The invention relates generally to air distribution support surface products such as low air loss support surface products that have a surface that comes in contact with a user's skin or clothing.
Air distribution support surface products may be pads that may be placed on mattresses, chairs, or other support surfaces. Known air distribution support surfaces typically have small holes in an outer sheet that allow the passing of vapor, such as air, that is supplied by a pump to the air distribution support surface. Air distribution support surfaces may prevent and cure users prone to or suffering from decubitus ulcers, and also with respiratory complications by loosening fluids in the lungs, and attempt to remove moisture away from a user's skin to help prevent discomfort such as bed sores, pressure sores, ulcers or other problems. As such, they may help prevent skin macerations and high pressure points on a patient's or any end user's skin. Air distribution support surfaces are also known to include attachment structures (e.g., a zipper) to allow the air distribution support surface to be zipped to a mattress cover or other support surface. Mattresses may be solid foam mattresses, air cell based mattresses or any other suitable support surfaces.
Pressure inflatable support surfaces are also known to help in the prevention of skin breakdown and are sometimes referred to as “low air loss” systems which attempt to circulate a low amount of air beyond normal air convection to remove moist air vapor given off by a patient to keep the patient dry and promote healing. Such air distribution support surface products include, for example, a single chamber that is inflatable and have a top sheet with small holes or other vapor permeable features to allow air that is placed into the air distribution support surface to escape toward the patient's skin. A bottom sheet may be a quilted synthetic sheet covered on the inside with a type of urethane undercoat which may be vapor permeable to allow, for example, water vapor molecules to pass through but forms a waterproof barrier to prevent water from flowing through apertures in the top sheet from passing entirely through the air distribution support surface product. The sheets are sewn about a periphery to create a single low air loss chamber that allows air to pass up through the apertures in the top sheet while substantially preventing air flow through the bottom. However, when a patient lays on such a type of device, the weight of the patient can cause the top sheet to fully compress in parts under the patient to come in contact with the inner surface of the bottom layer preventing suitable air flow within the chamber. This can result in reduced air flow coming from the inflatable top sheet thereby reducing its impact and ability to assist in improving the user's condition.
In addition, such single chambered devices may also employ a simple inlet tube structure that may be, for example, only several inches long which enters through an opening into the chamber to allow the coupling of an air hose from a low air loss air supply. Such inlet tubes, however, are positioned at the end or foot of the inflatable sheet and may be inadvertently cut off by the weight of a patient's or by a user's foot when laying on top of the sheet. This construction may fail to adequately provide air throughout the inflatable sheet since it only provides a single air dispensing point within the single chambered low air loss inflatable sheet. Other disadvantages will be recognized by those of ordinary skill in the art.
Known air distribution support surface products however, may not provide adequate therapeutic results since when a patient lays on top of the air distribution support surface product, the weight of the user can compress the air distribution support surface product to a point that may undesirably restrict air flow in the product reducing the impact of the air flow from the air distribution support surface product.
Accordingly, a need exists for an improved air distribution support surface product and method that overcomes one or more of the above drawbacks.
The invention will be more readily understood in view of the following description when accompanied by the figures below and wherein like reference numerals represent like elements:
Generally, an air distribution support surface product includes a vapor permeable material such as a sheet of breathable material, a fluid resistant material, such as a sheet of waterproof material and an intermediate fluid passing material interposed between the vapor permeable material and the fluid resistant material to form a plurality of chambers. One of the chambers serves as a type of fluid retention chamber and another chamber serves as a type of fluid loss chamber. A fluid intake opening may be provided to allow fluid, such as air, to inflate the chambers. In one example, both of the chambers share the intermediate fluid passing material. As such, the fluid retention chamber is formed by the fluid resistant material and the intermediate fluid passing material. The fluid loss chamber is formed by the vapor permeable material and the intermediate fluid passing material.
When fluid is provided to the air distribution support surface product, the fluid resistant material which may be, for example, a bottom surface, prevents air from flowing from the bottom but the intermediate fluid passing portion allows the air to flow from the fluid retention chamber into the fluid loss chamber. The vapor permeable material in the fluid loss chamber allows air to pass from the air distribution support surface product to a user that is in contact or proximate to the air distribution support surface product.
