The transport of multi-phase fluids, e.g. of a gas and liquid, is often necessary in oil and gas pipelines. In such cases, the density and other properties of e.g., the gas and liquid are different and lead to differences in the velocity of the flow of each phase being transported. For example, because the gas phase velocity may be higher that the velocity of the liquid phase, the transport of one or more of the phases using pipe may be less efficient as compared to a single-phase flow e.g., a heavier liquid phase may significantly block the flow of lighter phase. An increase in pressure due to such flow resistance can cause pressure build-up and damage to the pipe. Additionally, uneven flow stemming from the transport of multiphase fluids can cause problems at the end or terminus of the pipe. The transport of oil and/or natural gas may typically involve a simultaneous flow of a gaseous phase and a liquid phase of the fluid being transported.
Steel pipe is commonly used in the oil and gas industry. However, steel pipelines, gathering lines or injection lines are usually installed using short (30-40 foot) sections. This requires additional labor and provides the possibility for fluid leakage at each fitting. Such labor intensive installation may also lead to lost revenues if production or transport of the fluids is suspended during the installation.
Further, such steel pipe is subject to corrosion. To resist internal corrosion, steel alloys, non-metallic internal coatings, or fiberglass-reinforced epoxy pipe may be used, but all may still have the disadvantage of being sectional products. In some applications, thermoplastic liners may be used as corrosion protection inside steel pipe, but these liners are susceptible to collapse by permeating gases trapped in the annulus between the liner and the steel pipe if the pressure of the bore is rapidly decreased.
There is a need for substantially non-corrosive pipe that is capable of transporting multi-phase fluids, such as may be used in the oil and gas industry.
Disclosed is a spoolable pipe or tube that comprises two or more channels or cells, for example, a plurality of channels, for enhanced or improved fluid transport of one, two, or multi-phase fluids, such as found in the transport of oil and/or natural gas. For example, a spoolable tube is disclosed that includes a low axial strength internal tube or liner comprising a plurality of cells or axial channels and an outer reinforcing layer.
In some embodiments, the low axial strength liner may include a polymer such as a thermoplastic, thermoset, or elastomer. For example, the liner may include polyethylene, polyamide, and/or polypropylene. Such a liner may be formed by, e.g., extrusion.
Disclosed tubes may include one or more sensors, such as an energy conductor, or a data conductor, which may, in some embodiments, extend along the length of the tube. In some embodiments, the inner liner may further comprise axial reinforcement that is external to the inner liner.
Provided herein are also methods of forming or making a spoolable pipe, wherein such methods may comprise extruding a thermoplastic polymer to form an inner layer of a pipe that includes a plurality of channels and forming a reinforcing layer over the inner layer.
Also disclosed herein are methods of reducing the velocity of a lighter phase fluid relative to the velocity of a heavier phase in a multi-phase transport.
Disclosed is a spoolable pipe or tube that comprises two or more channels or cells, for example, a plurality of channels, for enhanced or improved fluid transport of one, two, or multi-phase fluids, that can be used for example, in the transport of oil and/or natural gas. For example, a spoolable tube is disclosed that includes a low axial strength internal tube or liner comprising a plurality of cells or axial channels and an outer reinforcing layer.
A low axial strength liner is understood to mean that such a liner does not contribute substantially to the axial strength of the pipe. The plurality of channels may for example extend side-by-side so that the total flow of a fluid in the tube is divided into a plurality of individual multi-phase passages. In some embodiments, the number of channels may change along the length of the pipe.
The reinforcing layer may substantially maintain the pressure of a fluid with the tube, e.g. maintain the pressure within each channel. In some embodiments, the pressure of a fluid being transported within each channel of a disclosed tube is substantially the same. In other embodiments, the pressure differential between each channel is less than 200 psi, less than 100 psi, or even less than 50 psi, e.g. between about 0.1 psi and about 100 psi.
The channels may have any cross sectional shape, e.g. circular, elliptical, or, oval, rectangular, square, polygonal, and may be of any size. The cells or channels may each have the same size, e.g. diameter and/or shape, or may each have a different size and or shape.
The internal tube or liner comprising a plurality of channels can be formed by extrusion, e.g. the inner liner may be extruded into a form with a plurality of cells or passageways. Extrusion may provide for a plurality of channels with substantially no passageways or space other than provided by the channels themselves.
The pipes described herein may provide for substantially continuous constant flow of all phases of a multi-phase fluid.
