The disclosure relates to a multi-cell coordination technology, and more particularly to a multi-cell coordination system and a channel calibration method thereof.
As compared to the traditional Fourth Generation (4D) Long Term Evolution (LTE) system, more antennas will be implemented in the Fifth Generation (5G) New Radio (NR) system to increase the transmission efficiency. Theoretically and practically, multi-antenna systems have been proved to be able to make use of technologies such as precoding and/or beamforming to allow multiple User Equipment (UE) to access wireless resources simultaneously, thereby enhancing the spectrum usage efficiency. In addition, researches in recent years have indicated that if the number of antennas carried by a base station is more than four times of the number of users, the spectral usage efficiency will be able to grow linearly as the number of users increases.
However, due to physical limitations, it is difficult for conventional base stations to be equipped with massive antennas. Therefore, relevant research has proposed that through coordinating multiple base stations to jointly perform data transmission to UE, the efficiency equivalent to that of massive antennas can be achieved. Such a structure is known as a Multi-Cell Coordination (MCC) system. In the MCC system, all base stations are controlled by a coordination server, and the coordination server can select the best transmission mode according to the user's condition. Since the clock source of each of the base stations in the MCC system is independent, Carrier Frequency Offset (CFO) between the base stations may exist, which is the largest difference as compared to a massive antenna system. In addition, other imperfect factors (for example, Sampling Clock Offset (SCO) generated due to CFO, timing offset caused by transmission delay, CFO causing downlink and uplink channels to have opposite linear phases, time-varying effect of Radio Frequency (RF) response, etc.) may also cause channel estimation to be inaccurate. Also, after precoding, Inter-Cell Interference (ICI) and Inter-User Interference (IUI) are more likely to be generated, thereby reducing the system capacity. This shows that the existing MCC systems still need to be improved.
In view of the above, the disclosure provides a multi-cell coordination system and a channel calibration method thereof, which can solve the problems with the existing MCC systems and are applicable to multi-beam technology.
The multi-cell coordination system of the embodiments of the disclosure includes at least but not limited to a reference apparatus, a base station, and a server. The base station includes at least one antenna and the antennas provide a directional beam. The base station performs a first precoding on a downlink reference signal to be transmitted via the directional beam and the first precoding is based on a beam coding. The reference apparatus receives the downlink reference signal via the directional beam from the base station. The reference apparatus performs a second precoding on an uplink reference signal to be transmitted via the directional beam and the second precoding is based on the beam coding. The base station receives the uplink reference signal via the directional beam from the reference apparatus. A server receives an uplink channel information from the base station and a downlink channel information from the reference apparatus. The uplink channel information is generated based on the uplink reference signal and the second precoding, and the downlink channel information is generated based on the downlink reference signal and the first precoding. The server obtains a channel calibration coefficient according to the uplink channel information and the downlink channel information. The channel calibration coefficient is used for estimating a downlink channel.
On the other hand, the channel calibration method of the embodiments of the disclosure includes at least but not limited to the following steps. A first precoding is performed on a downlink reference signal to be transmitted via a directional beam through a base station, while the first precoding is based on a beam coding. The downlink reference signal via the directional beam from the base station is received through the reference apparatus. A second precoding is performed on an uplink reference signal to be transmitted via the directional beam through the reference apparatus, while the second precoding is based on the beam coding. The directional beam is provided through the base station to receive the uplink reference signal from the reference apparatus. An uplink channel information from the base station and a downlink channel information from the reference apparatus are received through a server. The uplink channel information is generated based on the uplink reference signal and the second precoding, and the downlink channel information is generated based on the downlink reference signal and the first precoding. A channel calibration coefficient is obtained according to the uplink channel information and the downlink channel information through the server, while the channel calibration coefficient is used for estimating a downlink channel.
Based on the above, the multi-cell coordination system and the channel calibration method thereof of the embodiments of the disclosure provide corresponding channel calibration coefficients for channels corresponding to different beams in response to the multi-beam technology in the future 5G NR system. In addition, problems with synchronization between base stations, time-varying effect of RF response, frequency selective fading channel, and obtaining downlink channel status information are solved through the reference apparatus, thereby achieving the performance of massive antenna system.
To make the aforementioned and other features of the disclosure more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
The base station BS1˜BSj may have various embodiments, such as (but not limited to) Home Evolved Node B (HeNB), eNB, Advanced Base Station (ABS), Base Transceiver System (BTS), relay, repeater, and/or satellite-based communication base station. In the embodiment, each of the base stations BS1˜BSj has one or more antennas, and the antennas can provide multiple directional beams b1˜bh, which are directed in a specific direction. For example, a base station BSb (b is a positive integer between 1 and j) transmits wireless signals using different directional beams b1˜bh in sequence through a beam sweeping technique. h and j are positive integers.
