This application claims priority of Taiwanese Application Number 103211271, filed on Jun. 25, 2014.
The disclosure relates to a planing blade of a wood planing machine, more particularly to a multi-blade cutting strip and a cutter for the wood planing machine.
Referring to
During the planing process, the whole piece of each cutting strip 12 is in contact with a to-be-planed surface of a workpiece. Because a contact area between each cutting strip 12 and the to-be-planed surface of the workpiece is large, when the shaft rotates in high speed, each cutting strip 12 imposes a high impact against the to-be-planed surface. Aside from producing a large sound or noise, because the resistance is large, a huge amount of energy is consumed, so that the work efficiency is reduced. Further, each cutting strip 12 is easily damaged.
The cutting blades 22 are small in size and are disposed in the spiral side surfaces 211 of the shaft 21. Thus, a contact area between the cutting blades 22 and a to-be-planed surface of a workpiece is reduced. After each cutting blade 22 planes a small region of the to-be-planed surface, a next one of the cutting blades 22 continues the planing process. This can effectively decrease the noise and the resistance produced during planing of the to-be-planed surface of the workpiece. However, because the shaft 21 needs to go through a fine processing so that the side surfaces 211 thereof extend in a spiral manner, and because the cutting blades 22 are small in size so that it is difficult to manufacture and process the same, a high investment is thus required for the manufacture and process of the shaft 21 and the cutting blades 22.
Therefore, an object of the present disclosure is to provide a multi-blade cutting strip which has a reduced processing cost.
Accordingly, a multi-blade cutting strip of this disclosure comprises a cutting strip body extending along a longitudinal direction and having two opposite longitudinal side edges, a plurality of cutting blades spacedly provided at at least one of the longitudinal side edges, and a plurality of spacer sections each formed between two adjacent ones of the cutting blades. Each of the cutting blades has a blade edge extending along the longitudinal direction.
Another object of this disclosure is to provide a cutter which has a reduced cost and which can decrease noise and resistance during planing.
Accordingly, a cutter comprises a rotary shaft having a longitudinal axis, and a plurality of circumferentially spaced-apart multi-blade cutting strips disposed on an outer surface of the rotary shaft. Each of the multi-blade cutting strips includes a cutting strip body extending along a longitudinal direction parallel to the longitudinal axis and having two opposite longitudinal side edges, a plurality of cutting blades spacedly provided at at least one of the longitudinal side edges, and a plurality of spacer sections each formed between two adjacent ones of the cutting blades. Each of the cutting blades has a blade edge extending straightly along the longitudinal direction. The cutting blades of each of the multi-blade cutting strips are respectively and circumferentially staggered with respect to the cutting blades of an adjacent one of the cutting strips. Each of the cutting blades of each of the multi-blade cutting strips has a portion (P1) staggered with respect to an adjacent one of the cutting blades of an adjacent one of the multi-blade cutting strips along a circumferential direction around the longitudinal axis, and a remaining portion (P2) aligned with the adjacent one of the cutting blades of the adjacent one of the multi-blade cutting strips along the circumferential direction. The portion (P1) has an offset length (D) measured along the longitudinal direction.
Other features and advantages of the present disclosure will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the present disclosure is described in greater detail with reference to the accompanying embodiments, it should be noted herein that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
The rotary shaft 3 has a longitudinal axis (X) and is rotatable about its longitudinal axis (X). The rotary shaft 3 includes a plurality of circumferentially spaced-apart rows of fastening holes 31 formed in an outer surface thereof. The fastening holes 31 in each row are arranged in a spaced apart manner along the length of the shaft 3. Each of the fastening holes 31 has a screw hole portion 311, and a positioning hole portion 312 which has a diameter larger than that of the screw hole portion 311, which communicates with the screw hole portion 311 and which is located on an outer side of the screw hole portion 311.
The multi-blade cutting strips 4 are respectively disposed on the rows of the fastening holes 31. In this embodiment, the number of the cutting strip 4 is six. Each multi-blade cutting strip 4 includes a cutting strip body 41 extending along a longitudinal direction (A) parallel to the longitudinal axis (X) and having two opposite longitudinal side edges 411, a plurality of cutting blades 42 spacedly provided at both of the longitudinal side edges 411, a plurality of spacer sections 43 each formed between two adjacent ones of the cutting blades 42, and a plurality of fixing holes 44 extending through the cutting strip body 41 and spaced apart from each other along the length of the cutting strip body 41.
In this embodiment, each longitudinal side edge 411 is provided with five cutting blades 42. Each cutting blade 42 has a cutting blade body 421 extending outward from a corresponding longitudinal side edge 411 in a direction perpendicular to the longitudinal direction (A), and a blade edge 422 formed on the cutting blade body 421 and extending straightly along the longitudinal direction (A). The five cutting blades 42 cooperate with the corresponding longitudinal side edge 411 to define four spacer sections 43.
Each of the cutting blades 42 of each cutting strip 4 has a portion (P1) staggered with respect to an adjacent one of the cutting blades 42 of an adjacent one of the cutting strips 4 along a circumferential direction around the longitudinal axis (X), and a remaining portion (P2) aligned with the adjacent one of the cutting blades 42 of the adjacent one of the cutting strips 4 along the circumferential direction, as shown in
In this embodiment, the cutting blades 42 of the multi-blade cutting strips 4 are arranged in a helical array about the axis (X). The blade edge 422 of each cutting blade 42 of each cutting strip 4 is staggered with respect to the blade edge 422 of an adjacent one of the cutting blades 42 of a leading one of the cutting strips 4 by the offset length (D) when the shaft 3 rotates. As best shown in
Each of the fasteners 5 has a threaded shank section 51 for threaded engagement with the screw hole portion 311 of a respective fastening hole 31, a positioning shank section 52 for embedding in the positioning hole portion 312 of the respective fastening hole 31 and having a diameter larger than that of the threaded shank section 51, and a head 53 fixed to the positioning shank section 52 opposite to the threaded shank section 51 and exposed from the positioning hole portion 312 of the respective fastening hole 31.