Unless otherwise specified, the illustrated embodiments can be understood as providing exemplary features of varying detail of certain embodiments, and therefore, unless otherwise specified, features, components, modules, and/or aspects of the illustrations can be otherwise combined, separated, interchanged, and/or rearranged without departing from the disclosed systems or methods. Additionally, the shapes and sizes of components are also exemplary and unless otherwise specified, can be altered without affecting the scope of the disclosed and exemplary systems or methods of the present disclosure.
The inner liner can serve as a member to resist leakage of internal fluids from within the spoolable tube. In some embodiments, the liner can include a polymer, a thermoset plastic, a thermoplastic, an elastomer, a rubber, a co-polymer, and/or a composite. The composite can include a filled polymer and a nano-composite, a polymer/metallic composite, and/or a metal (e.g., steel, copper, and/or stainless steel). Accordingly, the liner can include one or more of a polyethylene, a cross-linked polyethylene, a polyvinylidene fluoride, a polyamide, polyethylene terphthalate, polyphenylene sulfide and/or a polypropylene, or combinations of these materials, either as distinct layers or as blends, alloys, copolymers, block copolymers or the like. The liner may also contain solid state additives.
In some embodiments, the liner can be formed from a polymer, e.g. a thermoplastic, by extrusion.
The spoolable tube can also include one or more reinforcing layers as depicted in
The reinforcing layer(s) can be formed of a number of plies of fibers, each ply including fibers. In one embodiment, the reinforcing layer(s) can include two plies, which can optionally be counterwound unidirectional plies. The reinforcing layer(s) can include two plies, which can optionally be wound in about equal but opposite helical directions. The reinforcing layer(s) can include three, four, five, six, seven, eight, or more plies of fibers, each ply independently wound in a helical orientation relative to the longitudinal axis. Plies may have a different helical orientation with respect to another ply, or may have the same helical orientation. The reinforcing layer(s) may include plies and/or fibers that have a partially and/or a substantially axial orientation. The reinforcing layer may include plies of fibers with a tape or coating, such as a tape or coating that includes abrasion resistant material or polymer, disposed between each ply, underneath the plies, on the outside of the plies, or optionally disposed between only certain plies. In some embodiments, an abrasion resistant layer is disposed between plies that have a different helical orientation.
Fibers in the reinforcing layer can include structural fibers and/or flexible yarn components. The structural fibers can be formed of graphite, glass, carbon, KEVLAR, aramid, fiberglass, boron, polyester fibers, polyamide, ceramic, inorganic or organic polymer fibers, mineral based fibers such as basalt fibers, metal fibers, and wire. The flexible yarn components, or braiding fibers, graphite, glass, carbon, KEVLAR, aramid, fiberglass, boron, polyester fibers, polyamide, ceramic, inorganic or organic polymer fibers, mineral based fibers such as basalt fibers, metal fibers, and wire. For example, structural and/or flexible fibers can include glass fibers that comprise e-glass, e-cr glass, Advantex®, s-glass, d-glass, borosilicate glass, soda-lime glass or a corrosion resistant glass. The fibers included in the reinforcing layer(s) can be woven, braided, knitted, stitched, circumferentially wound, helically wound, axially oriented, and/or other textile form to provide an orientation as provided herein (e.g., in the exemplary embodiment, with an orientation between substantially about thirty degrees and substantially about seventy degrees relative to the longitudinal axis). The fibers can be biaxially or triaxially braided.
Reinforcing layers contemplated herein may include fibers that are at least partially coated by a matrix, or may include fibers that are embedded within a matrix, or may include a combination. A reinforcing layer may comprise up to about 30% of matrix by volume, up to about 50% of matrix by volume, up to about 70% of matrix by volume, or even up to about 80% or higher by volume.
The matrix material may be a high elongation, high strength, impact resistant polymeric material such as epoxy. Other alternative matrixes include nylon-6, vinyl ester, polyester, polyetherketone, polyphenylene sulfide, polyethylene, polypropylene, thermoplastic urethanes, and hydrocarbons such as waxes or oils. For example, a reinforcing layer may also include a matrix material such as polyethylene, e.g. low density polyethylene, medium density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, cross-linked polyethylene, polybutylene, polybutadiene, or polyvinylchloride.
A reinforcing layer may further include pigments, plasticizers, flame retardants, water resistant materials, water absorbing materials, hydrocarbon resistant materials, hydrocarbon absorbent materials, permeation resistant materials, permeation facilitating materials, lubricants, fillers, compatibilizing agents, coupling agents such as silane coupling agents, surface modifiers, conductive materials, thermal insulators or other additives, or a combination of these.