The reference apparatuses RA1˜RAr may have various embodiments, such as (but not limited to) mobile app, personal computer, or idle base station. The so-called idle base station refers to a base station judged by the server CS as not providing any service currently or with loading lower than a specific threshold value. The server CS may also schedule the base stations BS1˜BSj and alternately use any idle one of the base stations BS1˜BSj as the reference apparatuses RA1˜RAr. In the embodiment, each of the reference apparatuses RA1˜RAr has one or more antennas. r is a positive integer.
The server CS can be various types of server, computer host, workstation and other computation apparatuses. In the embodiment, the server CS connects the base stations BS1˜BSj and the reference apparatuses RA1˜RAr in wire or wireless manner.
The user equipment UE1˜UEm may have various embodiments, such as (but not limited to) mobile station, Advanced Mobile Station (AMS), telephone apparatus, Customer Premise Equipment (CPE), wireless sensor, etc. The user equipment UE1˜UEm can be served by any of the base stations BS1˜BSj. m is a positive integer.
It shall be noted that the base stations B SlB Sj and the reference apparatuses RA1˜RAr in the embodiment can make use of the Global Positioning System (GPS) signal to synchronize time. The base stations BS1˜BSj, the reference apparatuses RA1˜RAr, and the user equipment UE1˜UEm have independent clock sources. In other words, each apparatus has its own carrier frequency. For example, the carrier frequency of the base station BSb is εb, while the carrier frequency of the reference apparatus RAr is ηr. In addition, the base stations BS1˜BSj, the reference apparatuses RA1˜RAr, and the user equipment UE1˜UEm can support 4G, 5G, or future generations of mobile communication technologies. The disclosure is not limited thereto.
To facilitate understanding of the operation procedure of the embodiments of the disclosure, several embodiments are exemplified as below to illustrate in detail the operation procedure of the multi-cell coordination system 1 in the embodiments of the disclosure. Hereinafter, the method according to the embodiments of the disclosure will be illustrated in conjunction with the respective apparatuses in the multi-cell coordination system 1. Respective procedures of the method according to the embodiments of the disclosure can be adjusted according to the implementation condition and are not limited thereto. In addition, for ease of illustration, one or more apparatuses selected from the base stations BS1˜BSj, the reference apparatuses RA1˜RAr, and the user equipment UE1˜UEm would be taken as examples for illustration. For the operation of the remaining apparatuses of the same type, refer to the corresponding illustration, which will not be reiterated.
The reference apparatus RAr receives the downlink reference signal DL_RS_R2 via the directional beam bp from the base station BSb (Step S220). Specifically, after the base station BSb transmits the downlink reference signal DL_RS_R2 at time t (using Time Division Duplexing (TDD) system as an example), the reference apparatus RAr may be assigned or voluntarily decide to receive signals via the directional beam bp.
Referring to
(b,n)→(r,k)(t)=PBS,(b,n),p·βr,k·g(b,n)→(r,k)·αb,n·ej(2π({circumflex over (ε)}
where (b,n)→(r,k) represents transmitting through the nth antenna of the bth base station (i.e. the base station BSb) and receiving through the kth antenna of the rth reference apparatus (i.e. the reference apparatus RAr); PBS,(b,n),p is the first precoding for the pth beam (i.e. the directional beam bp) by the base station BSb; βr,k is the RF response received at the kth antenna receiving end by the reference apparatus RAr; αb,n is the RF response received at the nth antenna transmission end by the base station BSb; g(b,n)→(r,k) is an Over-The-Air channel (if reciprocity is present, then g(b,n)→(r,k) can also be considered as g(r,k)→(b,n)); θb,n is the initial phase at the nth antenna transmission end of the base station BSb; ϕr,k is the initial phase at the kth antenna receiving end of the reference apparatus RAr; εb is the carrier frequency of the base station BSb; ηr is the carrier frequency of the reference apparatus RAr; {circumflex over (ε)}jb is the estimated carrier frequency offset. Next, the reference apparatus RAr can transmit the downlink channel information estimated for the directional beam bp to the server SC.
It is worth noting that the carrier frequency offset {circumflex over (ε)}jb above can be estimated in advance or can be preset. The following explains how to estimate the carrier frequency offset {circumflex over (ε)}jb.
