The present subject matter relates generally to a system of continuous detonation in a heat engine.
Many heat engines, such as gas turbine engines, are based on the Brayton Cycle, where air is compressed adiabatically, heat is added at constant pressure, the resulting hot gas is expanded in a turbine, and heat is rejected at constant pressure. The energy above that required to drive the compression system is then available for propulsion or other work. Such heat engines generally rely upon deflagrative combustion to burn a fuel/air mixture and produce combustion gas products which travel at relatively slow rates and constant pressure within a combustion chamber. While engines based on the Brayton Cycle have reached a high level of thermodynamic efficiency by steady improvements in component efficiencies and increases in pressure ratio and peak temperature, further improvements are welcomed nonetheless.
Accordingly, improvements in engine efficiency have been sought by modifying the engine architecture such that the combustion occurs as a detonation in either a continuous or pulsed mode. The pulsed mode design involves one or more detonation tubes, whereas the continuous mode is based on a geometry, typically an annulus, within which single or multiple detonation waves spin. For both types of modes, high energy ignition detonates a fuel/air mixture that transitions into a detonation wave (i.e., a fast moving shock wave closely coupled to the reaction zone). The detonation wave travels in a Mach number range greater than the speed of sound (e.g., Mach 4 to 8) with respect to the speed of sound of the reactants. The products of combustion follow the detonation wave at the speed of sound relative to the detonation wave and at significantly elevated pressure. Such combustion products may then exit through a nozzle to produce thrust or rotate a turbine.
However, heat engines, and rotating detonation combustion systems specifically, are generally designed or optimized to a specific operating condition or design point (e.g., an aero design point) at which the system is most efficient or operable. Outside or beyond such design points, a rotating detonation combustion system may be unacceptably inefficient or inoperable, such as the cell size for a fixed stoichiometry changing by approximately a factor of 20 across a range of pressures and temperatures (e.g., from a lowest operating condition to a highest operating condition), thereby limiting applications of rotating detonation combustion systems, or offsetting efficiencies of rotating detonation combustion systems at certain design points by excessive inefficiencies off design point.
Therefore, there is a need for a heat engine and rotating detonation combustion system that provides efficiency and operability across a plurality of operating conditions.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
Embodiments of a heat engine and rotating detonation combustor (RDC) system are generally provided. The RDC system includes an outer wall, an upstream wall, and a radial wall. The outer wall is defined circumferentially around a combustor centerline extended along a lengthwise direction. The outer wall defines a first radius portion generally upstream along the outer wall. A second radius portion is defined generally downstream along the outer wall and a transition portion is defined between the first and second radius portions. The first radius portion defines a first radius greater than a second radius at the second radius portion. The transition portion defines a generally decreasing radius from the first radius portion to the second radius portion. The upstream wall is defined circumferentially around the combustor centerline and is extended along the lengthwise direction and inward radially of the first radius portion of the outer wall. An oxidizer passage is defined within the upstream wall. A combustion chamber is defined downstream of the upstream wall and radially inward of the outer wall. The radial wall is coupled to the outer wall and the upstream wall. A fluid injection opening is defined through at least one of the radial wall or the outer wall adjacent to the combustion chamber.
In one embodiment of the RDC system, the radial wall is coupled to the upstream wall and the first radius portion of the outer wall. In another embodiment, the fluid injection opening is defined through the first radius portion of the outer wall. In still another embodiment, the radial wall and the outer wall each define the fluid injection opening. The fluid injection opening provides a flow of oxidizer, a flow of fuel, or combinations thereof, to the combustion chamber. In yet another embodiment, the first radius of the first radius portion of the outer wall is between approximately 1.1 and approximately 2.0 times greater than the second radius of the second radius portion of the outer wall. In still yet another embodiment, a lengthwise distance of the transition portion of the outer wall is approximately equal to or less than two times the second radius of the second radius portion of the outer wall.
In various embodiments of the RDC system, the generally decreasing radius of the transition portion corresponds to an increasing pressure of combustion gases flowing downstream along the lengthwise direction. In one embodiment, the generally decreasing radius of the transition portion corresponds to an approximately constant velocity of combustion gases flowing downstream along the lengthwise direction.
In another embodiment of the RDC system, the transition portion defines a non-linear decrease in radius from the first radius portion to the second radius portion. In still another embodiment, the upstream wall defines the oxidizer passage as generally decreasing in cross sectional area downstream along the lengthwise direction.