In one embodiment, the reinforcing layer(s) includes fibers having a modulus of elasticity of greater than about 5,000,000 psi, and/or a strength greater than about 100,000 psi. In some embodiments, an adhesive can be used to bond the reinforcing layer(s) to the liner. In other embodiments, one or more reinforcing layers are substantially not bonded to one or more of other layers, such as the inner liner, internal pressure barriers, or external layer(s).
The disclosed spoolable tube may include reinforcing and other layers, and other embodiments as disclosed in U.S. Pat. Nos. 5,097,870, 5,921,285; 6,016,845; 6,148,866; 6,286,558; 6,357,485; and 6,604,550, hereby incorporated by reference in their entireties. For example the disclosed tubes may also comprise an external layer(s) that can provide wear resistance, UV, and impact resistance or thermal insulation, or selectively increase or decrease the permeability.
The disclosed spoolable tubes can also include one or more couplings or fittings. For example, such couplings may engage with, be attached to, or in contact with one or more of the internal and external layers of a tube, and may act as a mechanical load transfer device. Couplings may engage one or both of the inner liner or the reinforcing layer. Couplings or fittings may be comprised, for example, of metal or a polymer, or both with or without elastomeric seals such as O-rings. In some embodiments, such couplings may allow tubes to be coupled with other metal components. In addition, or alternatively, such couplings or fittings may provide a pressure seal or venting mechanism within or external to the tube. One or more couplings may each independently be in fluid communication with the inner layer and/or in fluid communication with one or more reinforcing layers and/or plies of fibers, or be in fluid communication with one or more of the plurality of channels. In an embodiment, a coupling or fitting includes multi cells or multi fitting so as to match the plurality of channels in a tube.
Such couplings may provide venting, to the atmosphere, of any gasses or fluids that may be present in any of the layers between the external layer and the inner layer, inclusive.
Again with reference to
The disclosed energy conductors can be oriented in at least a partially helical direction relative to a longitudinal axis of the spoolable tube, and/or in an axial direction relative to the longitudinal axis of the spoolable tube. A hydraulic control line embodiment of the conductor can be either formed of a metal, composite, and/or a polymeric material.
In one embodiment, several conductors can power a machine operably coupled to the coiled spoolable tube. For instance, a spoolable tube can include three electrical energy conductors that provide a primary line, a secondary line, and a tertiary line for electrically powering a machine using a three-phase power system.
Such axial reinforcement may include for example reinforcement tape and/or fibers, e.g. glass, wound helically or axially around the pipe or reinforcing layer.
Also provided herein is a method of transporting a multi-phase fluid comprising providing a spoolable pipe disclosed herein, introducing a multi-phase fluid into an inlet of the pipe such that the multiphase fluid can travel along the plurality of channels, and recombining the fluid at an outlet of the pipe. Such methods may provide for substantially continuous constant flow of all phases of the multi-phase fluid.
In an embodiment, a method is provided for forming, manufacturing, or making a spoolable pipe capable of transporting multi-phase fluid, wherein the method includes extruding a thermoplastic polymer to form an inner layer that includes a plurality of channels, and forming a reinforcing layer over, e.g., adjacent to, the extruded inner layer to form a spoolable pipe.
Although the methods, systems and tubes have been described relative to a specific embodiment(s) thereof, they are not so limited. Many modifications and variations may become apparent in light of the above teachings. Many additional changes in the details, materials, and arrangement of parts, herein described and illustrated, can be made by those skilled in the art. Accordingly, it will be understood that the following claims are not to be limited to the embodiments disclosed herein, can include practices otherwise than specifically described, and are to be interpreted as broadly as allowed under the law.
All publications and patents mentioned herein, including those items listed below, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.
