The present invention relates to an averaging method for capillary force curves in a process of measuring a capillary force in the fields of oil and gas field development, geotechnical engineering and other seepage mechanics, in particular to an averaging method for multi-capillary force curves where the number of reservoirs represented by samples is different, or J functions are significantly different.
A capillary force is an important force for the seepage of oil and gas reservoirs, and a capillary force curve is a basic parameter of oil and gas reservoir development. The capillary force is particularly sensitive to a pore size, a pore shape, a pore structure, rock and mineral properties, fluid properties, temperature and pressure, a seepage environment, etc. Therefore, the capillary force curves of different samples generally have obvious differences. Even in the case of the same sample, it is also difficult to obtain the same capillary force curve from different tests, so reservoir engineering often needs to obtain an averaged capillary force curve based on a plurality of capillary force curves. Initially, people used various averaging treatments directly on a plurality of capillary force curves or used a plurality of weighted averaging methods to construct an averaged capillary force-saturation curve (Huang Xinbo. Normalization Method and Application of Averaged Capillary Pressure Curve of Branched Flow Unit [J]. Petroleum Geology and Engineering, 2016, 30(3); Yang Yurui, Guo Xiao, Yang Jianping, et al. New Method for Obtaining Averaged Capillary Pressure Curve of Reservoir [M]. 2018; Li Jing, Chen Peiyuan, Yang Renfeng, et al. Method for Improving Calculation Accuracy of Averaged Capillary Pressure Curve of Low-porosity Sorting Reservoir [M]. 2020).
At present, a J function averaging method is mainly used. First, a capillary force-saturation curve of each sample is converted into a J function of each sample. Then, the J functions are interpolated to obtain an averaged J function. Next, a capillary force is calculated according to a roughly averaged porosity, permeability and fluid interracial tension (Liao Jing, Peng Caizhen, Lu Wenjun, et al. Capillary Pressure Curve Averaging and J Function Processing [J]. Special Oil and Gas Reservoirs, 2008, 15(6)). The limitations of such methods are as follows: (1) these methods are not suitable for the case where different samples have significantly different J functions; (2) J function interpolation lacks strict physical meaning, and since there are many interpolation methods, the results of different methods are quite different, and the construction of interpolation methods has strong subjectivity; and (3) most of these methods cannot consider the influence of the number of samples.
An objective of the present invention is to provide a multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples. This method is reliable in principle and easy to operate, can be directly operated on the capillary force curves, is also suitable for various types of samples with different physical properties in consideration of the influence of the numbers of reservoirs represented by samples, has a wide range of applications, and accurate and convenient calculation results, and is more consistent with actual working conditions.
To fulfill said technical objective, the present invention adopts the following technical solutions.
Since each capillary force curve represents a capillary force-saturation curve of samples of the same category, an averaged curve of a plurality of capillary force curves is understood as a capillary force curve in which a plurality of samples is measured simultaneously, and all the samples obtained are measured simultaneously. Since the capillary force curve of each sample has been measured, the capillary force curves when these samples as a whole are measured can be calculated based on these curves. It can be seen from the principle of experimental measurement of capillary forces: the curve calculated in this way should be the same as an actually measured curve. Therefore, if the capillary force curve of each sample is known, this result can be obtained without actually measuring all samples as a whole, so this method is referred to as multi-sample virtualized overall measurement.
A multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples, sequentially comprising the following steps:
1, taking m types of rock samples, obtaining a capillary force-saturation curve pc(Sw)−Sw, an apparent volume Vb and a porosity ϕ of each sample, and marking the capillary force-saturation curve of a jth sample as the apparent volume as and the porosity as ϕj; 2, inspecting the quality of the capillary force-saturation curve of each sample and preprocessing the end points of each curve, wherein the specific process is as follows:
3, taking a series of enough values at equal intervals or unequal intervals from a real number interval [Pc min, Pc max], and denoting them as , wherein the subscript i represents an ith data point, and ; calculating an averaged wet phase saturation corresponding to different capillary force values Pci, under the overall virtual measurement of a plurality of samples, wherein the specific process is as follows:
since the change in the capillary force with saturation satisfies monotonicity, the capillary force-saturation function has an inverse function:
calculating the averaged wet phase saturation of a plurality of samples by using the following formula:
In the step 2, ensuring that a maximum value of all capillary force-saturation curves is greater than a maximum capillary force value Pc max required by the averaged capillary force-saturation curve means to extending an end point curve of the capillary force-saturation curve that does not meet the requirements by an extrapolation method until the maximum capillary force value of the capillary force-saturation curves exceeds Pc max.
In the step 3, when the capillary force-saturation curve is represented with a graphic curve or described with a data table, if Pci, is less than the minimum capillary force value on the capillary force-saturation curve of the ith sample, is taken.