Another aspect of the present disclosure is directed to a heat engine including one or more embodiments of the RDC system. The heat engine defines a longitudinal centerline extended therethrough for reference purposes. The heat engine includes an inlet section through which an oxidizer is admitted into the heat engine and an exhaust section through which combustion products expand and exit the heat engine. The RDC system is disposed in serial arrangement between the inlet section and the exhaust section. The RDC system is configured to produce combustion products from the oxidizer and a flow of fuel.
In various embodiments of the heat engine, a plurality of the combustor centerline of the rotating detonation combustion system is disposed in an adjacent circumferential arrangement around the longitudinal centerline of the heat engine. The combustor centerline is disposed at an acute angle relative to the longitudinal centerline. In another embodiment of the heat engine, the combustor centerline of the rotating detonation combustion system is disposed at a tangent angle relative to the longitudinal centerline of the heat engine.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
The terms “forward” and “aft” refer to relative positions within a heat engine or vehicle, and refer to the normal operational attitude of the heat engine or vehicle. For example, with regard to a heat engine, forward refers to a position closer to a heat engine inlet and aft refers to a position closer to a heat engine nozzle or exhaust.
The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
Here and throughout the specification and claims, range limitations are combined and interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise. For example, all ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other.
As used herein, “detonation” and “quasi-detonation” may be used interchangeably. Typical embodiments of rotating detonation combustion systems include a means of igniting a fuel/oxidizer mixture (e.g., a fuel/air mixture) and a confining detonation or combustion chamber, in which pressure wave fronts initiated by the ignition process coalesce to produce a detonation wave. Each detonation or quasi-detonation is initiated either by external ignition, such as spark discharge or laser pulse, or by gas dynamic processes, such as shock focusing, autoignition or by another detonation via cross-firing. The geometry of the detonation chamber is such that the pressure rise of the detonation wave expels combustion products out of a detonation chamber exhaust (e.g., downstream end) to produce a thrust force. In addition, rotating detonation combustors are designed such that a substantially continuous detonation wave is produced and discharged therefrom. As known to those skilled in the art, detonation may be accomplished in a number of types of detonation chambers, including detonation tubes, shock tubes, resonating detonation cavities, and annular detonation chambers.
Embodiments of a rotating detonation combustion system (RDC system) are generally provided that may provide improved efficiency and operability across a plurality of operating conditions. The embodiments of the RDC system generally provided herein define a rearward facing step providing an oblique shockwave from detonation of the fuel-oxidizer mixture within the combustion chamber. The embodiments of the RDC system shown and described herein may provide mass throughput rates in relatively large heat engines while further providing a generally stabilized detonation within the RDC system. The mass throughput levels generally provided by the embodiments of the RDC system shown and described herein may be approximately equal to or greater than those of similarly sized, or larger, annular deflagrative combustor configurations.
Referring now to the figures,
As will be discussed in further detail below, at least a portion of the flow of oxidizer is mixed with a liquid or gaseous fuel 133 (or combinations thereof) to generate combustion products 138. The combustion products 138 flow downstream to the exhaust section 106. In various embodiments, the exhaust section 106 may generally define an increasing cross sectional area from an upstream end proximate to the RDC system 100 to a downstream end of the heat engine 102. Expansion of the combustion products 138 generally provides thrust that propels the apparatus to which the heat engine 102 is attached, or provides mechanical energy to one or more turbines further mechanically or aerodynamically coupled to a fan or propeller section, a power turbine, a generator, or combinations thereof. Thus, the exhaust section 106 may further define a turbine section of a gas turbine engine including one or more alternating rows or stages of rotating turbine airfoils. The combustion products 138 may flow from the exhaust section 106 through, e.g., an exhaust nozzle 135 to generate thrust for the heat engine 102.
As will be appreciated, in various embodiments of the heat engine 102 defining a gas turbine engine, rotation of the turbine(s) within the exhaust section 106 generated by the combustion products is transferred through one or more shafts or spools 110 to drive the compressor(s) within the inlet section 104. In various embodiments, the inlet section 104 may further define a fan section, such as for a turbofan engine configuration, such as to propel air across a bypass flowpath outside of the RDC system 100 and exhaust section 106. The combustion products may then flow from the exhaust section 106 through, e.g., an exhaust nozzle 135 to generate thrust for the heat engine 102.
It will be appreciated that the heat engine 102 depicted schematically in
Moreover, it should also be appreciated that the RDC system 100 may further be incorporated into any other suitable aeronautical propulsion system, such as a turbofan engine, a turboshaft engine, a turboprop engine, a turbojet engine, a ramjet engine, a scramjet engine, etc. Further, in certain embodiments, the RDC system 100 may be incorporated into a non-aeronautical propulsion system, such as a land-based or marine-based power generation system. Further still, in certain embodiments, the RDC system 100 may be incorporated into any other apparatus, such as a rocket or missile engine. With one or more of the latter embodiments, the propulsion system may not include a compressor in the inlet section 104 or a turbine in the exhaust section 106.