In one example, a fluid dispensing structure is placed inside the air distribution support surface product to allow distributed inflation of the fluid retention chamber via one or more fluid intake openings. Also in one example, the intermediate fluid passing material is a compressible material that separates the two chambers. Among other advantages, the compressible material can allow suitable comfort for the user but also includes air openings therein that provide cross dispersion of fluid from the fluid retention chamber to pass to the fluid loss chamber in addition to allowing air to flow in an outward manner, and crossways manner if desired, from the fluid retention chamber. A method of making an air distribution support surface product is also disclosed.
In one example, an air distribution support surface product may serve as a bed top sheet, top cover or mattress pad or may be used for any other suitable purpose and in one example, employs a vapor permeable nylon sheet that is attached around its periphery with a fluid resistant nylon sheet and an intermediate fluid passing sheet interposed between the vapor permeable sheet and the fluid resistant sheet to form a plurality of chambers. The intermediate fluid passing sheet in one example, is made of a compressible material and has a thickness greater than the thickness of the vapor permeable nylon sheet and the fluid resistant nylon sheet. An attachment structure is coupled to the vapor permeable nylon sheet and the intermediate fluid passing sheet (also referred to as a top sheet assembly) which is attachable and detachable to a corresponding attachment structure coupled to the fluid resistant nylon sheet. The fluid resistant nylon sheet is removable from the top sheet assembly for laundering or service of the top sheet assembly. An air distribution hose serving as the air distribution structure is installed within the top sheet assembly and arranged in one example, in a U shape held by support sleeves in the top sheet assembly. The U shapes hose or tube includes holes to allow air to pass from the tubing into a chamber. A base of the air distribution structure includes a stub hose with a connector for coupling to a source of pressurized air from an external pump. The pump provides low pressurized air and the holes within the tube inflate the air distribution support surface product.
As shown, an outer surface 26 of the air distribution support surface product 16 is in contact with the user and provides a type of low air loss top sheet on which the user 18 may lay. However, it will be recognized that the air distribution support surface product 16 may be used on a chair or other surface and may be sized to be of any desirable shape or configuration depending upon the need of a user.
The chamber 308 is a fluid loss chamber formed by the vapor permeable material 302 and the intermediate fluid passing material 306. The chamber 310 is a fluid retention chamber formed by the fluid resistant material 304 and the intermediate fluid passing material 306. As such, in this example, the intermediate fluid passing material serves as a shared wall to both of the respective chambers 308 and 310. However, it will be recognized that other intermediate materials or layers may also be employed if desired. The intermediate fluid passing material 306, in one example, is a compressible material that has a thickness greater than a thickness of both the vapor permeable material and the fluid resistant material 304. However it will be recognized that the intermediate fluid passing material 306 may be made of any suitable material such as, for example, the vapor permeable material 302 with additional perforations therein to allow fluid to pass from chamber 310 to chamber 308. One example of suitable intermediate fluid passing material may be AirX™ spacer fabric sold by TYTEX Ortho Car, TYTEX Inc., Woonsocket, R.I., however it will be recognized that any suitable material may also be employed. The vapor permeable material may be, for example, a sheet of breathable nylon such as type FSTXP601 Soft-Tex Plus sold by Brookwood Companies Inc., Brookwood Roll Goods, Gardena, Calif., however any suitable material can be used. The fluid resistant material may be a PVC coated nylon such as Chemtick, Hicksville, N.Y., however any suitable material may be used.
As shown, when the air distribution support surface product 16 is inflated, fluid passes from the fluid retention chamber 310 to the fluid loss chamber 308 and through the vapor permeable material 302 to provide a type of low air loss support surface having multiple chambers. The air flow is shown by the arrows generally indicated as 312.
