This disclosure relates to a flexible container, such as a storage bag for food products and the like. More particularly, the present invention relates to a bag having a plurality of chambers separated by a releasable seal and vented for microwave cooking of sealed food products.
Some storage bags can have a single compartment or chamber in which to store edible goods. Such storage bags can be used for transport and display of various food goods in, for example, a grocery store. However, such goods are only stored in such storage bags. In order to prepare or heat the subject food goods, they must be removed from the storage bags and prepared in a different container before they can be consumed.
Aspects of the present application include a storage bag including a film sheet. The film sheet defines a first chamber, a second chamber located adjacent the first chamber; and a releasable seal preventing fluid communication between the first chamber and the second chamber. The releasable seal may be configured to release or release when an internal temperature within either the first chamber or the second chamber exceeds a temperature threshold or an internal pressure within either the first chamber or the second chamber exceeds a pressure threshold or upon a desired combination of temperature and pressure being exceeded.
An aspect of the disclosure provides a multi-chamber storage bag formed of a film sheet. The storage bag can have a first chamber. The storage bag can have a second chamber located adjacent the first chamber. The storage bag can have a releasable seal joining the first chamber and the second. The releasable seal can prevent fluid communication between the first chamber and the second chamber. The releasable seal can release in response to an internal temperature within the first chamber exceeds a temperature threshold. The releasable seal can release in response to an internal temperature within the second chamber exceeds the temperature threshold. The releasable seal can release in response to a temperature of the releasable seal exceeding a threshold. The releasable seal can release in response to an internal pressure within the first chamber exceeds a pressure threshold. The releasable seal can release in response to an internal pressure within the second chamber exceeds the pressure threshold.
Another aspect of the disclosure provides a storage bag. The storage bag can have an upper chamber formed from a first plurality of panels of a film sheet, and configured to contain a first edible food. The storage bag can have a lower chamber disposed adjacent the upper chamber and formed from a second plurality of panels of the film sheet. The second plurality of panels can have a plurality of apertures, the lower chamber being configured to contain a second edible food. The storage bag can have a releasable seal disposed between the upper chamber and the lower chamber. The releasable seal can prevent fluid communication between the upper chamber and the lower chamber when ambient pressure within the lower chamber is below a threshold. The releasable seal can release when a pressure within the lower chamber rises above a threshold.
Other features and advantages will be apparent to one of ordinary skill in the art with a review of the following detailed description.
The details of embodiments of the present disclosure, both as to their structure and operation, can be gleaned in part by study of the accompanying drawings, in which like reference numerals refer to like parts, and in which:
Patent Body Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
The following detailed description provides further details of the figures and example implementations of the present application. Reference numerals and descriptions of redundant elements between figures are omitted for clarity. Terms used throughout the description are provided as examples and are not intended to be limiting. For example, the use of the term “automatic” may involve fully automatic or semi-automatic implementations involving user or operator control over certain aspects of the implementation, depending on the desired implementation of one of ordinary skill in the art practicing implementations of the present application.
A releasable seal 115 can be located between the upper chamber 105 and the lower chamber 110. The releasable seal 115 may be configured to provide a fluid tight seal between the upper chamber 105 and the lower chamber 110 such that liquid or gas may not pass between the upper chamber 105 and the lower chamber 110 while the releasable seal 115 is closed. The upper chamber 105 and the lower chamber 110 can be formed from a single film sheet or from multiple segments of film sheets that are joined together as a single film sheet. These aspects are described below, in connection with
In some example implementations, the releasable seal 115 may include a closure mechanism 145 formed by closure elements 150, 155 located on opposing seal member sheets 160, 165. In some other embodiments, the closure elements 150, 155 can be opposing or complementary sides of a seal to provide the fluid tight seal between the upper chamber 105 and the lower chamber 110. For example, the closure elements 150, 155 can form a complementary zipper-like attachment between each other, such as a press-and-lock zipper-style seal (see
In some example implementations, the releasable seal 115 provided by the closure elements 150, 155 may be configured to release in response to an internal temperature and/or pressure within the upper chamber 105 and lower chamber 110 exceeding a threshold. An exemplary benefit of various embodiments of the releasable seal is the fluid tight seal is maintained until the edible contents of the lower chamber 110 are sufficiently cooked and the (steam) pressure within the lower chamber 110 has built to the point at which the releasable seal 115 is broken, providing fluid communication between the upper chamber 105 and the lower chamber 110. This feature is described in further detail in connection with
The storage bag 100 can include one or more ventilation openings 120. The ventilation openings 120 can be apertures or perforations providing fluid communication between an exterior atmosphere 10 surrounding the storage bag 100 and the lower chamber 110 to control pressure within the lower chamber 110. The ventilation openings 120 can ensure the releasable seal 115 does not release (e.g., separate, rupture, partially separate or partially rupture) prematurely and that the chamber does not release somewhere other than at the releasable seal. The number and size of the ventilation openings 120 may be selected such that during heating of the storage bag 100, the pressure within the lower chamber 110 increases at a particular rate such that edible goods in the upper chamber 105 and the lower chamber 110 are cooked or heated to a desired level prior to the releasable seal 115 rupturing. The rate of pressure change within the lower chamber 110 may be affected by the water/steam content of the edible goods in the upper chamber 105 and the lower chamber 110. For example, if the edible goods are potatoes, 8 ventilation openings having an average diameter of 1-1.5 mm may provide sufficient ventilation to control release of the releasable seal 115 until the potatoes are sufficiently cooked (approximately 6 minutes into heating). The number of the openings can vary, as can their size, in relation to the amount of edible goods. Alternatively, a one way or two way gas releasing valve may be used to control and release the pressure.
