Multi-capillary force curve averaging method based on multi-sample overall virtual measurement

Information

  • Patent Grant
  • 11835440
  • Patent Number
    11,835,440
  • Date Filed
    Friday, July 23, 2021
    3 years ago
  • Date Issued
    Tuesday, December 5, 2023
    a year ago
Abstract
The present invention relates to a multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples. The method includes the following steps: 1, taking m types of rock samples, obtaining a capillary force-saturation curve, an apparent volume and a porosity of each sample; 2, inspecting the quality of the capillary force-saturation curve of each sample and preprocessing the end points of each curve; 3, calculating an averaged wet phase saturation corresponding to different capillary force values of the plurality of samples under the overall virtual measurement of a plurality of samples; and 4, denoting data points on a graph by using the wet phase saturation as the abscissa and capillary force as the ordinate, and finally connecting all data points smoothly to obtain the averaged capillary force curve. This method of the present invention is reliable in principle and easy to operate, can be directly operated on the capillary force curves, is also suitable for various types of samples with different physical properties in consideration of the influence of the numbers of reservoirs represented by samples, has a wide range of applications, and accurate and convenient calculation results, and is more consistent with actual working conditions.
Description
TECHNICAL FIELD

The present invention relates to an averaging method for capillary force curves in a process of measuring a capillary force in the fields of oil and gas field development, geotechnical engineering and other seepage mechanics, in particular to an averaging method for multi-capillary force curves where the number of reservoirs represented by samples is different, or J functions are significantly different.


BACKGROUND ART

A capillary force is an important force for the seepage of oil and gas reservoirs, and a capillary force curve is a basic parameter of oil and gas reservoir development. The capillary force is particularly sensitive to a pore size, a pore shape, a pore structure, rock and mineral properties, fluid properties, temperature and pressure, a seepage environment, etc. Therefore, the capillary force curves of different samples generally have obvious differences. Even in the case of the same sample, it is also difficult to obtain the same capillary force curve from different tests, so reservoir engineering often needs to obtain an averaged capillary force curve based on a plurality of capillary force curves. Initially, people used various averaging treatments directly on a plurality of capillary force curves or used a plurality of weighted averaging methods to construct an averaged capillary force-saturation curve (Huang Xinbo. Normalization Method and Application of Averaged Capillary Pressure Curve of Branched Flow Unit [J]. Petroleum Geology and Engineering, 2016, 30(3); Yang Yurui, Guo Xiao, Yang Jianping, et al. New Method for Obtaining Averaged Capillary Pressure Curve of Reservoir [M]. 2018; Li Jing, Chen Peiyuan, Yang Renfeng, et al. Method for Improving Calculation Accuracy of Averaged Capillary Pressure Curve of Low-porosity Sorting Reservoir [M]. 2020).


At present, a J function averaging method is mainly used. First, a capillary force-saturation curve of each sample is converted into a J function of each sample. Then, the J functions are interpolated to obtain an averaged J function. Next, a capillary force is calculated according to a roughly averaged porosity, permeability and fluid interracial tension (Liao Jing, Peng Caizhen, Lu Wenjun, et al. Capillary Pressure Curve Averaging and J Function Processing [J]. Special Oil and Gas Reservoirs, 2008, 15(6)). The limitations of such methods are as follows: (1) these methods are not suitable for the case where different samples have significantly different J functions; (2) J function interpolation lacks strict physical meaning, and since there are many interpolation methods, the results of different methods are quite different, and the construction of interpolation methods has strong subjectivity; and (3) most of these methods cannot consider the influence of the number of samples.


SUMMARY OF THE INVENTION

An objective of the present invention is to provide a multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples. This method is reliable in principle and easy to operate, can be directly operated on the capillary force curves, is also suitable for various types of samples with different physical properties in consideration of the influence of the numbers of reservoirs represented by samples, has a wide range of applications, and accurate and convenient calculation results, and is more consistent with actual working conditions.


To fulfill said technical objective, the present invention adopts the following technical solutions.


Since each capillary force curve represents a capillary force-saturation curve of samples of the same category, an averaged curve of a plurality of capillary force curves is understood as a capillary force curve in which a plurality of samples is measured simultaneously, and all the samples obtained are measured simultaneously. Since the capillary force curve of each sample has been measured, the capillary force curves when these samples as a whole are measured can be calculated based on these curves. It can be seen from the principle of experimental measurement of capillary forces: the curve calculated in this way should be the same as an actually measured curve. Therefore, if the capillary force curve of each sample is known, this result can be obtained without actually measuring all samples as a whole, so this method is referred to as multi-sample virtualized overall measurement.


A multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples, sequentially comprising the following steps:






    • 1, taking m types of rock samples, obtaining a capillary force-saturation curve pc (Sw)−Sw, an apparent volume Vb and a porosity ϕ of each sample, and marking the capillary force-saturation curve of a jth sample as pcj(Sw)−Sw, the apparent volume as Vbj and the porosity as ϕj;

    • 2, inspecting the quality of the capillary force-saturation curve of each sample and preprocessing the end points of each curve, wherein the specific process is as follows:
      • (1) ensuring that the change in the capillary force Pic of each capillary force-saturation curve Pcj(Sw)−Sw (∀j∈{1,2, . . . , m}) over the saturation Sw satisfies a monotonic function feature;
      • (2) ensuring that a maximum value of capillary force-saturation curves is greater than a maximum capillary force value Pc max required by the averaged capillary force-saturation curve;
      • (3) extrapolating a gentle section of the capillary force-saturation curve to the wet phase saturation Sw=1, wherein the corresponding capillary pressure is a displacement pressure; taking the minimum displacement pressure in all samples as Pc min, and replacing the original curve section of the same saturation interval with the curve section obtained by extrapolation; and
      • (4) naming the processed capillary force-saturation curve as {tilde over (P)}Cj (Sw)−Sw;

    • 3, taking a series of enough values at equal intervals or unequal intervals from a real number interval [Pc min, Pc max], and denoting them as {Pci }, 0≤i≤N, wherein the subscript i represents an ith data point, and Pc0=Pcmin, PcN=Pc max; calculating an averaged wet phase saturation Swi corresponding to different capillary force values Pci under the overall virtual measurement of a plurality of samples, wherein the specific process is as follows:
      • (1) when the capillary force-saturation curve is expressed by an analytical function:

        Pc={tilde over (P)}cj(Sw)(j∈{1,2, . . . ,m})

    • since the change in the capillary force with saturation satisfies monotonicity, the capillary force-saturation function {tilde over (P)}cj(Sw) has an inverse function:

      Sw=anti{tilde over (P)}cj(pc)

    • calculating the averaged wet phase saturation of a plurality of samples by using the following formula:














S
¯


w

i


=






j
=
1


m



V
b
j



ϕ
j


a

n

t

i




P
˜

c
j

(

p

c

i


)








j
=
1


m



V
b
j



ϕ
j








(
2
)








when the capillary force-saturation curve is represented by a graphical curve, finding the corresponding wet phase saturation Sjwi from the capillary force-saturation curve {tilde over (P)}cj(Sw)−Sw of each sample j j ∈ {1, 2, . . . , N} for each capillary force value Pci in the sequence—{Pci|Pci ∈ [Pc min,Pc max], Pc0=Pc min, PcN=Pc max, i ∈ {0, 1, . . . , N}}, and then calculating the averaged wet phase saturation Swi of the plurality of samples according to the following formula:











S
¯


w

i


=






j

m



V
b
j



ϕ
j



S
wi
j







j

m



V
b
j



ϕ
j







(

i


{

0
,
1
,


,
N

}


)






(
3
)








when the capillary force-saturation curve {tilde over (P)}cj(Sw)−Sw is described with a data table, two processing methods may be adopted: according to a function relationship pck{tilde over (j)}˜Swk, k ∈ {1,2, . . . , Ntabj}, (Ntabj represents a total number of data points in the capillary force data table of the jth sample) determined based on the data sheet, determining a Pci value Sjwi on the capillary force-saturation curve of the jth sample by using internal interpolation manner; and calculating an averaged wet phase saturation Swi of the plurality of samples according to the following formula:











S
¯


w

i


=






j

m



V
b
j



ϕ
j



S
wi
j







j

m



V
b
j



ϕ
j







(

i


{

0
,
1
,


,
N

}


)






(
4
)








denoting data points (Swi, pci) on the graph by using the wet phase saturation Swi as the abscissa and capillary force Pci as the ordinate, and finally connecting all data points smoothly to obtain the averaged capillary force curve.


