of pulse squaring circuit


99


is transmitted on line L


99


, passed through input output interference circuit


745


, to microprocessor


200


. Microprocessor


200


thus can sense and record vehicle instantaneous speed, average speed, deceleration, and acceleration. It can use this information in the software program for controlling the system in response to these inputs. Vehicle deceleration, for instance, is computed by calculating the reduction in vehicle speed over a given time period. In particular, the use of wheel speed circuit


95


makes the pendulum circuit


70


of the non-microprocessor embodiment (see

FIG. 1

) unnecessary in the microprocessor controlled embodiment.




When microprocessor


200


senses vehicle deceleration it increases the output voltage V


A2


of alternator


40


. As a result, the vehicle momentum, rather than the engine, is used to apply torque to the alternator shaft and provide a recharge current for charging run battery


20


. This procedure applies recharge current without any fuel expenditure, and effectively extends the time the vehicle loads R


L


+R


A


can be operated off of run battery


20


without requiring an external recharge or recharging battery


20


by burning fuel.




Microprocessor


200


provides the operational advantage of not having to reduce the excitation current completely from rotor


44


R of alternator


40


when the system is operating with run battery


20


providing current to the vehicle electrical loads. Microprocessor


200


can, in response to sensor inputs, provide a pulse width modulated current having a duty cycle just sufficient to provide the lowest possible current to alternator rotor


44


R required to avoid sharing current with run battery


20


when it is being used. This removes the alternator torque from the engine as effectively as when all the current is turned off to rotor


44


R.




The current to rotor


44


R can be smoothly varied by microprocessor


200


to vary the output voltage level of alternator


40


to allow it to (a) share any portion of its output current to the vehicle loads along with run battery


20


, (b) share none of its output current with the run battery


20


, or (c) provide all of its output current to the vehicle loads and charge run battery


20


. The desired alternator operating mode, a, b or c, above could be programmed from keyboard


82


by the system operator.




Microprocessor


200


also provides the capability of being reprogrammed to accommodate changing vehicle operating requirements that may occur between vehicles and with the addition of options.




Current outputs from BSOC channels


60




a


,


60




b


, and


60




c


on lines L


390


, L


391


, and L


392


, respectively, also are sensed by microprocessor


200


at the corresponding outputs of I/O circuit


744


. The direction and amplitude of the currents into and out of batteries


10


,


20


and


300


on the above lines are monitored for control and display purposes.




Microprocessor


200


also monitors the battery current in each of shunts


11


,


21


, and


303


for diagnostic and reset purposes. Failure of the charge current to drop below a preselected level on lines L


390


, L


391


and L


392


when the state of charge voltage of the monitored battery is above a preset level on lines L


25


, L


6


and L


306


respectively, is an indication of a bad cell in the associated battery.




Microprocessor


200


may be used to turn off automatically selected vehicle electrical accessories when the vehicle is parked, the ignition key is in the accessory position, and the start battery state of charge is below a preselected level. In this regard, a high voltage state signal from the “PRNDL” gear shift circuit


15


is transmitted on line L


15


(through I/O circuit


745


) when the shift lever (not shown) is in the park “P” position. A high voltage state signal also is transmitted on line L


38


(passed through I/O circuit


745


) when ignition switch wiper W


4


is in the accessory position (contact


38


) and a low voltage level signal is transmitted on line L


25


when the state of charge of start battery


10


is below a preselected level. When these three conditions are satisfied, microprocessor


200


transmits a turn off signal on line L


34


to solid state switch


34


AC which removes battery discharge current from selected vehicle accessories R


L


and R


A


.




EXAMPLES




The advantages of the present invention are illustrated with reference to the fuel consumption test drives made with a 1988 General Motors Oldsmobile Cutlass, shown in

FIG. 8

, and a 1984 Ford Mercury Lynx, shown in FIG.


9


.