Referring now to
In various embodiments further discussed herein, the combustion cans defined around each combustor centerline 115 may be disposed at acute and/or tangential angles relative to the longitudinal centerline 116 of the heat engine 102. The longitudinal direction L2 is disposed relative to the combustor centerline 115, such as co-directional thereto. In one embodiment, such as generally provided in
A portion of the heat engine 102 forward of (i.e., toward a forward end 99) the RDC system 100 further includes an upstream wall 120 defined circumferentially around the combustor centerline 115. The upstream wall 120 is further extended along the lengthwise direction L2 and inward radially of the first radius portion 127 of the outer wall 118. The upstream wall 120 is defined generally upstream of the outer wall 118. In various embodiments, the upstream wall 120 is a portion of the inlet section 104. An oxidizer passage 114 is defined radially within the upstream wall 120 through which a flow of oxidizer 131 is provided to a combustion chamber 122. The oxidizer passage 114 is defined annularly around the combustor centerline 115. The combustion chamber 122 is defined downstream (e.g., toward the aft end 98) of the upstream wall 120 and radially inward of the outer wall 118. The oxidizer passage 114 is in fluid communication with the combustion chamber 122.
In various embodiments, the outer wall 118 is extended at least partially along the lengthwise direction L2 around the combustor centerline 115. In one embodiment, the outer wall 118 defines a first radius portion 127, a second radius portion 129, and a transition portion 128 therebetween. Referring briefly to the exemplary schematic axial view embodiments generally provided in
Referring back to
Referring still to
In various embodiments, a fluid injection opening 162 is defined through at least the radial wall 117 or the outer wall 118. The fluid injection opening 162 provides fluid communication through the radial wall 117 or the outer wall 118 to the combustion chamber 122. In one embodiment, the fluid injection opening 162 defines one or more discrete openings through the radial wall 117 and/or the outer wall 118. For example, the fluid injection opening 162 may define an orifice. The orifice may define a circular, ovular or elliptical, rectangular, polygonal, or oblong cross sectional area through the radial wall 117 and/or the outer wall 118. In various embodiments further described herein, a flow of oxidizer, a flow of liquid or gaseous fuel, or combinations thereof (i.e., fuel-oxidizer mixtures) are provided to the combustion chamber 122. The fluid injection opening 162 is generally defined adjacent to the combustion chamber 122 defined inward of the outer wall 118.
Referring now to
The detonation wave 130 is a shock induced flame that results in a coupling of a reaction zone and a shockwave. The shockwave compresses and heats the fresh fuel-oxidizer mixture 132, thereby increasing the fuel-oxidizer mixture 132 above a self-ignition point. Energy released by the detonation of the fuel-oxidizer mixture 132 contributes to the propagation of the detonation shockwave 130. Furthermore, with continuous detonation, the detonation wave 130 propagates around the combustion chamber 122 in a continuous manner and defining a generally oblique shockwave 140 while operating at a relatively high frequency. Additionally, the detonation wave 130 may be such that an average pressure inside the combustion chamber 122 is higher than an average pressure within typical combustion systems (i.e., deflagration combustion systems). The flow of oxidizer 131 through the oxidizer passage 114 dilutes and pressurizes the combustion gases 138 to further produce the oblique shockwave 140 in the combustion chamber 122.
The oblique shockwaves 140 in the RDC system 100 generally define shockwaves at angles less than approximately 90 degrees relative to the direction of flow of the oxidizer 131 and combustion products 138 (e.g., direction of flow along the longitudinal direction L2). The oblique shockwave 140 may be preferable in contrast to normal shockwaves (e.g., normal or perpendicular to the direction of flow of the combustion products 138). For example, the oblique shockwave 140 may provide a smaller increase in entropy and reduced stagnation pressure loss.
The generally decreasing radius of the transition portion 128 of the outer wall 118 corresponds to an increasing pressure of the combustion gases 138 produced by the detonation wave 130. Furthermore, the generally decreasing radius of the transition portion 128 corresponds to an approximately constant velocity of combustion gases 138 flowing downstream along the lengthwise direction L. As such, the RDC system 100 described herein may provide a robust, repeatable, and reproducible detonation wave 130 that may meet mass throughput rates for the heat engine 102. Additionally, the generally decreasing radius of the transition portion 128 of the outer wall 118 may provide a feature such that the detonation wave 130 produces the oblique shockwave 140.