The air distribution support surface product 16, in one example, also includes a fluid dispensing structure 314 which in this example, is a U shaped tubing structure that is positioned about a periphery of the chambers. (See
As also shown in
Referring also to
The fluid dispensing structure 314 in this example, is located about a periphery of the fluid retention chamber (see also
The fluid dispensing structure 412 is shown, in this example, to be in a U shape having a quick connect coupler portion 418 to connect with a hose 24 of the air supply unit 22. The fluid dispensing structure as shown includes the flexible tube 412 that defines the fluid openings 410 and the tube holding structure such as sleeve 414 holds the flexible tubing structure 412 within the fluid retention chamber 310. Among other advantages, the peripheral location of the fluid dispensing structure can allow for a more uniform and distributed inflation of the multi-chamber air distribution support surface product 16 and can help prevent the plugging problem that can be caused by a single opening and centrally located fluid intake structure of prior art products. Other advantages will also be recognized by those of ordinary skill in the art. Also shown are tube connectors 420 that connect multiple sections of tubing 412. However, it will be recognized that a single tube may be used or that any suitable structure may be employed.
For example, in an alternative embodiment, not only may a different non-peripheral configuration be employed, such as a T-shape, S-shape or any other suitable structure, but the tubing 412 may be removed and instead manifolds of the fluid resistant material 304 or other material may be sewn in as part of the structure and holes placed into the fluid resistant material so that a fabric based fluid dispensing structure is employed. In addition, as noted, the fluid dispensing structure, instead of being about a periphery, may also be instead located at a foot or end of the air distribution support surface product and may be an elongated manifold or tube with air holes therein to distribute air along a base or foot (or head) portion of an air distribution support surface. Other positions and configurations may also be employed as desired. Other alternatives will also be recognized by those of ordinary skill in the art.
In addition, as shown for example in
Also, the vapor permeable material 302 and the intermediate fluid passing material 306 are a top sheet assembly in one example and the fluid resistant material 304 is removably attachable to the top sheet assembly via the attachment structures 320.
The intermediate fluid passing portion 812 is interposed between the vapor permeable portion and the fluid resistant portion to form a plurality of chambers as described above. A fluid intake opening, such as a hole to receive the fluid distribution structure 414, may be placed in the fluid resistant portion 810, as described above. However, it will be recognized that a fluid intake opening can be in any suitable location.
The above products and methods offer improvements to air supported structures which are typically intended for therapeutic purposes. In one example of the above product, air or other suitable vapor is discharged from, for example, a hose or other structure into a confined space inside the product, air passes from the fluid retention chamber and is emitted from an upper or top vapor permeable material. As described above, the air distribution support surface product may be formed from panels or sheets of material with zippers or other attachment mechanisms at their perimeter or other positions that fasten to corresponding zippers (or other structure) on the undersides of a top sheet assembly. A bottom sheet, for example, is not vapor permeable is attached to the top sheet assembly and traps air. The lower panel is removable for laundering or service of the top sheet assembly. An intermediate air passing material serves in one embodiment, as a cushioning material that offers low resistant to air flow. This material may also be a quilted layer with holes therein to allow more air flow as opposed to typical quilted layers or may be noncompressible and formed by fusing multiple layers of nylon sheeting together with holes in each of the layers to allow passing of air. Other structures may also be used.
An air distribution hose is installed within the top sheet assembly and arranged in a U shape against three walls of the top sheet assembly. The base of the U shape tubing is at the user's foot when in use. The base end of the U tubing includes a stub hose with a connector for coupling to a source of pressurized air from an external pump. Hose sections internal to the top sheet assembly are perforated at intervals to discharge the air evenly throughout the chamber 310 of the air distribution support surface product.
It will be recognized that the low air loss top sheet or air distribution support surface product described above may be supplied with fluid by a powered or non-powered external fluid source through any suitable mechanism and that layers of material in the air distribution support surface product may be bonded, sewn, welded, fused separate layers of fabrics or material to form the chambers as described herein. The air distribution support surface product may be a mattress overlay, may serve as a mattress overlay system or fluid mattress replacement system or may be suitable as any support surface as desired. It may be placed on a static support surface or low air loss surface, a turning system, combination thereof or any other suitable surface as desired. It will be recognized that the air distribution support surface product described herein can be any suitable length, thickness, shape or configuration as desired and can help improve air flow to a user's skin to help avoid capillary occlusion which can cause decubitus ulcers or provide different benefits. Other enhancements will also be recognized by those of ordinary skill in the art.