This application claims priority to U.S. Ser. No. 60/887,875 filed Feb. 2, 2007, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
87993 | Weston | Mar 1869 | A |
396176 | Simpson | Jan 1889 | A |
418906 | Bosworth | Jan 1890 | A |
482181 | Kellom | Sep 1892 | A |
646887 | Stowe et al. | Apr 1900 | A |
749633 | Seeley | Jan 1904 | A |
1234812 | Simmmons | Jul 1917 | A |
1793455 | Buchanan | Feb 1931 | A |
1890290 | Hargreaves | Dec 1932 | A |
1930285 | Robinson | Oct 1933 | A |
2099407 | Mildner | Nov 1937 | A |
2464416 | Raybould | Mar 1949 | A |
2467520 | Brubaker | Apr 1949 | A |
2481001 | Burckle | Sep 1949 | A |
2624366 | Pugh | Jan 1953 | A |
2648720 | Alexander | Aug 1953 | A |
2690769 | Brown | Oct 1954 | A |
2725713 | Blanchard | Dec 1955 | A |
2750569 | Moon | Jun 1956 | A |
2810424 | Swartswelter at al. | Oct 1957 | A |
2973975 | Ramberg et al. | Mar 1961 | A |
2991093 | Guarnaschelli | Jul 1961 | A |
3086369 | Brown | Apr 1963 | A |
3116760 | Matthews | Jan 1964 | A |
3170137 | Brandt | Feb 1965 | A |
3277231 | Downey at al. | Oct 1966 | A |
3306637 | Press at al. | Feb 1967 | A |
3334663 | Peterson | Aug 1967 | A |
3379220 | Kiuchi at al. | Apr 1968 | A |
3390704 | Woodell | Jul 1968 | A |
3413169 | Krings et al. | Nov 1968 | A |
3477474 | Mesler | Nov 1969 | A |
3507412 | Carter | Apr 1970 | A |
3522413 | Chrow | Aug 1970 | A |
3526086 | Morgan | Sep 1970 | A |
3554284 | Nystrom | Jan 1971 | A |
3579402 | Goldsworthy et al. | May 1971 | A |
3589135 | Ede | Jun 1971 | A |
3589752 | Spencer et al. | Jun 1971 | A |
3604461 | Matthews | Sep 1971 | A |
3606396 | Prosdocimo at al. | Sep 1971 | A |
3606402 | Medney | Sep 1971 | A |
3677978 | Dowbenko et al. | Jul 1972 | A |
3685860 | Schmidt | Aug 1972 | A |
3692601 | Goldsworthy et al. | Sep 1972 | A |
3696332 | Dickson, Jr. et al. | Oct 1972 | A |
3700519 | Carter | Oct 1972 | A |
3701489 | Goldsworthy et al. | Oct 1972 | A |
3728187 | Martin | Apr 1973 | A |
3730229 | D'Onofrio | May 1973 | A |
3734421 | Karlson et al. | May 1973 | A |
3738637 | Goldsworthy et al. | Jun 1973 | A |
3740285 | Goldsworthy et al. | Jun 1973 | A |
3744016 | Davis | Jul 1973 | A |
3769127 | Goldsworthy et al. | Oct 1973 | A |
3773090 | Ghersa et al. | Nov 1973 | A |
3776805 | Hansen | Dec 1973 | A |
3783060 | Goldsworthy at al. | Jan 1974 | A |
3814138 | Courtot | Jun 1974 | A |
3817288 | Ball | Jun 1974 | A |
3828112 | Johansen et al. | Aug 1974 | A |
3856052 | Feucht | Dec 1974 | A |
3860040 | Sullivan | Jan 1975 | A |
3860742 | Medney | Jan 1975 | A |
3901281 | Morrisey | Aug 1975 | A |
3907335 | Burge et al. | Sep 1975 | A |
3913624 | Ball | Oct 1975 | A |
3933180 | Carter | Jan 1976 | A |
3956051 | Carter | May 1976 | A |
3957410 | Goldsworthy et al. | May 1976 | A |
3960629 | Goldsworthy | Jun 1976 | A |
3974862 | Fuhrmann et al. | Aug 1976 | A |
3980325 | Robertson | Sep 1976 | A |
RE29112 | Carter | Jan 1977 | E |
4032177 | Anderson | Jun 1977 | A |
4048807 | Ellers et al. | Sep 1977 | A |
4053343 | Carter | Oct 1977 | A |
4057610 | Goettler et al. | Nov 1977 | A |
4095865 | Denison et al. | Jun 1978 | A |
4108701 | Stanley | Aug 1978 | A |
4111469 | Kavick | Sep 1978 | A |
4114393 | Engle, Jr. et al. | Sep 1978 | A |
4125423 | Goldsworthy | Nov 1978 | A |
4133972 | Andersson et al. | Jan 1979 | A |