It should be appreciated that that
Referring now to
Referring now to
Referring now to
Referring now to
In still various embodiments, a plurality of the fluid injection openings 162 may be defined through the outer wall 118 such as to provide separate flows of oxidizer 131 and fuel 133 therethrough to the combustion chamber 122, such as described in regard to
Referring back to
In one embodiment, the lengthwise distance 145 of the transition portion 128 of the outer wall 118 is approximately equal to or less than 2.0 times the second radius 149 of the second radius 129 portion of the outer wall 118. Stated alternatively, the lengthwise distance 145 of the transition portion 128 may be quantified as approximately two times or less of the quantity of the second radius 149 of the second radius portion 129. In various embodiments, such as generally provided in
Referring now to
Referring still to
However, in other embodiments, the inner upstream wall 119 may define an increasing cross sectional area along the downstream direction. In still various embodiments, the inner upstream wall 119 may define a convergent-divergent nozzle, such as to define an upstream portion decreasing in cross sectional area and a downstream portion increasing in cross sectional area.
Referring now to
Referring now to
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2555081 | Goddard | May 1951 | A |
2602290 | Goddard | Jul 1952 | A |
3240010 | Morrison | Mar 1966 | A |
3588298 | Edwards | Jun 1971 | A |
3802192 | Curran | Apr 1974 | A |
4031698 | Humphrey | Jun 1977 | A |
4097820 | Hill | Jun 1978 | A |
4741154 | Eidelman | May 1988 | A |
5800153 | DeRoche | Sep 1998 | A |
6460342 | Nalim | Oct 2002 | B1 |
7137243 | Snyder et al. | Nov 2006 | B2 |
7380503 | Williams et al. | Jun 2008 | B2 |
7621118 | Snyder et al. | Nov 2009 | B2 |
7784267 | Tobita et al. | Aug 2010 | B2 |
8082728 | Murrow et al. | Dec 2011 | B2 |
8117824 | Adams et al. | Feb 2012 | B1 |
8117828 | Snyder et al. | Feb 2012 | B2 |
8146371 | Nordeen | Apr 2012 | B2 |
8177941 | Adams et al. | May 2012 | B1 |
8250850 | Adams et al. | Aug 2012 | B2 |
8544280 | Lu et al. | Oct 2013 | B2 |
8555612 | Snyder et al. | Oct 2013 | B2 |
8776493 | Dawson et al. | Jul 2014 | B1 |
9027324 | Snyder | May 2015 | B2 |
9046058 | Claflin | Jun 2015 | B2 |
9512805 | Snyder | Dec 2016 | B2 |
9556794 | Falempin et al. | Jan 2017 | B2 |
9599065 | Falempin | Mar 2017 | B2 |
20050160715 | Perlo et al. | Jul 2005 | A1 |
20060260291 | Vandervort | Nov 2006 | A1 |
20100223933 | Umeh | Sep 2010 | A1 |
20110126511 | Glaser | Jun 2011 | A1 |
20140007837 | Anderson | Jan 2014 | A1 |
20140196460 | Falempin et al. | Jul 2014 | A1 |
20150167544 | Joshi | Jun 2015 | A1 |
20150285506 | Kasimov | Oct 2015 | A1 |
20150308348 | Minick | Oct 2015 | A1 |
20180080412 | Mizener | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
204042975 | Dec 2014 | CN |
104612821 | May 2015 | CN |
104792534 | Jul 2015 | CN |
204492971 | Jul 2015 | CN |
104948348 | Sep 2015 | CN |
103148745 | Oct 2015 | CN |
104154567 | Dec 2015 | CN |
104110325 | Jan 2016 | CN |
105351113 | Feb 2016 | CN |
102013216398 | Aug 2013 | DE |
2261559 | Dec 2010 | EP |
2468515 | Sep 2010 | GB |
2005133600 | May 2005 | JP |
2242629 | Dec 2004 | RU |
2468292 | Nov 2012 | RU |
2573427 | Jan 2016 | RU |
2285142 | Oct 2016 | RU |
WO2012142485 | Oct 2012 | WO |
WO2014129920 | Aug 2014 | WO |
WO2014178745 | Nov 2014 | WO |
WO2014178746 | Nov 2014 | WO |
Entry |
---|
Hyeong Yi et al., “A Three-Dimensional Numerical Study of Rotational Detonation in an Annular Chamber”, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, pp. 1-8, Jan. 5-8, 2009, Orlando, Florida. |
Zhou et al., “Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines”, Combustion and Flame, vol. 159, Issue: 12, pp. 3632-3645, Dec. 2012. |
Number | Date | Country | |
---|---|---|---|
20190128529 A1 | May 2019 | US |