During assembly, each fastener 5 extends through a respective fixing hole 44, and engages the corresponding fastening hole 31. Specifically, the threaded shank section 51 of each fastener 5 is detachably engaged to the respective fastening hole 31, and the positioning shank section 52 thereof is embedded in the respective fixing hole 44 and the positioning hole portion 312 of the corresponding fastening hole 31. The head 53 presses the cutting strip body 41 of the corresponding cutting strip 4 against the shaft 3. The positioning hole portion 312 and the positioning shank section 52 has a clearance smaller than that between the screw hole portion 311 and the threaded shank section 51. Through this, the cutting strip bodies 41 of the cutting strips 4 are tightly positioned on the shaft 3. Further, because the positioning shank section 52 of each fastener 5 is embedded in the respective fixing hole 44 and the positioning hole portion 312 of the corresponding fastening hole 31, a slight displacement of each cutting strip 4 relative to the shaft 3 along the longitudinal direction (A) may be prevented.
From the aforesaid description, the advantages of the first embodiment may be summarized as follows:
1. Through the relative disposition of the cutting blades 42 of the cutting strips 4, when the shaft 3 rotates one revolution about the axis (X), the regions planed by the cutting blades 42 of the cutting strips 4 overlap each other so that a whole region of the to-be-planed surface can be planed by the cutting strips 4 without interruption.
2. Through the short configurations of the cutting blades 42 of the cutting strips 4 and through the helical arrangement of the blade edges 422, when the shaft 3 rotates to plane the to-be-planed surface (not shown), a contact surface between the blade edges 422 and the to-be-planed surface can be reduced, thereby reducing the resistance and the noise produced during planing.
3. The fixing of the single cutting strip 4 on the shaft 3 of this disclosure uses a plurality of the fasteners 5, so that the fixing of the cutting strip is stable. Hence, the cutting strip 4 of this disclosure will not easily rotate or displace after prolonged use.
4. There is no need to preform the shaft 3 into a helical form using a fine process, it is only necessary to dispose the cutting strips 4 on the shaft 3 as described above to produce an effect similar to that of a helically shaped shaft. Thus, the cutter of this disclosure has a lower cost as compared to that of the conventional cutter.
It is worth mentioning that the cutting strips 4 may be independently manufactured and sold. When the cutting strips 4 are damaged, they can be easily replaced.
Referring to
In each of the first and second cutting strip groups 48, 49, each of the spacer sections 43 formed between two adjacent ones of the cutting blades 42 of one of the cutting strips 481, 482, 483, 491, 492, 493 has the axial length (L2) not larger than the sum of the offset lengths (D) of the portions (P1) (see
In this embodiment, the cutting blades 42 of the cutting strips 481, 482, 483, 491, 492, 493 of each of the first and second cutting strip groups 48, 49 forma semi-helical configuration. Because the cutting blades 42 of the cutting strips 481, 482, 483 correspond in position to the cutting blades 42 of the cutting strips 491, 492, 493, respectively, when the shaft 3 rotates one revolution about the axis (X), the to-be-planed surface will be planed twice at the same region by the blade edges 422 of the cutting blades 42 of the cutting strips 481, 482, 483, 491, 492, 493 of the first and second cutting strip groups 48, 49. As such, the object and the advantages described in the first embodiment can be similarly achieved using the second embodiment. Further, because the effect of planing twice the to-be-planed surface during one revolution rotation of the shaft 3, the flatness of the planed surface can be enhanced, as well as the working efficiency of planing the to-be-planed surface.
Referring to
Each positioning member 6 includes an embedded portion 62 embedded in the respective positioning hole 32, and a protruding portion 61 protruding from the embedded portion 62 and extending through the respective second fixing hole 442. The embedded portion 62 has a diameter larger than that of the respective second fixing hole 442. The protruding portion 61 of each positioning member 6 and a periphery of the respective second fixing hole 442 has a clearance smaller than that between each fastener 5 and a periphery of the respective first fixing hole 441. As such, the object and the advantages described in the first embodiment can be similarly achieved using the third embodiment.
Referring to
The object and the advantages described in the first embodiment can be similarly achieved using the fourth embodiment. With the abutment portions 33 abutting against the cutting strip body 41 of the respective cutting strips 4, the stability of the cutting strips 4 can be enhanced.
Referring to
The object and the advantages described in the first embodiment can be similarly achieved using the fifth embodiment. With the abutment portions 33 abutting against the cutting blade bodies 421 of the cutting blades 42 of the respective cutting strips 4, the stability of the cutting strips 4 can be enhanced.
While the present disclosure has been described in connection with what are considered the most practical embodiments, it is understood that this disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
103211271 U | Jun 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4253506 | Shimohira | Mar 1981 | A |
6626214 | Hu | Sep 2003 | B1 |
7048476 | Misenheimer | May 2006 | B2 |
9038933 | Fredsall | May 2015 | B2 |
Number | Date | Country | |
---|---|---|---|
20150375417 A1 | Dec 2015 | US |