The present disclosure relates to camshaft phasers, and more particularly is related to a camshaft phaser for a multi-camshaft arrangement of an internal combustion (IC) engine.
Camshaft phasers are utilized within IC engines to adjust the timing of engine valve events. This is a well-known concept in order to modify performance, efficiency, and emissions. One type of camshaft phaser is a hydraulically actuated camshaft phaser in which a rotor and a stator are provided. In these arrangements, the rotor can be attached to a camshaft and actuated hydraulically in clockwise or counterclockwise directions relative to the stator to achieve variable engine valve timing.
Many different camshaft configurations are possible within IC engines. Some configurations include an intake camshaft that only actuates intake valves, and an exhaust camshaft that only actuates exhaust valves. These types of camshaft configurations can simplify efforts to independently phase the intake valve events separately from the exhaust valve events.
Other camshaft configurations can utilize a single camshaft to actuate both intake and exhaust valves; however, a single camshaft configured with both intake and exhaust lobes can make it difficult to provide phasing of the intake valves separately from the exhaust valves. For this reason, a concentric camshaft arrangement can be implemented that utilizes two camshafts, an inner camshaft and an outer camshaft, each arranged with one of either exhaust lobes or intake lobes.
It would be desirable to provide a camshaft phaser arrangement that provides separate phasing of intake and exhaust valves for a concentric camshaft while minimizing cost and packaging space.
A camshaft phaser arrangement is disclosed herein that is configured for adjusting a phase between a first camshaft element and a second camshaft element. The camshaft phaser arrangement includes a stator configured to be drivably connected to a crankshaft. A rotor is configured to be drivably connected to the first camshaft element. The rotor is configured to be selectively rotationally driven such that rotation of the rotor phases the first camshaft element. A phasing adjuster is configured to pivot based on rotation of the rotor. The phasing adjuster includes a first engagement element configured to engage with a second engagement element on the second camshaft element, such that rotation of the rotor is configured to phase the second camshaft element via the phasing adjuster.
At least one cover can be included that has a pivot, and the phasing adjuster includes an opening dimensioned to be mounted on the pivot. The phasing adjuster is configured to be mounted directly adjacent to the at least one cover, in one aspect. This configuration provides an axially compact arrangement for the phasing adjuster.
The phasing adjuster includes a groove configured to receive a pin fixed to the rotor, such that the pin slides within the groove when the rotor is rotationally driven and the phasing adjuster rotates about the pivot. The at least one cover further includes a through slot that is dimensioned to receive the pin. In one aspect, the groove in the phasing adjuster has a non-linear profile.
The first engagement element and the second engagement element can include gears configured to mate with each other, in one aspect.
The first camshaft element and the second camshaft element are phased at different rates as the rotor is rotationally driven. The first camshaft element and the second camshaft element are arranged concentrically with each other, in one aspect. The first camshaft element can be configured to surround at least a portion of the second camshaft element.
A first and second cover can be arranged on respective axial sides of the rotor and the stator to partially define hydraulic chambers that are used to control rotation of the rotor. At least one of the covers can include a groove dimensioned to receive a pin attached to the rotor, and the pin can be configured to travel within a groove on the phasing adjuster to phase the second camshaft element.
Additional embodiments are disclosed herein.
The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the appended drawings, which illustrate a preferred embodiment of the disclosure. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. “Axially” refers to a direction along an axis (X) of an assembly. “Radially” refers to a direction inward and outward from the axis (X) of the assembly. “Circumferentially” refers to a direction extending along a curve or circumference of a respective element relative to the axis (X) of the assembly.
A reference to a list of items that are cited as “at least one of a, b, or c” (where a, b, and c represent the items being listed) means any single one of the items a, b, or c, or combinations thereof. The terminology includes the words specifically noted above, derivatives thereof and words of similar import.
As shown in
The first and second camshaft elements 20, 30 can each be configured to be connected with or associated with intake cam lobes and/or exhaust cam lobes, such that phasing of these respective camshafts facilitates phasing of the respective intake and exhaust valve lift events within a combustion cycle of an IC engine. The first and second camshaft elements 20, 30 are connected to camshafts defining lobes, which are commonly annotated as elements 25 and shown in
In order to adjust the phase between the camshaft elements 20, 30, a phasing adjuster 40 is provided that is configured to be driven based on rotation of a rotor 70. Additional components of the arrangement 10 include covers 50, 80, and a stator 60. One of the covers 80 is shown in
The rotor 70 is generally fixed or connected to one of the camshaft elements 20, 30. In one aspect, the rotor 70 is drivably connected to the first camshaft element 20 (i.e. the outer camshaft element). For example, a fastener or some other means of attachment can be arranged between the rotor 70 and the first camshaft element 20. Bolts, rivets, or other physically connectors can be used to attach the rotor 70 to the first camshaft element 20, such as shown in
The phasing adjuster 40 disclosed herein allows for rotational movement of the rotor 70 to also phase the camshaft elements 20, 30 relative to each other. The phasing adjuster 40 phases the second camshaft element 30 relative to the stator 60 due to the configuration of the rotor 70.