4137949 | Linko, III et al. | Feb 1979 | A |
4139025 | Carlstrom et al. | Feb 1979 | A |
4190088 | Lalikos et al. | Feb 1980 | A |
4196307 | Moore et al. | Apr 1980 | A |
4200126 | Fish | Apr 1980 | A |
4220381 | van der Graaf et al. | Sep 1980 | A |
4226446 | Burrington | Oct 1980 | A |
4241763 | Antal et al. | Dec 1980 | A |
4248062 | McLain et al. | Feb 1981 | A |
4261390 | Belofsky | Apr 1981 | A |
4273160 | Lowles | Jun 1981 | A |
4303263 | Legris | Dec 1981 | A |
4303457 | Johansen et al. | Dec 1981 | A |
4306591 | Arterburn | Dec 1981 | A |
4308999 | Carter | Jan 1982 | A |
4336415 | Walling | Jun 1982 | A |
4351364 | Cocks et al. | Sep 1982 | A |
4380252 | Gray et al. | Apr 1983 | A |
4402346 | Cheetham et al. | Sep 1983 | A |
4422801 | Hale et al. | Dec 1983 | A |
4445734 | Cunningham | May 1984 | A |
4446892 | Maxwell et al. | May 1984 | A |
4447378 | Gray et al. | May 1984 | A |
4463779 | Wink et al. | Aug 1984 | A |
4488577 | Shilad et al. | Dec 1984 | A |
4507019 | Thompson | Mar 1985 | A |
4515737 | Karino et al. | May 1985 | A |
4522058 | Ewing | Jun 1985 | A |
4522235 | Kluss et al. | Jun 1985 | A |
4530379 | Policelli | Jul 1985 | A |
4556340 | Morton | Dec 1985 | A |
4567916 | Antal et al. | Feb 1986 | A |
4578675 | MacLeod | Mar 1986 | A |
4606378 | Meyer et al. | Aug 1986 | A |
4627472 | Goettler et al. | Dec 1986 | A |
4657795 | Foret et al. | Apr 1987 | A |
4681169 | Brookbank, III | Jul 1987 | A |
4700751 | Fedrick | Oct 1987 | A |
4712813 | Passerell et al. | Dec 1987 | A |
4728224 | Salama et al. | Mar 1988 | A |
4741795 | Grace et al. | May 1988 | A |
4758455 | Campbell et al. | Jul 1988 | A |
4789007 | Cretel et al. | Dec 1988 | A |
4842024 | Palinchak | Jun 1989 | A |
4844516 | Baker | Jul 1989 | A |
4849668 | Crawley et al. | Jul 1989 | A |
4859024 | Rahman | Aug 1989 | A |
4903735 | Delacour et al. | Feb 1990 | A |
4913657 | Naito et al. | Apr 1990 | A |
4936618 | Sampa et al. | Jun 1990 | A |
4941774 | Harmstorf et al. | Jul 1990 | A |
4942903 | Jacobsen et al. | Jul 1990 | A |
4972880 | Strand | Nov 1990 | A |
4992787 | Helm | Feb 1991 | A |
4995761 | Barton | Feb 1991 | A |
5048572 | Levine | Sep 1991 | A |
5077107 | Kaneda et al. | Dec 1991 | A |
5090741 | Yokomatsu et al. | Feb 1992 | A |
5097870 | Williams | Mar 1992 | A |
5156206 | Cox | Oct 1992 | A |
5170011 | Martucci | Dec 1992 | A |
5172765 | Sas-Jaworsky et al. | Dec 1992 | A |
5176180 | Williams et al. | Jan 1993 | A |
5182779 | D'Agostino et al. | Jan 1993 | A |
5184682 | Delacour et al. | Feb 1993 | A |
5188872 | Quigley | Feb 1993 | A |
5209136 | Williams | May 1993 | A |
5222769 | Kaempen | Jun 1993 | A |
5261462 | Wolfe et al. | Nov 1993 | A |
5265648 | Lyon | Nov 1993 | A |
5285008 | Sas-Jaworsky et al. | Feb 1994 | A |
5285204 | Sas-Jaworsky | Feb 1994 | A |
5330807 | Williams | Jul 1994 | A |
5332269 | Homm | Jul 1994 | A |
5334801 | Mohn et al. | Aug 1994 | A |
5346658 | Gargiulo | Sep 1994 | A |
5348088 | Laflin et al. | Sep 1994 | A |
5348096 | Williams | Sep 1994 | A |
5351752 | Wood et al. | Oct 1994 | A |
RE34780 | Trenconsky et al. | Nov 1994 | E |
5364130 | Thalmann | Nov 1994 | A |
5394488 | Fernald et al. | Feb 1995 | A |
5395913 | Bottcher et al. | Mar 1995 | A |
5398729 | Spurgat | Mar 1995 | A |
5416724 | Savic | May 1995 | A |
5426297 | Dunphy et al. | Jun 1995 | A |