All fuel measurements were made based on two-hour runs, under the weather conditions described below and the load currents on the alternator specified. Plot


8


A represents highway driving in warm and dry road conditions. Plot


8


B represents a combination of city and highway driving in light to heavy traffic and cool and raining road conditions. Plot


8


C represents suburban driving in cool and dry road conditions. Plot


8


D represents city driving in cool and dry road conditions. Plot


8


E represents city driving in heavy traffic in cool and dry road conditions. Plot


9


A represents highway driving. Plot


9


B represents suburban driving in light traffic. Plot


9


C represents suburban driving in heavy traffic. Plot


9


D represents city driving in heavy traffic. For highway traffic, each car was driven one hour in one direction and one hour in the opposite direction, to balance out windage and other factors. Similarly, for suburban and city traffic, the path followed during one hour was essentially reversed during the second hour.




The current load on the alternator was varied by turning on various electrical devices in the car (such as the radio, windshield wiper, headlights, etc.), and was measured by one shunt in series with the alternator and one shunt in series with the battery. The fuel measurements were made by connecting a first fuel-flow meter in series with the gasoline tank supply line and a second fuel-flow meter in series with the fuel pump return line and subtracting the difference.




The percentage fuel savings achieved by operating at zero-load conditions, as compared with various current load conditions, can be calculated by the expression:







%





Fuel





Savings

=




MPG
0

-

MPG
LOAD



MPG
LOAD


×
100











wherein MPG


0


is miles per gallon at zero current load on the alternator and MPG


LOAD


is miles per gallon at the selected load conditions and current load in amps.




The percentage fuel savings for the 1988 Oldsmobile Cutlass are shown below under Table I and in

FIG. 8

, while those for the 1984 Mercury Lynx are shown under Table II and in FIG.


9


. The average of both is shown under Table III. The current load at 18 amps is a hypothetical driving condition based on the curves in

FIGS. 8 and 9

. With respect to Table III, the overall average includes highway, suburban and city driving, assuming that there is an equal amount of driving in each of these categories.




In

FIGS. 8 and 9

, the parenthetical numbers correspond to (amps, miles per gallon) (% fuel savings).












TABLE I











1988 OLDSMOBILE CUTLASS




















Current




%










Load




Fuel







Driving Conditions




MPG


0






MPG


LOAD






(amps)




Savings





















Highway Traffic




17.7




17.3




8




2.3








17.7




16.8




18




5.4







Warm, Dry Conditions




17.7




16.25




26




8.9








17.7




14.64




46




20.9







Highway and City




17.0




16.5




8




3.0







Traffic




17.0




16.3




18




4.3







Rainy, Cool Conditions




17.0




15.9




26




6.9








17.0




13.8




46




23.2







Suburban Traffic




12.32




11.9




8




3.5








12.32




11.05




18




7.6







Cool, Dry Conditions




12.32




10.97




26




12.3








12.32




10.3




46




19.6







City Traffic




12.0




11.5




8




4.3








12.0




11.1




18




8.1







Cool, Dry Conditions




12.0




10.6




26




13.2








12.0




9.9




46




21.2







Heavy City Traffic




9.7




9.25




8




4.8








9.7




8.8




18




10.2








9.7




8.3




26




16.9








9.7




6.8




46




42.6























TABLE II











1984 MERCURY LYNX




















Current




%










Load




Fuel







Driving Conditions




MPG


0






MPG


LOAD






(amps)




Savings





















Highway Traffic




32.5




31.8




8




2.2








32.5




30.8




18




5.5








32.5




30.2




26




7.6








32.5




26.5




48




22.6







Suburban Light Traffic




25.5




24.2




8




5.4








25.5




23.0




18




10.9








25.5




21.5




26




18.6








25.5




18.0




48




41.7







Suburban Heavy Traffic




23.2




23.1




8




0.4








23.2




21.3




18




8.9








23.3




20.5




26




13.2








23.22




16.8




48




38.1







City Heavy Traffic




17.4




16.45




8




5.8








17.4




15.0




18




16.0








17.4




14.0




26




24.3








17.4




11.8




48




47.5























TABLE III











Fuel Savings Average for Both Cars















Current Load




Driving Conditions




Percentage Fuel Savings



















 8 amps




Highway average




2.5








Suburban average




3.1








City average




5.0








Overall average




3.53







18 amps




Highway average




5.1








Suburban average




9.1








City average




11.4








Overall average




8.53







26 amps




Highway average




7.8








Suburban average




14.6








City average




18.1








Overall average




13.5







46 amps




Highway average




22.2








Suburban average




33.1








City average




37.1








Overall average




30.8















The cost savings from recharging run battery


20


from a conventional 115-volt line source is illustrated from the information set forth in Table IV. This information compares the cost of fuel to supply each of a very heavy current load, a moderately heavy current load, and a light current load from the alternator, to the cost of recharging the battery using an external line power charger. All of the examples are based on a 60 amp-hour and 720 volt-amp-hours discharge/charge (a 12-volt battery) while the vehicle was travelling in highway traffic at 60 mph.




