Multi chamber mixing manifold

Information

  • Patent Grant
  • 8834016
  • Patent Number
    8,834,016
  • Date Filed
    Friday, April 27, 2012
    12 years ago
  • Date Issued
    Tuesday, September 16, 2014
    10 years ago
Abstract
One or more embodiments relate to systems and methods for mixing of two or more fluids using a multi-chamber manifold. One or more embodiments relate to optimal mixing.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a non-provisional of U.S. provisional patent application Ser. No. 61/479,641, filed on Apr. 27, 2011, which is incorporated herein by reference.


BACKGROUND

One embodiment relates generally to systems and methods for optimal mixing and distribution of two or more fluids, and more particularly, to systems and methods for optimal mixing and distribution of two or more fluids, including fracturing (frac) fluids and completion fluids, used in oil and gas operations.


In a variety of applications, the proper mixing and distribution of two or more fluids is a critical performance-affecting factor.


Many conventional manifold designs provide insufficient mixing and/or distribution of the subject fluids. For example, one conventional manifold design comprises a first pipe having inlets disposed thereon arranged in a first linear array pattern. The first pipe is connected via one or more conduits to a second pipe disposed substantially parallel to the first pipe, the second pipe having outlets disposed thereon arranged in a second linear array pattern. Fluids injected through the inlets travel through the first pipe to the connecting conduits and then into the second pipe where the fluid can then exit through the outlets. This flow path would ideally provide the means by which the injected fluids can thoroughly mix before exiting the manifold.


However, a typical scenario results in the fluid(s) injected through the outermost inlets of the first linear array pattern (i.e., the inlets disposed closest to the ends of the first pipe) being substantially absent from the outermost outlets of the second linear array pattern (i.e., the outlets disposed closest to the ends of the second pipe) positioned on the opposite side. A fluid injected through an inlet at one end of the first pipe is unlikely to travel in a flow path in which it will make it to an outlet at the opposite end of the second pipe.


While certain novel features of this invention shown and described below are pointed out in the annexed claims, the invention is not intended to be limited to the details specified, since a person of ordinary skill in the relevant art will understand that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation may be made without departing in any way from the spirit of the present invention. No feature of the invention is critical or essential unless it is expressly stated as being “critical” or “essential.”


SUMMARY

The apparatus of the present invention solves the problems confronted in the art in a simple and straightforward manner. What is provided is a multi chamber mixing chamber method and apparatus.


One or more embodiments of the invention provide systems and methods for optimal mixing and distribution of two or more fluids.


The drawings constitute a part of this specification and include exemplary embodiments to the invention, which may be embodied in various forms.





BRIEF DESCRIPTION OF THE DRAWINGS

For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:



FIG. 1 shows a top view of the exterior of a multi-chamber manifold in accordance with one or more embodiments of the invention.



FIG. 2 shows a rear perspective view of the exterior of a multi-chamber manifold in accordance with one or more embodiments of the invention.



FIG. 3 shows a perspective view taken from the right side of the rear interior portion of a multi-chamber manifold in accordance with one or more embodiments of the invention.



FIG. 4 shows a perspective view taken from the left side of the rear interior of a multi-chamber manifold in accordance with one or more embodiments of the invention.



FIG. 5 is a front perspective view (taken from the right side) showing the multi-chamber manifold of FIGS. 1-4 mounted on a skid which in turn is mounted on a trailer.



FIG. 6 is a front perspective view (taken from the left side) showing the multi-chamber manifold of FIGS. 1-4 mounted on a skid which in turn is mounted on a trailer.



FIG. 7 shows a flowchart illustrating a method in accordance with one or more embodiments of the invention.





DETAILED DESCRIPTION

Detailed descriptions of one or more preferred embodiments are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in any appropriate system, structure or manner.



FIGS. 1-2 illustrate a top view and a perspective view, respectively, of the exterior of a multi-chamber manifold 100 in accordance with one or more embodiments of the invention.


The multi-chamber manifold 100 comprises an elongate housing 104 having a first end 116a and a second end 120a. The ends 116a, 120a may be sealably capped with blocking end flanges 116b, 120b to prevent fluid from escaping therethrough. A plurality of fluid inlets 108a-108d may be disposed along housing 104 in a first linear array pattern. Outermost fluid inlet 108a may be disposed proximate the first end 116a and the first linear array pattern may extend towards the second end 120a. A plurality of fluid outlets 112a-112j may also be disposed along housing 104 in a second linear array pattern. Outermost fluid outlet 112a may be disposed proximate the second end 120a and the second linear array pattern may extend towards the first end 116a. Flow control valves (not shown) may be used to regulate fluid flow through the fluid inlets 108a-108d and the fluid outlets 112a-112j. In one embodiment, carbon steel may be used to construct the multi-chamber manifold 100. However, any material suitable for constructing a manifold for optimal mixing and distribution of two or more fluids may be used. While housing 104 is shown as having an annular cross-section, other configurations could be used in other embodiments.


Inlets 108a-108d may each be connected to one or more sources of fluid so that at least two different types of fluid may be fed or supplied to the multi-chamber manifold 100 for mixing and distribution. The fluids may include liquids and gases. In one embodiment, the fluids may comprise frac water blends obtained from a plurality of sources, or mixtures of frac fluids, chemical additives, and brines. Methods for facilitating the delivery of optimal volumes of a frac fluid containing optimal concentrations of one or more additives to a well bore are disclosed in United States Patent Publication No. 2010/0059226 A1, which is incorporated herein by reference in its entirety. Where a definition or use of a term in the incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply. The systems and methods of the present invention may be used to provide a homogeneous fluid blend for use in conjunction with the incorporated reference.