The phasing adjuster 40, which is shown in
The phasing adjuster 40 generally includes a groove 42, a pivot bore 44, and a first engagement element 46. In order to provide a connection between the rotor 70 and the phasing adjuster 40, a pin 72 can be provided, facilitating what can be described as a cam pin and groove follower arrangement. The pin 72 can be integrally formed with the rotor 70, in one aspect, as shown in
The phasing adjuster 40 is pivotally mounted to the arrangement 10. The phasing adjuster 40 can be mounted off-axis, i.e. off of or away from a primary rotational axis of the arrangement 10. The phasing adjuster 40 does not extend around the primary rotational axis of the arrangement 10, in one aspect. The phasing adjuster 40 includes a pivot bore 44 which is dimensioned to receive a pivot, such as pivot 82, which can be provided on the second cover 80 as shown in
Rotation of the phasing adjuster 40 about the pivot 82 causes the first engagement element 46 on the phasing adjuster 40 to rotate. In one aspect, rotation of the phasing adjuster 40 induces or drives rotation of the second camshaft element 30. This arrangement can be achieved via mating engagement elements that are formed on the phasing adjuster 40 and the second camshaft element 30. For example, a gear interface can be provided between the second camshaft element 30 and the phasing adjuster 40. Specifically, a second engagement element 32 of the second camshaft element 30, shown in
The second cover 80 can include a cam bore 88 that receives the first camshaft element 20. Based on the concentric arrangement of the camshaft elements 20, 30, the cam bore 88 also receives the second camshaft element 30. Likewise, the rotor 70 can include a cam bore 78, the first cover 50 can include a cam bore 58, and the first camshaft element 20 can also include a cam bore 28. As used in this context, the term cam bore can refer to an opening configured to allow passage of at least one camshaft therethrough. Additionally, the second cover 80 includes a through-slot 84 through which the pin 72 of the rotor 70 extends to engage the groove 42 of the phasing adjuster 40.
A circular pathway (P) for the pin 72 is shown in
The geometry or shape of the groove 42 on the phasing adjuster 40 can vary. For example, the groove 42 shown in
In one aspect, the shape of the groove 42 determines the relative movement of the first and second camshaft elements 20, 30. For example, the groove 42 shown in
As shown in
In one aspect, the present disclosure provides a method or configuration for modifying the phasing relationship between the first and second camshaft elements 20, 30. As disclosed herein, modifying the degree of curvature, length, profile, and other characteristics of the groove 42 of the phasing adjuster 40 is configured to alter the phasing relationship between the first and second camshaft elements 20, 30.
Movement of the pin 72 along the groove 42 causes the phasing adjuster 40 to rotate about pivot 82. As a result of the rotation of the phasing adjuster 40, the first engagement element 46 formed on the phasing adjuster 40 drivingly engages against the second engagement element 32 of the second camshaft element 30. Based on the mating engagement between the first engagement element 46 and the second engagement element 32, the second camshaft element 30 is phased or rotated.
Having thus described the present disclosure in detail, it is to be appreciated and will be apparent to those skilled in the art that many physical changes, only a few of which are exemplified in the detailed description of the invention, could be made without altering the inventive concepts and principles embodied therein.
It is also to be appreciated that numerous embodiments incorporating only part of the preferred embodiment are possible which do not alter, with respect to those parts, the inventive concepts and principles embodied therein.
The present embodiment and optional configurations are therefore to be considered in all respects as exemplary and/or illustrative and not restrictive, the scope of the embodiments being indicated by the appended claims rather than by the foregoing description, and all alternate embodiments and changes to this embodiment which come within the meaning and range of equivalency of said claims are therefore to be embraced therein.
This application claims priority to U.S. Provisional Application No. 63/120,172, which was filed on Dec. 1, 2020, and is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5417186 | Elrod | May 1995 | A |
7377243 | Meintschel | May 2008 | B2 |
8695545 | Tateno | Apr 2014 | B2 |
10823017 | Morehead et al. | Nov 2020 | B2 |
20100175645 | Berger | Jul 2010 | A1 |
20190170165 | Chung | Jun 2019 | A1 |
20200149439 | Brown | May 2020 | A1 |
20200165943 | Keefover | May 2020 | A1 |
Number | Date | Country |
---|---|---|
102013222391 | May 2014 | DE |
102014116191 | Jan 2016 | DE |
0799976 | Oct 1997 | EP |
Entry |
---|
DE-102014116191-B3, English language machine translation (Year: 2016). |
Number | Date | Country | |
---|---|---|---|
20220170393 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63120172 | Dec 2020 | US |