Referring back to
(r,k)→(b,n)(t+T0)=PRA,(r,k),p·βb,n·g(r,k)→(b,n)·αr,k·ej(−2π(η
where (r,k)→(b,n) represents transmitting through the kth antenna of the reference apparatus RAr and receiving through the nth antenna of the base station BSb; PRA,(r,k),p is the second precoding for the directional beam bp by the reference apparatus RAr; βb,n is the RF response at the nth antenna receiving end of the base station BSb; αr,k is the RF response at the kth antenna transmission end of the reference apparatus RAr; g(r,k)→(b,n) is an Over-The-Air channel (if reciprocity is present, then g(r,k)→(b,n) can also be seen as g(b,n)→(r,k)); ϕb,n is the initial phase at the nth antenna receiving end of the base station BSb; θr,k is the initial phase at the kth antenna transmission end of the reference apparatus RAr; εb is the carrier frequency of the base station BSb; ηr is the carrier frequency of the reference apparatus RAr; {circumflex over (ε)}jb is the estimated carrier frequency offset (which can be obtained by referring to the embodiment of
Referring back to
Specifically, the server SC uses the ratio of the uplink channel information to the downlink channel information corresponding to different timepoints as the calibration coefficient:
wherein the time-varying phase of the channel calibration coefficient c(b,n)→(r,k)(t+T0) is caused by ej(4π{circumflex over (ε)}
where c(1,1)→(r,1)(t+T0) is the second channel calibration coefficient, (1,1)→(r,1) represents transmitting through the 1st antenna of the 1st base station (i.e. the base station BS1) and receiving through the 1st antenna of the reference apparatus RAr; PBS,(1,1),1 is the first precoding for the 1st beam (i.e. the directional beam b1) by the base station BSb; βr,1 is the RF response at the 1st antenna receiving end of the reference apparatus RAr; α1,1 is the RF response at the 1st antenna transmitting end of the base station BS1; {tilde over (θ)}(b,n)→(r,k) is the sum of the difference between the initial phase at the nth antenna transmitting end of the base station BSb and the initial phase at the 1st antenna transmitting end of the base station BS1, and the difference between the initial phase at the 1st antenna receiving end of the base station BS1 and the initial phase at the nth antenna receiving end of the base station BSb (i.e., {tilde over (θ)}(b,n)→(r,k)=θb,n−θb=1,n=1+ϕb=1,n=1−ϕb,n); ε1 is the carrier frequency of the base station BS1; {circumflex over (ε)}1b is the estimated carrier frequency offset; PRA,(r,1),1 is the second precoding for the directional beam b1 by the reference apparatus RAr; β1,1 is the RF response at the 1st antenna receiving end of the base station BS1; αr,1 is the RF signal at the 1st antenna transmitting end of the reference apparatus RAr.
It shall be stated that the base station BS1, the 1st antenna, and the directional beam b1 are used here as the examples. However, in other embodiments, the server SC may also select any combination of other base station, other antenna, and/or other directional beam as the normalization benchmark. It shall be emphasized again that only the illustration for the nth antenna of the base station BSb, the directional beam bp, and the kth antenna of the reference apparatus RAr are stated above. For the channel calibration coefficient of any combination of other base station, other antenna, other directional beam, and other reference apparatus, refer to the illustration above, which will not be reiterated.
It is worth noting that the channel calibration coefficient above can be used for estimating the downlink channel between the base station BSb and the user equipment UE1˜UEm, which will be illustrated below.
where ηu is the carrier frequency of the uth user equipment (i.e. the user equipment UEu) and ĉ(b,n)→(r,k)(t+T0) is the channel calibration coefficient calculated using the reference apparatuses RA1˜RAr and the base stations BS1˜BSj. In other words, the server CS makes use of the channel calibration coefficient calculated by the reference apparatuses RA1˜RAr and the base stations BS1˜BSj to calculate the downlink channel information of the user equipment UEu.
In addition, the downlink channel matrix for the directional beam bp can be expressed as:
where hBS1→UE1 represents the channel vector from the base station BS1 to the user equipment UE1 (so on and so forth), C(r,k)−1(t+T1) is the matrix of the channel calibration coefficient, and HCFO(t+T1) is the matrix of the carrier frequency offset.
Next, the base station BSb can perform a third precoding on the signal transmitted to the user equipment UEu according to the estimated downlink channel (Step S630). The third precoding is based on, for example, Zero forcing, Minimum Mean-Square Error (MMSE), or other equalization algorithms. At time t+T2, the base station BSb can serve the user equipment UEu using the downlink signal generated by the third precoding above. It shall be stated that the transmission behavior between the base station BSb and the user equipment UEu is used here as the illustration example. For the transmission behavior between any combination of other base station and other user equipment, refer to the illustration above, which will not be reiterated.
Based on the above, the multi-cell coordination system and the channel calibration method thereof of the embodiments of the disclosure make use of a reference apparatus to solve the problems with synchronization between base stations, time-varying effect of RF response, frequency selective fading channel, and obtaining downlink channel status information. In addition, the embodiments of the disclosure further consider the implementation in multi-beam transmission, so as to be applied to 5G or future generations of communication systems.
Although the disclosure has been disclosed in the above embodiments, the embodiments are not intended to limit the disclosure. It will be apparent to persons skilled in the art that various modifications and variations can be made to the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure covers modifications and variations provided that they fall within the scope of the following claims and their equivalents.