The cost of electricity is based on 11.6¢ per Kw hr, which is a calculated average rate for electricity (summer and winter) for residential use in New York City ca. 1991-92, independent of taxes and other charges. Commercial rates for electricity tend to be higher depending upon volume and time of consumption. If the power source is the battery, corresponding to no load current from the alternator, the cost of electricity to recharge the battery from an external battery charger and restore 720 volt-amp-hours (0.72 Kw-hr), at 11.6¢ per Kw-hr, would be 8.4¢. This amount is the same for all examples.




The cost of fuel is based on $1.30/gallon. If the power source is the alternator, such that no current is provided by the battery, the fuel cost for running the electrical load off the alternator would be:







Cost










(
$
)

=




MPG
0

-

MPG
LOAD



MPG
LOAD


×


[

time





period
×
60





MPH

]


MPG
LOAD













The time period is selected to obtain the 60 amp-hour discharge for the given current load at 60 MPH. The result of the calculations using the above formula and the data points on Tables I and II are set forth under Table IV below.


















TABLE IV














Cost of









Time




Cost of




Operating







Current




60 Amp-Hour




Recharging




Off The




Cost Ratio







Load




Discharge




From External




Alternator




Fuel/







(Amps)




(hours)




Charger (¢)




(¢)




Electricity


























1984 Mercury Lynx - Highway driving at 60 mph

















 8




7.5




39




8.4




 4.6/1







26




2.3




42




8.4




  5/1







48




1.25




67.6




8.4




  8/1













1988 Oldsmobile Cutlass - Highway driving at 60 mph

















 8




7.5




76.4




8.4




 9.1/1







26




2.3




91




8.4




10.8/1







46




1.3




$1.20




8.4




14.3/1















Generally, the greater the current load of the vehicle, the greater the savings when the current load is driven by run battery


20


only, provided that run battery


20


is recharged by an external line power charger.




The improvement in fuel economy realized by the present invention is proportional to the time the alternator is operated at a relatively reduced output voltage, e.g., at 12 or zero volts versus 13.6 to 14.7 volts.




A 10% fuel saving on every gas powered vehicle in the United States would amount to a reduction of 13.5 billion gallons of gasoline per year in the USA. This corresponds to saving approximately 20 billion dollars a year at the retail pump. It also translates into substantial reduction in undesirable gaseous and particulate emissions which result from fuel consumption.




One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments which are presented for purposes of illustration and not of limitation.