Also, the power control system may also include pressure sensor feedback controls for an entire support surface as known in the art. Among other advantages, blood supply to the skin can be improved. The intermediate fluid passing material serves as a type of spacer layer in one embodiment, that tends to preserve the flatness of the top surface, reduce the tendency to droop into crevices in air cells in a support surface, and is highly breathable creating a moisture free environment decreasing chances of skin maceration. Other advantages will also be recognized.
As shown in one embodiment, the air distribution support surface product consists of three layers or sheets wherein the upper layer that is intended to be close to the user is a breathable fabric layer which forms part of a chamber that gradually releases fluid or air. A middle or intermediate layer allows fluid to move freely between a bottom layer and the top layer or a bottom chamber and an upper chamber. In one example, the bottom layer has a connector with a quick disconnect air connector through which air is supplied to the chambers. It will be recognized that the sheets may be sewn, welded, fused, or otherwise fastened as desired to provide the structure as described herein. In one example, the air distribution support surface product may be assembled by cutting the vapor permeable sheet, the intermediate fluid passing sheet, the tube holding loops, and inner and outer zippers to dimensions and bonded or sewn or welded or fused together. The bottom or fluid resistant material and zipper is cut to dimensions and bonded or sewn or welded or fused together so that the fluid resistant material includes a zipper or other attachment structure to allow it to be attached to the top and intermediate sheets. A fluid input hose assembly is inserted into the loops of the top layer and the bottom layer is fastened to the inner zipper of the top layer to form a complete air distribution support surface product.
Among other advantages, the multiple chamber configuration with the intermediate fluid passing sheet allows air to flow from the fluid retention chamber when the air distribution support surface product is inflated, to the fluid loss chamber and out through the vapor permeable material 302. When a user, for example, lays on top of the air distribution support surface product 16, the intermediate fluid passing material 306 whether compressible or not may still allow air flow to reach the user's skin, if the user's weight effectively collapses the area of the vapor permeable material 302 that is below the user's body since the intermediate fluid passing material allows fluid passage.
The above detailed description of the invention and the examples described therein have been presented for the purposes of illustration and description only and not by limitation. It is therefore contemplated that the present invention cover any and all modifications, variations or equivalents that fall within the spirit and scope of the basic underlying principles disclosed above and claimed herein.
Number | Name | Date | Kind |
---|---|---|---|
3757366 | Sacher | Sep 1973 | A |
4225989 | Corbett et al. | Oct 1980 | A |
4267611 | Agulnick | May 1981 | A |
4347633 | Gammons et al. | Sep 1982 | A |
4391009 | Schild et al. | Jul 1983 | A |
4631767 | Carr et al. | Dec 1986 | A |
4653130 | Senoue et al. | Mar 1987 | A |
4694521 | Tominaga | Sep 1987 | A |
4944060 | Peery et al. | Jul 1990 | A |
5010609 | Farley | Apr 1991 | A |
5103519 | Hasty | Apr 1992 | A |
5370439 | Lowe et al. | Dec 1994 | A |
5375273 | Bodine, Jr. et al. | Dec 1994 | A |
5509155 | Zigarac et al. | Apr 1996 | A |
5755000 | Thompson | May 1998 | A |
5802645 | Vrzalik | Sep 1998 | A |
5817391 | Rock et al. | Oct 1998 | A |
5870785 | Hoorens | Feb 1999 | A |
5926884 | Biggie et al. | Jul 1999 | A |
6073291 | Davis | Jun 2000 | A |
6085372 | James et al. | Jul 2000 | A |
6148461 | Cook et al. | Nov 2000 | A |
6618884 | Wu | Sep 2003 | B1 |
6782574 | Totton et al. | Aug 2004 | B2 |
6898809 | Davis | May 2005 | B2 |
7100978 | Ekern et al. | Sep 2006 | B2 |
7373680 | Davis | May 2008 | B2 |
7376995 | Davis | May 2008 | B2 |
7469432 | Chambers | Dec 2008 | B2 |
20050022308 | Totton et al. | Feb 2005 | A1 |
20080022461 | Bartlett et al. | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080098532 A1 | May 2008 | US |