5428706 | Lequeux et al. | Jun 1995 | A |
5435867 | Wolfe et al. | Jul 1995 | A |
5437311 | Reynolds | Aug 1995 | A |
5443099 | Chaussepied et al. | Aug 1995 | A |
5452923 | Smith | Sep 1995 | A |
RE35081 | Quigley | Nov 1995 | E |
5469916 | Sas-Jaworsky et al. | Nov 1995 | A |
5472764 | Kehr et al. | Dec 1995 | A |
5499661 | Odru et al. | Mar 1996 | A |
5524937 | Sides, III et al. | Jun 1996 | A |
5525698 | Bottcher et al. | Jun 1996 | A |
5538513 | Okajima et al. | Jul 1996 | A |
5551484 | Charboneau | Sep 1996 | A |
5558375 | Newman | Sep 1996 | A |
5622211 | Martin et al. | Apr 1997 | A |
5641956 | Vengsarkar et al. | Jun 1997 | A |
5671811 | Head | Sep 1997 | A |
5683204 | Lawther et al. | Nov 1997 | A |
5692545 | Rodrigue | Dec 1997 | A |
5730188 | Kalman et al. | Mar 1998 | A |
5755266 | Aanonsen et al. | May 1998 | A |
5758990 | Davies et al. | Jun 1998 | A |
5795102 | Corbishley et al. | Aug 1998 | A |
5797702 | Drost et al. | Aug 1998 | A |
5798155 | Yanagawa et al. | Aug 1998 | A |
5804268 | Mukawa et al. | Sep 1998 | A |
5828003 | Thomeer et al. | Oct 1998 | A |
5875792 | Campbell, Jr. et al. | Mar 1999 | A |
5902958 | Haxton | May 1999 | A |
5908049 | Williams et al. | Jun 1999 | A |
5913337 | Williams et al. | Jun 1999 | A |
5921285 | Quigley et al. | Jul 1999 | A |
5933945 | Thomeer et al. | Aug 1999 | A |
5950651 | Kenworthy et al. | Sep 1999 | A |
5951812 | Gilchrist, Jr. | Sep 1999 | A |
5979506 | Aarseth | Nov 1999 | A |
5984581 | McGill et al. | Nov 1999 | A |
5988702 | Sas-Jaworsky | Nov 1999 | A |
6004639 | Quigley et al. | Dec 1999 | A |
6016845 | Quigley et al. | Jan 2000 | A |
6032699 | Cochran et al. | Mar 2000 | A |
6066377 | Tonyali et al. | May 2000 | A |
6093752 | Park et al. | Jul 2000 | A |
6136216 | Fidler et al. | Oct 2000 | A |
6148866 | Quigley et al. | Nov 2000 | A |
RE37109 | Ganelin | Mar 2001 | E |
6209587 | Hsich et al. | Apr 2001 | B1 |
6220079 | Taylor et al. | Apr 2001 | B1 |
6286558 | Quigley et al. | Sep 2001 | B1 |
6315002 | Antal et al. | Nov 2001 | B1 |
6328075 | Furuta et al. | Dec 2001 | B1 |
6334466 | Jani et al. | Jan 2002 | B1 |
6357485 | Quigley et al. | Mar 2002 | B2 |
6357966 | Thompson et al. | Mar 2002 | B1 |
6361299 | Quigley et al. | Mar 2002 | B1 |
6372861 | Schillgalies et al. | Apr 2002 | B1 |
6390140 | Niki et al. | May 2002 | B2 |
6402430 | Guesnon et al. | Jun 2002 | B1 |
6422269 | Johansson et al. | Jul 2002 | B1 |
6461079 | Beaujean et al. | Oct 2002 | B1 |
6470915 | Enders et al. | Oct 2002 | B1 |
6532994 | Enders et al. | Mar 2003 | B1 |
6538198 | Wooters | Mar 2003 | B1 |
6604550 | Quigley et al. | Aug 2003 | B2 |
6631743 | Enders et al. | Oct 2003 | B2 |
6634387 | Glejbøl et al. | Oct 2003 | B1 |
6634388 | Taylor et al. | Oct 2003 | B1 |
6663453 | Quigley et al. | Dec 2003 | B2 |
6706348 | Quigley et al. | Mar 2004 | B2 |
6764365 | Quigley et al. | Jul 2004 | B2 |
6807989 | Enders et al. | Oct 2004 | B2 |
6857452 | Quigley et al. | Feb 2005 | B2 |
6902205 | Bouey et al. | Jun 2005 | B2 |
6978804 | Quigley et al. | Dec 2005 | B2 |
6983766 | Baron et al. | Jan 2006 | B2 |
7029356 | Quigley et al. | Apr 2006 | B2 |
7080667 | McIntyre et al. | Jul 2006 | B2 |
7152632 | Quigley et al. | Dec 2006 | B2 |
7234410 | Quigley et al. | Jun 2007 | B2 |
7243716 | Denniel et al. | Jul 2007 | B2 |
7285333 | Wideman et al. | Oct 2007 | B2 |