Claims
  • 1. A battery charging system for an automotive vehicle including a starter motor, a catalytic converter for reducing emissions, a fuel burning engine, and vehicle load and accessory load circuits, comprising:a start battery for providing a discharge current for operating the starter motor to start the engine; a run battery for operating vehicle load and accessory load circuits; a storage battery having a first very high discharge current; a heater for heating the catalytic converter to an elevated temperature in response to the first high discharge current; means for initiating a starting operation by connecting the start battery to the start motor for a first period of time and for connecting the storage battery to the heater for a second period of time; an alternator having a variable output condition including a regulated and selectable output voltage with an output current, the alternator being driven by the vehicle engine; a first circuit for connecting the alternator output to the start battery for recharging the start battery; a second circuit for connecting the alternator output to the run battery for recharging the run battery; and a third circuit for connecting the alternator output to the storage battery for recharging the storage battery.
  • 2. The system of claim 1 wherein the initiating means further comprises an ignition switch and control circuit for connecting the storage battery to the heater for at least a portion of the second time period prior to connecting the start battery to the start motor so that the catalytic converter is heated to an elevated temperature before actuating the start motor.
  • 3. The system of claim 1 further comprising:a fourth circuit for monitoring the state of charge of the start battery; a fifth circuit for monitoring the state of charge of the run battery; a control circuit for controlling the output of the alternator in response to the sensed states of charge of the start and run batteries, wherein the alternator output has one of a first output condition when the sensed state of charge of the start battery is above a first charge threshold and the sensed state of charge of the run battery is above a second charge threshold; a second output condition when the sensed state of charge of the start battery is below the first charge threshold; and a third output condition when the sensed state of charge of the start battery is above the first charge threshold and the sensed state of charge of the run battery is below the second charge threshold.
  • 4. The system of claim 1 further comprising:a fourth circuit for monitoring the state of charge of the start battery; a fifth circuit for monitoring the state of charge of the run battery; a sixth circuit for monitoring the state of charge of the storage battery; a control circuit for controlling the output of the alternator in response to the sensed states of charge of the start, run and storage batteries, wherein the alternator output has one of a first output condition when the sensed state of charge of the start battery is above a first charge threshold, the sensed state of charge of the run battery is above a second charge threshold, and the sensed state of charge of the storage battery is above a third charge threshold; a second output condition when one of the sensed state of charge of the start battery is below the first charge threshold and the sensed state of charge of the storage battery is below the third charge threshold; and a third output condition when the sensed state of charge of the start battery is above the first charge threshold and the sensed state of charge of the run battery is below the second charge threshold.
  • 5. The system of claim 4 further comprising a first switch for switching the start battery out of the system when the start battery state of charge is above the first charge threshold and for connecting the start battery to the alternator output when the start battery state of charge is below the first charge threshold.
  • 6. The system of claim 4 further comprising a first switch for switching the storage battery out of the system when the storage battery state of charge is above the third charge threshold and for connecting the storage battery to the alternator output when the storage battery state of charge is below the third charge threshold.
  • 7. The system of claim 4 wherein the first output condition corresponds to no current being provided by the alternator to any of the run, start, and storage batteries and the second output condition corresponds to a recharge voltage and current being provided by the alternator to the start battery.
  • 8. The system of claim 7 wherein the second and third output conditions are the same.
  • 9. The system of claim 4 further comprising a line power charger for recharging the start, run, and storage batteries.
  • 10. The system of claim 9 further comprising a switching network for selectively connecting the line power charger to those batteries that have less than a full state of charge.
  • 11. The system of claim 4 further comprising a switch for disconnecting selected accessory loads from the run battery when the run battery state of charge falls below a fourth selected charge threshold.
  • 12. A method of operating a battery charging system for an automotive vehicle including a starter motor, a catalytic converter for reducing emissions, a fuel burning engine, and vehicle load and accessory load circuits, comprising:providing a start battery for providing a discharge current for operating the starter motor to start the engine; providing a run battery for operating vehicle load and accessory circuits; providing a storage battery having a first very high discharge current; providing a heater for receiving the first high discharge current and heating the catalytic converter to an elevated temperature; providing an alternator having a variable output condition including a selectable output voltage with an output current, the alternator being driven by the vehicle engine; monitoring the state of charge of the start battery; initiating a starting operation by connecting the start battery to the start motor for a first period of time and connecting the storage battery to the heater for a second period of time; placing the alternator output at a first output condition when the state of charge of the start battery is below a first charge threshold; connecting the start battery to the alternator output for recharging the start battery following the starting operation; and disconnecting the start battery from the alternator output when the start battery state of charge is above the first charge threshold.