As illustrated in
As illustrated, the sheet 125 includes vertical peripheral regions 205, a lower peripheral region 215 and an upper peripheral region 235 illustrated as the areas outside of the broken line box 220 of
The sheet 160 can have vertical peripheral regions 305, a lower peripheral region 335 and an upper peripheral region 315 illustrated as the areas outside of the broken line box 320 of
Similarly, the sheet 165 includes vertical peripheral regions 310, a lower peripheral region 340 and a upper peripheral region 330 illustrated as the areas outside of the broken line box 325 of
In some examples, the closure elements 156, 157 may be formed from a material having a specific rigidity below the threshold temperature but may become sufficiently elastic above the threshold temperature such that the releasable seal may release in response to internal pressure (e.g., within the lower chamber 110) to allow fluid communication between the upper chamber 105 and the lower chamber 110.
Though the releasable seal 115 and the closure mechanism 145 is illustrated similar to a zipper in
Similar to the rigidity of the zipper-type closure mechanism of
Further, the releasable seal 115 provided by the closure mechanism 145 as shown in the embodiments of
As illustrated, the sheet 135 includes vertical peripheral regions 405, a first horizontal peripheral region 410 and a second horizontal peripheral region 415 illustrated as the areas outside of the broken line box 420 of
The number and size of the ventilation openings 120 may be selected such that during heating of the storage bag 100, the pressure within the lower chamber 110 increases at a particular rate such that edible goods in the upper chamber 105 and the lower chamber 110 is substantially cooked prior to the releasable seal 115 rupturing. The rate of pressure change within the lower chamber 110 may be affected by the water/steam content of the edible goods in the upper chamber 105 and the lower chamber 110. For example, if the edible goods are potatoes, eight (8) ventilation openings having an average diameter of 1-1.5 mm may provide sufficient ventilation to control release of the releasable seal 115 until the potatoes are sufficiently cooked (approximately 6 minutes into heating).
The gusset region 425 includes a plurality of folds spanning a width of the sheet 135, across the sheet 135. The folds are represented by broken lines (folds) 430, 432. The folds 430, 432 can be formed in a direction parallel to the one or more ventilation openings 120. The gusset region 425 can also have a plurality of seams represented by broken lines 435, 440, 445, 450 adjacent the folds represented by broken lines 432. The seams can be formed by sealing or otherwise welding adjacent pairs of the broken lines 435, 440, 445, 450 together. The resulting seams can then lie at either end (first end opposite a second end) of the folds 430, 432.
When the bag 100 is assembled, the gusset region 425 is folded along each of the broken lines 430, 432. Specifically, the gusset region 425 is folded in a first direction along broken line 430 and folded in a second, different direct along broken line 432. The first direction can be parallel to the first horizontal peripheral region 410 and the second peripheral region 415. The second direction can be at an angle to the first direction as shown in
As shown in
Further, the sheet 160 that forms part of the releasable seal 115 in
Additionally, the vertical peripheral regions 205 of sheet 125 may be integral with (or bonded to) the vertical regions 210 of sheet 130 to form part of the vertical seal 195 (represented by a dotted pattern of
The gusset region 425 includes a plurality of folds represented by broken lines 430, 432 and a plurality of seams represented by broken lines 435, 440, 445, 450 adjacent the folds represented by broken lines 432. When the bag 100 is assembled, the gusset region 425 is folded along each of the broken lines 430, 432. Specifically, the gusset region 425 is folded in a first direction along broken line 430 and folded in a second, different (e.g., opposite) direction along broken line 432. Additionally, each of the seams represented by broken lines 435 may be bonded together. Further, each of the seams represented by broken lines 440 may be bonded together. Additionally, each of the seams represented by broken lines 445 may be bonded together. Each of the seams represented by broken lines 450 may also be bonded together. Additionally, once folded along the broken lines 430, the vertical peripheral region 405 of each side of the sheet 135 may be bonded to itself to form part of the vertical seal 195 (represented by a dotted pattern) along edges of the lower chamber 110 in
Additionally, once folded along the broken lines 430, the vertical peripheral region 405 of each side of the sheet section may be bonded to itself to form part of the vertical seal 195 (represented by a dotted pattern) along edges of the lower chamber 110 in
Though
Other implementations may be formed from any number of sheets that might be apparent to a person of ordinary skill in the art. Additionally, though
The bag 100 may be heated (e.g., using a microwave oven or other heating source). As bag 100 is heated, each of the first type of edible goods 810 and the second type of edible goods 815 are separately heated in their respective upper chamber 105 and lower chamber 110. In some embodiments, as each of the first type of edible goods 810 and the second type of edible goods 815 are heated, steam or other gaseous food material may build up in the upper chamber 105 and the lower chamber 110, increasing internal pressure within. As the internal pressure increases in the upper chamber 105 and the lower chamber 110, the stress created by the increased pressure may be applied to releasable seal 115. When the pressures within the upper chamber 105 and the lower chamber 110 exceed a threshold, the releasable seal 115 will release and gravity may pull the first type of edible goods 810 toward the second type of edible goods 815 mixing the two types of edible goods 810, 815.