In the step 2, ensuring that a maximum value of all capillary force-saturation curves is greater than a maximum capillary force value Pc max required by the averaged capillary force-saturation curve means to extending an end point curve of the capillary force-saturation curve that does not meet the requirements by an extrapolation method until the maximum capillary force value of the capillary force-saturation curves exceeds Pc max.


In the step 3, when the capillary force-saturation curve is represented with a graphic curve or described with a data table, if Pu is less than the minimum capillary force value on the capillary force-saturation curve {tilde over (P)}cj(Sw)−Sw of the jth sample, Sjwi=1 is taken.


In the step 3, when the capillary force-saturation curve) ({tilde over (P)}cj(Sw)−Sw) is described with a data table, a graph of capillary force-saturation curve is drawn according to these data points, and converted to a case (2) for processing.


In the step 3, when the capillary force-saturation curve is expressed in a mixed way of function, graph and data table description, the averaged wet phase saturation Swij is obtained respectively according to the cases (1) to (3) in the step.


Compared with the prior art, the present invention has the following technical effects:

    • (1) operations are performed directly on the capillary force curves, while a mainstream method first converts the capillary force curve into a J function curve, and the J function curves are then averaged by interpolation or other methods;
    • (2) this method can take the influence of the number of reservoirs represented by samples into consideration, while the mainstream method generally cannot take the influence of the number of samples into consideration;
    • (3) this method is also suitable for various types of samples with different physical properties; even if the capillary force curves of different samples are greatly different, a unique averaged capillary force curve can also be obtained; even if the J functions of the reservoirs are different, and even quiet different, the only averaged capillary force curve can be obtained; and
    • (4) this method has a clear physical meaning.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a multi-capillary force curve averaging method based on multi-sample overall measurement.


a is capillary force curves respectively measured for a sample α and a sample β; b is capillary force curves obtained by taking the sample α and the sample β into an instrument together for overall measurement; and c is a capillary force curve obtained by taking different numbers of sample α and sample β into the instrument for overall measurement.



FIG. 2 is a schematic diagram of preprocessing of end points of a capillary force curve.


a is an original capillary force curve; b is a curve after the capillary force curve is extended at the end points.



FIG. 3 shows a corresponding wet phase saturation (Swij) for different capillary forces (Pci) by different capillary force curves (Pic−Sw).


a is a schematic diagram of two types of sample curves; and b is a schematic diagram of m type of samples.





DETAILED DESCRIPTION

To facilitate those skilled in the art to understand the present invention, the present invention will be further described below according to the accompanying drawings. However, it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, as long as various changes fall within the spirit and scope of the present invention defined and determined by the appended claims, they are all protected.


In the present invention, the subscript w represents a wet phase fluid; the subscript n represents a non-wet phase fluid; Pc represents a capillary force; S represents a saturation; Sw represents a wet phase saturation; Vb represents an apparent volume of a rock sample; and ϕ represents a porosity of a sample. A variable m represents the number of samples; the superscript j represents a jth sample.


Referring to FIG. 1, taking an oil-water two-phase capillary force as an example, if there are two samples a and 13, capillary force curves measured respectively by experiments are: pcα(Sw)−Sw, pcβ(Sw)−Sw, the averaged capillary force is equivalent to putting the two samples into the instruction at the same time for measurement. In FIG. 1, a is capillary force curves pcα−Sw, pcβ−Sw respectively measured for the sample α and the sample β; b is capillary force curves Pc−Sw obtained by taking the sample α and the sample β into an instrument together for overall measurement; and c is a capillary force curve Pc−Sw obtained by taking different numbers of sample α and sample β into the instrument for overall measurement.


The multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples sequentially comprises the following steps:

    • 1, taking m types of rock samples, obtaining a capillary force-saturation curve pc(Sw)−Sw, an apparent volume Vb and a porosity ϕ of each sample, and marking the capillary force-saturation curve of the jth sample as pcj(Sw)−Sw, the apparent volume Vbj as and the porosity as ϕj;
    • 2, inspecting the quality of the capillary force-saturation curve of each rock sample and preprocessing the end points of each capillary force-saturation curve (as shown in FIG. 2), and the specific process is as follows:
      • (1) ensuring that the change in the capillary force PJc of each capillary force-saturation curve pc(Sw)−Sw (∀j∈{1,2, . . . , m}) over the saturation Sw satisfies a monotonic function feature; otherwise indicating that the quality of the capillary force-saturation curve is unqualified and needs to be corrected;
      • (2) ensuring that a maximum value of all capillary force-saturation curves is greater than a maximum capillary force value Pc max required by the averaged capillary force-saturation curve; otherwise, extending an end point curve of the capillary force-saturation curve that does not meet the requirements by an extrapolation method until the maximum capillary force value of the capillary force-saturation curves exceeds Pc max;
      • (3) extrapolating a gentle section of the capillary force-saturation curve to the wet phase saturation Sw=1, wherein the corresponding capillary pressure is a displacement pressure; taking the minimum displacement pressure in all samples as Pc min, and replacing the original curve section of the same saturation interval with the curve section obtained by extrapolation; and
      • (4) naming the processed capillary force-saturation curve as {tilde over (P)}cj(Sw)−Sw (corresponding to the capillary force-saturation curve Pcj(Sw)−Sw before processing);
    • 3, taking a series of enough values at equal intervals or unequal intervals from a real number interval [Pc min, Pc max], and denoting them as {pci}, 0≤i≤N, wherein the subscript i represents an ith data point, and pc0=pc min, pcN=pc max; calculating an averaged wet phase saturation corresponding to different capillary force values Pci under the overall virtual measurement of a plurality of samples (this saturation can be understood as a type of weighted average saturation), and denoting it as Swi, wherein the specific process is as follows:
    • considering that there are four ways to express the capillary force-saturation curves in practice, that is, a. analytical formula method; b. graphic method; c. data table; d. hybrid method, the present invention is also divided into four methods for processing;
      • (1) when the capillary force-saturation curve is expressed by an analytical function:

        pc={tilde over (P)}cj(Sw)(j∈{1,2, . . . , m})  (1)
    • since the change in the capillary force with saturation satisfies monotonicity, the capillary force-saturation function {tilde over (P)}cj(Sw) has an inverse function, denoted as:

      Sw=anti{tilde over (P)}cj(pc)  (2)
    • calculating the averaged wet phase saturation of a plurality of samples by using the following formula:











S
¯


w

i


=






j
=
1


m



V
b
j



ϕ
j


a

n

t

i




P
˜

c
j

(

p

c

i


)








j
=
1


m



V
b
j



ϕ
j








(
3
)









    • substituting all Pci into Formula (3) sequentially, to calculate the corresponding averaged wet phase saturation Swi;

    • (2) when the capillary force-saturation curve is represented by a graphical curve, finding the corresponding wet phase saturation from the capillary force-saturation curve {tilde over (P)}cj(Sw)−Sw of each sample j ∈ {1,2, . . . , N} for each capillary force value Pci in the sequence

      {Pci|Pci∈ [Pc min,Pc max], Pc0=Pc min, PcN=Pc max, i∈ {0, 1, . . . , N}},

      and denoting it as Sjwi, and then calculating the averaged wet phase saturation Swi of the plurality of samples according to the following formula:














S
¯


w

i


=






j

m



V
b
j



ϕ
j



S
wi
j







j

m



V
b
j



ϕ
j







(

i


{

0
,
1
,


,
N

}


)






(
4
)









    • if certain P is less than a minimum capillary force value min({tilde over (P)}cj(Sw)), (Swi≤Sw≤1) on the capillary force-saturation curve {tilde over (P)}cj(Sw)−Sw of the jth sample, taking Sjwi=1 (as shown in FIG. 3);
      • (3) when the capillary force-saturation curve {tilde over (P)}cj(Sw)−Sw is described with a data table, two processing methods may be adopted:





1) drawing a graph of capillary force-saturation curve according to these data points, and converting it to a case (2) for processing; 2) according to a function relationship pck{tilde over (j)}˜Swk, k ∈ {1,2, . . . , Ntabj}, Ntabj represents a total number of data points in the capillary force data table of the jth sample) determined based on the data sheet of each sample, determining a Pci value on the capillary force-saturation curve of the jth sample by using internal interpolation manner, and denoting said value as Sjwi; and calculating an averaged wet phase saturation Swi of the plurality of samples according to Formula (4), wherein

    • if certain P is less than the minimum capillary force value min({tilde over (P)}cj(Sw)), (Swi≤Sw≤1) on the capillary force-saturation curve {tilde over (P)}cj(Sw)−Sw of the Jth sample, taking Sjwi=1 directly (as shown in FIGS. 3); and
      • (4) when the capillary force-saturation curve is expressed in a mixed way of function, graph and data table description, obtaining the averaged wet phase saturation Swi of the plurality of samples respectively according to the cases (1) to (3) in this step; and
    • 4, denoting data points (Swi, pci) on the graph by using the wet phase saturation Swi as the abscissa and capillary force Pci as the ordinate, and finally connecting all data points smoothly to obtain the averaged capillary force curve.