  • 13. The method of claim 12 further comprising:monitoring the state of charge of the run battery; setting the alternator output at a second output condition when the state of charge of the run battery is above a second charge threshold, the second charge threshold being less than a full charge; and setting the alternator output at a third output condition when the state of charge of the run battery falls below a second charge level and applying the alternator third output condition to the run battery until the run battery is fully charged, the third output condition being at a higher voltage level than the second output condition.
  • 14. The method of claim 13 wherein the third output condition provides for a fast recharge of the run battery, the method further comprising resetting the alternator output to the second output condition output when the run battery is fully charged.
  • 15. The method of claim 12 further comprising:monitoring the state of charge of the storage battery; setting the alternator output voltage at a second output condition when the state of charge of the storage battery is above a second charge threshold, the second charge threshold being less than a full charge; and setting the alternator output voltage at a third output condition when the state of charge of the storage battery falls below the second charge threshold and applying the alternator third output condition to the storage battery until the storage battery is fully charged, the third output condition being at a higher output voltage level than the second output condition.
  • 16. The method of claim 12 wherein initiating a starting operation further comprises connecting the storage battery to the heater for at least a portion of the second time period prior to connecting the start battery to the start motor so that the catalytic converter is heated before connecting the start battery to the start motor.
  • 17. The method of claim 12 further comprising:monitoring the state of charge of the run battery; monitoring the state of charge of the storage battery; controlling the output of the alternator in response to the sensed states of charge of the start, run and storage batteries, wherein the alternator output is selected to be one of a first output condition when the sensed state of charge of the start battery is above a first charge threshold, the sensed state of charge of the run battery is above a second charge threshold, and the sensed state of charge of the storage battery is above a third charge threshold; a second output condition when the sensed state of charge of the start battery is below the first charge threshold; the second output condition when the sensed state of charge of the storage battery is below the third charge threshold; and a third output condition when the sensed state of charge of the start battery is above the first charge threshold and the sensed state of charge of the run battery is below a fourth charge threshold.
  • 18. The method of claim 17 further comprising switching the start battery out of the system when the start battery state of charge is above the first charge threshold and connecting the start battery to the alternator output when the start battery state of charge is below the first charge threshold.
  • 19. The method of claim 17 further comprising switching the storage battery out of the system when the storage battery state of charge is above the third charge threshold and for connecting the storage battery to the alternator output when the storage battery state of charge is below the third charge threshold.
  • 20. The method of claim 17 wherein in response to the run battery state of charge falling below the third level, the alternator output is maintained at the third output condition until the run battery is fully charged.
  • 21. The method of claim 17 wherein the first output condition corresponds to no current being provided by the alternator to any of the run, start, and storage batteries.
  • 22. The method of claim 21 wherein the second and third output conditions are the same and apply a charging current.
  • 23. The method of claim 17 further comprising recharging the start, run, and storage batteries using a line power charger.
  • 24. The method of claim 23 wherein the recharging step using a line power charger further comprises selectively connecting the line power charger to each of the start, run and storage batteries that have less than a full state of charge.
  • 25. A battery charging system for an automotive vehicle having electrical accessory circuits and a fuel consuming engine comprising:a start battery for starting the engine; a rechargeable storage battery for operating the accessory circuits; a circuit for monitoring the state of charge of the storage battery; means for indicating when the storage battery state of charge is below a selected threshold charge level; and a line power charger for recharging the storage battery having an input for receiving a supply of electricity.
  • 26. The system of claim 25 further comprising:an alternator having a selectable output voltage; a circuit for electrically connecting the alternator output voltage to the battery for charging the battery; a fuel consuming engine for driving the alternator; and a control circuit for selecting the output voltage of the alternator in response to the sensed state of charge of the battery wherein the alternator output voltage has a first level when the sensed state of charge is above a first charge threshold and a second level when the sensed state of charge is below the first charge threshold.
  • 27. The system of claim 26 wherein the second voltage level is selected to charge the battery to a full state of charge.
  • 28. The system of claim 26 further comprising:a start battery for starting the engine; a second circuit for monitoring the state of charge of the start battery; a first switch circuit for switching the start battery out of the system when the engine is operating and the start battery is fully charged; an EHC battery for heating an EHC coil during vehicle starting; a circuit for monitoring the engine temperature; a second switch circuit for switching the EHC battery out of the system in response to one of the engine temperature being above a selected temperature and the end of a preselected time period; and a switching network for connecting the line power charger to each of the storage battery, the start battery and the EHC battery.
  • 29. The system of claim 25 wherein the line power charger is mounted on board the vehicle.