7498509 | Brotzell et al. | Mar 2009 | B2 |
20010006712 | Hibino et al. | Jul 2001 | A1 |
20020119271 | Quigley et al. | Aug 2002 | A1 |
20020185188 | Quigley et al. | Dec 2002 | A1 |
20040096614 | Quigley et al. | May 2004 | A1 |
20050189029 | Quigley et al. | Sep 2005 | A1 |
20070125439 | Quigley et al. | Jun 2007 | A1 |
20070154269 | Quigley et al. | Jul 2007 | A1 |
20080006337 | Quigley et al. | Jan 2008 | A1 |
20080006338 | Wideman et al. | Jan 2008 | A1 |
20080014812 | Quigley et al. | Jan 2008 | A1 |
20080185042 | Feechan et al. | Aug 2008 | A1 |
20080210329 | Quigley et al. | Sep 2008 | A1 |
20090107558 | Quigley et al. | Apr 2009 | A1 |
20090278348 | Brotzell et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
559688 | Aug 1957 | BE |
461199 | Aug 1968 | CH |
1959738 | Jun 1971 | DE |
3603597 | Aug 1987 | DE |
4040400 | Aug 1992 | DE |
4214383 | Sep 1993 | DE |
0024512 | Mar 1981 | EP |
0203887 | Dec 1986 | EP |
352148 | Jan 1990 | EP |
0427306 | May 1991 | EP |
0503737 | Sep 1992 | EP |
505815 | Sep 1992 | EP |
0536844 | Apr 1993 | EP |
0681085 | Nov 1995 | EP |
0854029 | Jul 1998 | EP |
0953724 | Nov 1999 | EP |
0970980 | Jan 2000 | EP |
0981992 | Mar 2000 | EP |
989204 | Sep 1951 | FR |
553110 | May 1943 | GB |
809097 | Feb 1959 | GB |
909187 | Oct 1962 | GB |
956500 | Apr 1964 | GB |
1297250 | Nov 1972 | GB |
2103744 | Feb 1983 | GB |
2193006 | Jan 1988 | GB |
2255994 | Nov 1992 | GB |
2270099 | Mar 1994 | GB |
2365096 | Feb 2002 | GB |
163 592 | Jun 1990 | JP |
WO-8704768 | Aug 1987 | WO |
WO-9113925 | Sep 1991 | WO |
WO-9221908 | Dec 1992 | WO |
WO-9307073 | Apr 1993 | WO |
WO-9319927 | Oct 1993 | WO |
WO-9502782 | Jan 1995 | WO |
WO-9712115 | Apr 1997 | WO |
WO-9919653 | Apr 1999 | WO |
WO-0031458 | Jun 2000 | WO |
WO2006003208 | Jan 2006 | WO |
Entry |
---|
International Search Report mailed on Jan. 22, 2001. |
International Search Report mailed on Mar. 5, 2001. |
International Search Report mailed on Nov. 8, 2005. |
Austigard E. and R. Tomter ; “Composites Subsea: Cost Effective Products; an Industry Challenge”, Subsea 94 International Conference, the 1994 Report on Subsea Engineering: The Continuing Challenges. |
Connell Mike et al.; “Coiled Tubing: Application for Today's Challenges”, Petroleum Engineer International, pp. 18-21 (Jul. 1999). |
Feechan Mike et al.; “Spoolable Composites Show Promise”, The American Oil & Gas Reporter, pp. 44-50 (Sep. 1999). |
Fowler Hampton et al.; “Development Update and Applications of an Advanced Composite Spoolable Tubing”, Offshore Technology Conference held in Houston Texas from May 4-7, 1998, pp. 157-162. |
Fowler Hampton; “Advanced Composite Tubing Usable”, The American Oil & Gas Reporter, pp. 76-81 (Sep. 1997). |
Hahn H. Thomas and Williams G. Jerry; “Compression Failure Mechanisms in Unidirectional Composites”. NASA Technical Memorandum pp. 1-42 (Aug. 1984). |
Hansen et al.; “Qualification and Verification of Spoolable High Pressure Composite Service Lines for the Asgard Field Development Project”, paper presented at the 1997 Offshore Technology Conference held in Houston Texas from May 5-8, 1997, pp. 45-54. |
Hartman, D.R., et al., “High Strength Glass Fibers,” Owens Coming Technical Paper (Jul. 1996). |