Claims
  • 1. A multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples, sequentially comprising the following steps: 1, taking m types of rock samples, put the m types of rock samples into an experimental instrument and measure the m types of rock samples to obtain a capillary pressure-saturation curve pc(Sw)−Sw, an apparent volume Vb and a porosity ϕ of each sample, and marking the capillary pressure-saturation curve of jth sample as pcj(Sw)−Sw, the apparent volume as Vbj and the porosity as ϕj;2, inspecting the quality of the capillary pressure-saturation curve of each sample and preprocessing the end points of each curve, wherein the specific process is as follows: (1) ensuring that the change in the capillary pressure pjc of each Pcj(Sw)−Sw (∀j∈{1,2, . . . , m}) over the saturation Sw satisfies a monotonic function feature;(2) ensuring that a maximum value of capillary pressure-saturation curves is greater than a maximum capillary pressure value pc max required by the averaged capillary pressure-saturation curve;(3) extrapolating a gentle section of the capillary pressure-saturation curve to the wet phase saturation Sw=1, wherein the corresponding capillary pressure is a displacement pressure; taking the minimum displacement pressure in all samples as pc min, and replacing the original curve section of the same saturation interval with the curve section obtained by extrapolation; and(4) naming the processed capillary pressure-saturation curve as {tilde over (P)}cj(Sw)−Sw;3, taking a series of enough values at equal intervals or unequal intervals from a real number interval [pc min, pc max], and denoting them as {pci }, 0≤i≤N, wherein the subscript i represents an ith data point, and pc0=pc min, pcN=pc max; calculating an averaged wet phase saturation Swi corresponding to different capillary pressure values Pci under the overall virtual measurement of a plurality of samples, wherein the specific process is as follows: (1) when the capillary pressure-saturation curve is expressed by an analytical function: pc={tilde over (P)}cj(Sw)(j∈ {1,2, . . . , m})since the change in the capillary pressure with saturation satisfies monotonicity, the capillary pressure-saturation function {tilde over (P)}cj(Sw) has an inverse function: Sw=anti{tilde over (P)}cj(pc)calculating the averaged wet phase saturation of a plurality of samples by using the following formula:
  • 2. The multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples according to claim 1, wherein in the step 2, ensuring that a maximum value of all capillary pressure-saturation curves is greater than a maximum capillary pressure value pc max required by the averaged capillary pressure-saturation curve means to extending an end point curve of the capillary pressure-saturation curve that does not meet the requirements by an extrapolation method until the maximum capillary pressure value of the capillary pressure-saturation curves exceeds pc max.
  • 3. The multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples according to claim 1, wherein in the step 3, when the capillary pressure-saturation curve is represented with a graphic curve or described with a data table, if Pci is less than the minimum capillary pressure value on the capillary pressure-saturation curve {tilde over (P)}cj(Sw)−Sw of the jth sample, Swij=1 is taken.
  • 4. The multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples according to claim 1, wherein in the step 3, when the capillary pressure-saturation curve {tilde over (P)}cj(Sw)−Sw is described with a data table, a graph of capillary pressure-saturation curve is drawn according to these data points, and converted to a case (2) for processing.
  • 5. The multi-capillary force curve averaging method based on the overall virtual measurement of a plurality of samples according to claim 1, wherein in the step 3, when the capillary pressure-saturation curve is expressed in a mixed way of function, graph and data table description, the averaged wet phase saturation Swi is obtained respectively according to the cases (1) to (3) in the step.
Priority Claims (1)
Number Date Country Kind
202110720187.2 Jun 2021 CN national
US Referenced Citations (1)
Number Name Date Kind
6792354 O'Meara, Jr. Sep 2004 B1
Foreign Referenced Citations (1)
Number Date Country
WO-2017030599 Feb 2017 WO
Non-Patent Literature Citations (1)
Entry
Leger et al., “Influence of the wetting angle on capillary forces in pressure filtration,” Acta Materialia 91 (Year: 2015).
Related Publications (1)
Number Date Country
20220412869 A1 Dec 2022 US