Alternatively, the releasable seal 115 may be configured to release in response to an internal temperature within the upper chamber 105 and lower chamber 110 exceeding a threshold. For example, releasable seal 115 may be formed from a material having a specific rigidity below the threshold temperature but may become sufficiently elastic above the threshold temperature. The elasticity can be such that the releasable seal releases or opens in response to internal pressure to allow fluid communication between the upper chamber 105 and the lower chamber 110. This can allow the first type of edible goods 810 to mix with the second type of edible goods 815
Further, in some example implementations, the releasable seal 115 may be configured to release in response to a combination of an internal temperature and internal pressure within the upper chamber 105 and lower chamber 110 exceeding a threshold. For example, the releasable seal 115 may be formed from a material having a rigidity that decreases in response increasing temperature. As the rigidity decreases (the material becomes more elastic) the adhesion of the seal decreases. The ability of the seal to withstand internal pressure decreases as the temperature increases. Therefore, a tradeoff can be made between the temperature and the pressure at which the releasable seal will release.
The openings 120 providing fluid communication between the exterior atmosphere 10 surrounding the storage bag 100 and the lower chamber 110 allow control of the pressure within the lower chamber 110 to ensure the releasable seal 115 does not release prematurely (e.g., before the first type of edible goods 810 and the second type of edible goods 815 are sufficiently cooked). The openings 120 can further ensure that the lower chamber 110 does not release somewhere other than at the releasable seal. The number and size of the ventilation openings 120 may be selected such that during heating of the storage bag 100, the pressure within the lower chamber 110 increases at a particular rate such that edible goods in the upper chamber 105 and the lower chamber 110 are substantially cooked prior to the releasable seal 115 rupturing. For example, for the second type of edible goods 815 being potatoes, eight (8) ventilation openings having an average diameter of 1-1.5 mm may provide sufficient ventilation to control release of the releasable seal 115 until the potatoes are sufficiently cooked (approximately 6 minutes). The number of the openings can vary, as can their size, in relation to the amount of edible goods.
In some embodiments, pressure may increase in only one of the upper chamber 105 and the lower chamber 110. For example, in the example, of
Alternatively, the releasable seal 115 may be configured to release in response to an internal temperature within the upper chamber 105 and lower chamber 110 exceeding a threshold. For example, releasable seal 115 may be formed from a material having a specific rigidity below the threshold temperature but may become sufficiently elastic above the threshold temperature such that the releasable seal may release in response to internal pressure to allow fluid communication between the upper chamber 105 and the lower chamber 110.
Further, in some example implementations, the releasable seal 115 may be configured to release in response to a combination of an internal temperature and internal pressure within the upper chamber 105 and lower chamber 110 exceeding a threshold. For example, the releasable seal 115 may be formed from a material having a rigidity that decreases in response increasing temperature. As the rigidity decreases (the material becomes more elastic) the adhesion of the seal decreases. The ability of the seal to withstand internal pressure decreases as the temperature increases. Therefore, a tradeoff can be made between the temperature and the pressure at which the releasable seal will release.
The bag 100 may now be opened and the combination of the first type of edible goods 810 and the second type of edible goods 815 may be consumed. For example, the upper edge 805 of the bag 100 may be torn away to allow the bag 100 to be opened. Other mechanisms for opening the bag 100 may be apparent to a person of ordinary skill in the art.
Though potatoes are illustrated as the second type of edible goods 815 in
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, each function and/or operation within such block diagrams, schematics, or examples can be implemented, individually and/or collectively.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the protection. Indeed, the novel methods and apparatuses described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the protection. The accompanying implementations and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the protection.
Although the present disclosure provides certain example embodiments and applications, other embodiments that are apparent to those of ordinary skill in the art, including embodiments which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is intended to be defined only by reference to the appended claims.
This application claims benefit to U.S. Provisional Application 62/540,500, filed Aug. 2, 2017, entitled “DUAL CHAMBER BAG,” the contents of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62540500 | Aug 2017 | US |