Haug et al.; “Dynamic Umbilical with Composite Tube (DUCR)”, Paper presented at the 1998 Offshore Technology Conference held in Houston Texas from 4th to 7th, 1998; pp. 699-712. |
Lundberg et al.; “Spin-off Technologies from Development of Continuous Composite Tubing Manufacturing Process”, Paper presented at the 1998 Offshore Technology Conference held in Houston, Texas from May 4-7, 1998 pp. 149-155. |
Marker et al.; “Anaconda: Joint Development Project Leads to Digitally Controlled Composite Coiled Tubing Drilling System”, Paper presented at the SPEI/COTA, Coiled Tubing Roundtable held in Houston, Texas from Apr. 5-6, 2000, pp. 1-9. |
Measures et al.; “Fiber Optic Sensors for Smart Structures”, Optics and Lasers Engineering 16: 127-152 (1992). |
Measures R. M.; “Smart Structures with Nerves of Glass”. Prog. Aerospace Sci. 26(4): 289-351 (1989). |
Moe Wood T. et al.; “Spoolable, Composite Piping for Chemical and Water Injection and Hydraulic Valve Operation”, Proceedings of the 11th International Conference on Offshore Mechanics and Arctic Engineering-I 992-, vol. III, Part A—Materials Engineering, pp. 199-207 (1992). |
Poper Peter; “Braiding”, International Encyclopedia of Composites, Published by VGH, Publishers, Inc., 220 East 23rd Street, Suite 909, New York, NY I0010, 1988. |
Quigley et al.; “Development and Application of a Novel Coiled Tubing String for Concentric Workover Services”, Paper presented at the 1997 Offshore Technology Conference held in Houston, Texas from May 5-8, 1997, pp. 189-202. |
Rispler K. et al.; “Composite Coiled Tubing in Harsh Completion/Workover Environments”, Paper presented at the SPE GAS Technology Symposium and Exhibition held in Calgary, Alberta, Canada, on Mar. 15-18, 1998, pp. 405-410. |
Sas-Jaworsky II Alex.; “Developments Position Ct for Future Prominence”, The American Oil & Gas Reporter, pp. 87-92 (Mar. 1996). |
Sas-Jaworsky II and Bell Steve “Innovative Applications Stimulate Coiled Tubing Development”, World Oil, 217(6): 61 (Jun. 1996). |
Sas-Jaworsky II and Mark Elliot Teel; “Coiled Tubing 1995 Update: Production Applications”, World Oil, 216 (6): 97 (Jun. 1995 ). |
Sas-Jaworsky, A. and J.G. Williams, “Advanced composites enhance coiled tubing capabilities”, World Oil, pp. 57-69 (Apr. 1994). |
Sas-Jaworsky, A. and J.G. Williams, “Development of a composite coiled tubing for oilfield services”, Society of Petroleum Engineers, SPE 26536, pp. 1-11 (1993). |
Sas-Jaworsky, A. and J.G. Williams, “Enabling capabilities and potential applications of composite coiled tubing”, Proceedings of World Oil's 2nd Intemational Conference on Coiled Tubing Technology, pp. 2-9 (1994). |
Shuart J. M. et al.; “Compression Behavior of ≠45o-Dominated Laminates with a Circular Hole or Impact Damage”, AIAA Journal 24(1):115-122 (Jan. 1986). |
Silverman A. Seth; “Spoolable Composite Pipe for Offshore Applications”, Materials Selection & Design pp. 48-50 (Jan. 1997). |
Williams G. J. et al.; “Composite Spoolable Pipe Development, Advancements, and Limitations”, Paper presented at the 2000 Offshore Technology Conference held in Houston Texas from May 1-4, 2000, pp. 1-16. |
Williams, J.G., “Oil Industry Experiences with Fiberglass Components,” Offshore Technology Conference, 1987, pp. 211-220. |
Number | Date | Country | |
---|---|---|---|
20080185042 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
60887875 | Feb 2007 | US |