  • 30. In an automotive vehicle having a start battery, a start motor, an ignition switch having a vehicle start operation for connecting the start battery to the start motor for starting the vehicle engine and a catalytic converter for reducing undesired vehicle engine emissions, a system for reducing vehicle emissions during starting comprising:a rechargeable storage battery having a very high discharge current capacity; a line power charger for recharging the storage battery having an input for receiving a supply of electricity; a heater for heating the catalytic converter to an elevated temperature in response to receiving the high discharge current; a switch having a closed condition for connecting the storage battery to the heater so that the high discharge current will pass into the heater which then heats the catalytic converter and an open condition for switching the storage battery out of the system; and a control circuit for placing the switch in the closed condition during the vehicle start operation so that the high discharge current will pass into the heater which heats the catalytic converter.
  • 31. The system of claim 30 further comprising:a circuit for monitoring the state of charge of the storage battery; and a switch for connecting the storage battery to the line power charger when the sensed state of charge of the storage battery is below a selected charge threshold for charging the storage battery.
  • 32. The system of claim 30 wherein the control circuit further comprises a timing circuit for closing the switch for a selected first period of time in response to the onset of the vehicle start operation.
  • 33. The system of claim 32 wherein the control circuit further comprises:a sensor for providing a signal representing the temperature of the vehicle engine; and a second switch for disconnecting the storage battery from the heater in response to the sensed engine temperature being above a selected temperature corresponding to the temperature at which the catalytic converter is effective to reduce engine emissions.
  • 34. The system of claim 32 wherein the control circuit further comprises a delay circuit, responsive to the beginning of the vehicle start operation, for delaying connecting the start battery to the start motor for a selected second time period following closing of the switch for connecting the storage battery to the heater so that the catalytic converter is heated prior to starting the vehicle engine.
  • 35. The system of claim 34 wherein the second time period is shorter than the first time period.
  • 36. The system of claim 32 wherein the first time period is on the order of twenty seconds.
  • 37. The system of claim 32 further comprising a second catalytic converter in series with the other catalytic converter, wherein the second catalytic converter is normally heated to an effective operating temperature by the engine.
  • 38. The system of claim 31 in which the vehicle includes an alternator for charging the start battery, wherein the storage battery has greater voltage rating than the start battery and the system further comprises a voltage converter for charging the storage battery from the alternator.
  • 39. The system of claim 30 in which the vehicle includes an alternator for charging the start battery, further comprising:a switch for selectively connecting either the alternator or the line power charger to the storage battery to recharge the storage battery.
  • 40. In an automotive vehicle having a start battery, a start motor, an ignition switch having a vehicle start operation for connecting the start battery to the start motor for starting the vehicle engine, and a catalytic converter for reducing undesired vehicle engine emissions, a method for reducing vehicle emissions during starting comprising:(a) providing a rechargeable storage battery having a very high discharge current; (b) providing a line power charger for recharging the storage battery having an input for receiving a supply of electricity; (c) providing a heater for heating the catalytic converter to an elevated temperature in response to receiving the high discharge current; (d) connecting the storage battery to the heater during the starting operation so that the high discharge current will pass into the heater which heats the catalytic converter; and (e) switching the storage battery out of the system after the vehicle engine has started.
  • 41. The method of claim 40 in which the vehicle includes an alternator for charging the start battery, further comprising:monitoring the state of charge of the storage battery; and connecting the storage battery to the line power charger when the sensed state of charge of the storage battery is below a selected charge threshold for charging the storage battery.
  • 42. The method of claim 40 wherein step (d) further comprises connecting the storage battery to the heater for a selected first period of time in response to the beginning of the vehicle start operation.
  • 43. The method of claim 42 wherein steps (d) and (e) further comprise:sensing the temperature of the vehicle engine; and disconnecting the storage battery from the heater in response to the sensed engine temperature being above a selected temperature corresponding to the temperature at which the catalytic converter is effective to reduce engine emissions.
  • 44. The method of claim 42 further comprising delaying connecting the start battery to the start motor for a selected second time period in response to beginning the vehicle start operation and following connecting the storage battery to the heater so that the catalytic converter is heated prior to starting the vehicle engine.
  • 45. The method of claim 44 wherein the second time period is shorter than the first time period.
  • 46. The method of claim 42 wherein the first time period is on the order of twenty seconds.
  • 47. The method of claim 40 in which the vehicle includes an alternator for charging the start battery, wherein the storage battery has a greater voltage rating than the start battery and the method further comprises providing a voltage converter for charging the storage battery from the alternator.
  • 48. The method of claim 40 in which the vehicle includes an alternator for charging the start battery, further comprising:selectively connecting either the alternator or the line power charger to the storage battery to recharge the storage battery.
  • 49. The method of claim 40 further comprising providing a second catalytic converter in series with the other catalytic converter and heating the second catalytic converter to an effective operating temperature from the engine.
RELATED APPLICATIONS