In the step 3, when the capillary force-saturation curve is described with a data table, a graph of capillary force-saturation curve is drawn according to these data points, and converted to a case (2) for processing.
In the step 3, when the capillary force-saturation curve is expressed in a mixed way of function, graph and data table description, the averaged wet phase saturation is obtained respectively according to the cases (1) to (3) in the step.
Compared with the prior art, the present invention has the following technical effects:
(1) operations are performed directly on the capillary force curves, while a mainstream method first converts the capillary force curve into a J function curve, and the J function curves are then averaged by interpolation or other methods;
(2) this method can take the influence of the number of reservoirs represented by samples into consideration, while the mainstream method generally cannot take the influence of the number of samples into consideration;
(3) this method is also suitable for various types of samples with different physical properties; even if the capillary force curves of different samples are greatly different, a unique averaged capillary force curve can also be obtained; even if the J functions of the reservoirs are different, and even quiet different, the only averaged capillary force curve can be obtained; and (4) this method has a clear physical meaning.
a is capillary force curves respectively measured for a sample a and a sample (3; b is capillary force curves obtained by taking the sample a and the sample 13 into an instrument together for overall measurement; and c is a capillary force curve obtained by taking different numbers of sample a and sample 13 into the instrument for overall measurement.
a is an original capillary force curve; b is a curve after the capillary force curve is extended at the end points.
a is a schematic diagram of two types of sample curves; and b is a schematic diagram of m type of samples.
To facilitate those skilled in the art to understand the present invention, the present invention will be further described below according to the accompanying drawings. However, it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, as long as various changes fall within the spirit and scope of the present invention defined and determined by the appended claims, they are all protected.
In the present invention, the subscript w represents a wet phase fluid; the subscript n represents a non-wet phase fluid; Pc represents a capillary force; S represents a saturation; Sw represents a wet phase saturation; Vb represents an apparent volume of a rock sample; and ϕ represents a porosity of a sample. A variable m represents the number of samples; the superscript j represents a jth sample.
Referring to
The multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples sequentially comprises the following steps:
1, taking m types of rock samples, obtaining a capillary force-saturation curve , an apparent volume Vb and a porosity ϕ of each sample, and marking the capillary force-saturation curve of the jth sample as the apparent volume as and the porosity as ϕJ ;
2, inspecting the quality of the capillary force-saturation curve of each rock sample and preprocessing the end points of each capillary force-saturation curve (as shown in
3, taking a series of enough values at equal intervals or unequal intervals from a real number interval [Pc min, Pc max], and denoting them as , wherein the subscript i represents an ith data point, and ; calculating an averaged wet phase saturation corresponding to different capillary force values Pci, under the overall virtual measurement of a plurality of samples (this saturation can be understood as a type of weighted average saturation), and denoting it as , wherein the specific process is as follows:
considering that there are four ways to express the capillary force-saturation curves in practice, that is, a. analytical formula method; b. graphic method; c. data table; d. hybrid method, the present invention is also divided into four methods for processing;
(1) when the capillary force-saturation curve is expressed by an analytical function:
since the change in the capillary force with saturation satisfies monotonicity, the capillary force-saturation has an inverse function, denoted as:
calculating the averaged wet phase saturation of a plurality of samples by using the following formula:
substituting all Pci, into Formula (3) sequentially, to calculate the corresponding averaged wet phase saturation Swi;
(2) when the capillary force-saturation curve is represented by a graphical curve, finding the corresponding wet phase saturation from the capillary force-saturation curve of each sample for each capillary force value Pci, in the sequence , and denoting it as Sjwi, and then calculating the averaged wet phase saturation Swi, of the plurality of samples according to the following formula:
if certain P is less than a minimum capillary force value on the capillary force-saturation curve of the th sample, taking Sjwi=1 (as shown in
(3) when the capillary force-saturation curve is described with a data table, two processing methods may be adopted:
1) drawing a graph of capillary force-saturation curve according to these data points, and converting it to a case (2) for processing; 2) according to a function relationship (represents a total number of data points in the capillary force data table of the jth sample) determined based on the data sheet of each sample, determining a Pci, value on the capillary force-saturation curve of the jth sample by using internal interpolation manner, and denoting said value as ; and calculating an averaged wet phase saturation of the plurality of samples according to Formula (4), wherein
if certain P is less than the minimum capillary force value on the capillary force-saturation curve of the Jth sample, taking directly (as shown in
(4) when the capillary force-saturation curve is expressed in a mixed way of function, graph and data table description, obtaining the averaged wet phase saturation of the plurality of samples respectively according to the cases (1) to (3) in this step; and
4, denoting data points on the graph by using the wet phase saturation as the abscissa and capillary force Pci, as the ordinate, and finally connecting all data points smoothly to obtain the averaged capillary force curve.
Number | Date | Country | Kind |
---|---|---|---|
2021107201872 | Jun 2021 | CN | national |