This is a divisional of application(s) Ser. No. 07/977,921 filed on Nov. 18, 1992, now issued as U.S. Pat. No. 5,397,991, and a continuation-in-part of U.S. patent application Ser. No. 07/919,011, filed Jul. 23, 1992 in the name of Wesley A. Rogers and entitled An Improved Battery State of Charge Monitor, now issued as U.S. Pat. No. 5,444,378, which is a continuation-in-part of U.S. patent application Ser. No. 07/607,237, filed Oct. 31, 1990 in the name of Wesley A. Rogers and entitled Apparatus for Monitoring the State of Charge of a Battery, now issued as U.S. Pat. No. 5,179,340, which is a continuation-in-part of U.S. patent application Ser. No. 07/218,539, filed Jul. 13, 1988 in the name of Wesley A. Rogers and entitled Apparatus for Monitoring the State of Charge of a Battery, now issued as U.S. Pat. No. 4,968,941.

US Referenced Citations (52)
Number Name Date Kind
3484681 Grady, Jr. et al. Dec 1969 A
3727074 Keller et al. Apr 1973 A
3805157 Acks et al. Apr 1974 A
3904947 Crews Sep 1975 A
4041363 Schneidler Aug 1977 A
4082992 Day Apr 1978 A
4090122 Hoinski May 1978 A
4204162 Froidevaux May 1980 A
4336485 Stroud Jun 1982 A
4347473 Stroud Aug 1982 A
4348628 Louks Sep 1982 A
4377787 Kikuoka et al. Mar 1983 A
4387332 Oyamada et al. Jun 1983 A
4413698 Conrad et al. Nov 1983 A
4499424 Rowlette Feb 1985 A
4677363 Kopmann Jun 1987 A
4679000 Clark Jul 1987 A
4968941 Rogers Nov 1990 A
5049802 Mintus et al. Sep 1991 A
5049803 Palanisamy Sep 1991 A
5049804 Hutchings Sep 1991 A
5075614 Whiting Dec 1991 A
5115182 Ehmke et al. May 1992 A
5130659 Sloan Jul 1992 A
5162720 Lambert Nov 1992 A
5163290 Kinnear Nov 1992 A
5166584 Fukino et al. Nov 1992 A
5179340 Rogers Jan 1993 A
5202617 Nor Apr 1993 A
5229704 Knepper Jul 1993 A
5243269 Katayama et al. Sep 1993 A
5245267 Pierret et al. Sep 1993 A
5257501 Wataya Nov 1993 A
5264777 Smead Nov 1993 A
5265418 Smith Nov 1993 A
5311112 Creaco et al. May 1994 A
5321231 Schmalzriedt et al. Jun 1994 A
5323607 Tanaka et al. Jun 1994 A
5345761 King et al. Sep 1994 A
5352982 Nakazawa et al. Oct 1994 A
5357752 Lucchesi Oct 1994 A
5388404 Tsumura Feb 1995 A
5390493 Fujishita et al. Feb 1995 A
5402007 Center et al. Mar 1995 A
5404720 Laing Apr 1995 A
5412943 Hosoya May 1995 A
5418401 Kaneyuki May 1995 A
5422822 Toyota et al. Jun 1995 A
5444978 Yoshizaki et al. Aug 1995 A
5459671 Duley Oct 1995 A
5488283 Dougherty et al. Jan 1996 A
5503804 Fujishita et al. Apr 1996 A
Continuation in Parts (3)
Number Date Country
Parent 07/919011 Jul 1992 US
Child 07/977921 US
Parent 07/607237 Oct 1990 US
Child 07/919011 US
Parent 07/218539 Jul 1988 US
Child 07/607237 US