Referring now to FIG. 3, an inside view of housing 104 according to one or more embodiments of the present invention is shown. Within housing 104 of the multi-chamber manifold 100, there may be provided a plurality of chambers. In one embodiment, the multichamber manifold 100 comprises two chambers: a primary mixing chamber 124 (referred to hereinafter as “vortex chamber 124”) and a secondary mixing chamber 128.


As shown in FIGS. 3-4, the vortex chamber 124 may comprise a chamber separation structure 132 separating the vortex chamber 124 from the secondary mixing chamber 128. An upper portion of the inner wall of housing 104 may define upper and lateral boundaries of the vortex chamber 124. The vortex chamber 124 may be disposed proximate the first end 116a of housing 104 such that the vortex chamber 124 may receive fluid entering the multi-chamber manifold 100 through the inlets 108a-108d.


The chamber separation structure 132 may comprise a horizontal chamber separation plate 136 defining a lower boundary of the vortex chamber 124 and one or more vertical chamber separation plates 140a, 140b defining lateral boundaries of the vortex chamber 124. The horizontal chamber separation plate 136 comprises side walls 144a, 144b that may be sealably coupled to the inner wall of housing 104. The one or more vertical chamber separation plates 140a, 140b may be oriented substantially perpendicular to the horizontal chamber separation plate 136. The one or more vertical chamber separation plates 140a, 140b may be disposed at and sealably coupled to the ends 148a, 148b of the horizontal chamber separation plate 136. In one embodiment, a portion of vertical chamber separation plate 140a may be shaped to conform to the geometry of the inner wall of housing 104 so as to create a sealed barrier, preventing the fluid mixture inside the vortex chamber 124 from flowing laterally in a direction towards the second end of housing 120a.


Inlets 108a-108d may protrude both outwardly and inwardly with respect to housing 104, each outward-inward protrusion combination forming an inlet nozzle defining a passage through which a fluid may be injected to the vortex chamber 124. The outwardly protruding portions 152a-152d of the inlet nozzles allow for fluids to commence its flow path into the multichamber manifold 100 such that the fluids flow substantially radial to housing 104. The inwardly protruding portions 156a-156d of the inlet nozzles are angled to affect an angular velocity on the fluids, projecting the fluids into the vortex chamber 124 in a manner causing the fluids to swirl rapidly about a center. This induced swirl, or vortex, provides turbulent flow that facilitates thorough mixing of the injected fluids, producing a substantially homogeneous blend. The specific angle of each inlet nozzle is determined based on the particular application.


The chamber separation structure 132 may further comprise a plurality of baffle plates 160a, 160b that extend upwardly from and substantially perpendicular to the horizontal chamber separation plate 136. As previously described, the inlet nozzles are angled to induce a vortex that facilitates the mixing of the injected fluids. The upwardly extending baffle plates 160a, 160b serve to guide the mixture of fluids through a gate 164 disposed between the upwardly extending baffle plates 160a, 160b, the gate 164 defining an opening in the horizontal chamber separation plate 136. The gate 164 directs the mixture of fluids to flow to the secondary mixing chamber 128.


One or more inlet nozzles may be disposed at either side of the upwardly extending baffle plates 160a, 160b. For example, in one embodiment, a first set of two inlet nozzles may be disposed at a lateral distance from upwardly extending baffle plate 160a, proximal to the first end 116a of housing 104. In this configuration, a second set of two inlet nozzles may also be disposed at a lateral distance from upwardly extending baffle plate 160b, distal to the first end 116a of housing 104 relative to first set of inlet nozzles. The inwardly protruding portions 156a-156d of the inlet nozzles may be angled upward relative to the horizontal chamber separation plate 136 and inward relative to the one or more vertical chamber separation plates 140a, 140b. Thus, the two sets of inlet nozzles may provide a mirror image trajectory of vectored fluid flow allowing the fluids to coincide and induce the vortex above the gate 164. Gravity causes substantially all of the fluid mixture to flow downwardly through gate 164, guided, in part, by upwardly extending baffles 160a, 160b.


The chamber separation structure 132 may further comprise an L-shaped baffle plate 168 connected to the bottom surface of the horizontal chamber separation plate 136 and disposed below the gate 164. Upon passing through gate 164, the fluid mixture encounters the L-shaped baffle plate 168, which guides the fluid mixture flow in a first direction towards the first end 116a of housing 104. The change in flow direction of the fluid mixture caused by the L-shaped baffle plate 168 may further enhance the mixture quality.


Another change in flow direction is caused by the fluid mixture encountering the first end 116a of housing 104, which forces the fluid mixture to flow in a second direction opposite the first direction. This change in flow direction may also further enhance the mixture quality. Moreover, as the fluid mixture flows in the second direction, it flows past the L-shaped baffle plate 168 towards the second end 120a of housing 104 where the fluid mixture can then be evenly distributed among fluid outlets 112a-112j.


Although FIGS. 3-4 show multi-chamber manifold 100 having two chambers (vortex chamber 124 and secondary mixing chamber 128), it is envisioned that other embodiments may have additional chambers for further mixing. A secondary spill over plate (not shown) may be incorporated in the secondary mixing chamber 128 in order to capture solids or perform a two-stage fluid separation prior to the fluid mixture exiting through outlets 112a-112j. For example, in one or more embodiments, a two-stage fluid separation may involve the separation of oil and water.


The multi-chamber manifold 100 illustrated in FIGS. 1-4 may be designed and constructed to be lightweight, compact, and portable. In one or more embodiments of the invention, the multi-chamber manifold 100 may be mounted on a trailer, truck, or any other suitable vehicle for transporting the manifold 100 to various work sites. However, in other embodiments of the invention, the manifold 100 may be fixed to a particular location.


One or more embodiments of the present invention relate to methods for enhanced mixing of fluids, as shown by the flow chart in FIG. 5. The methods involve providing a multichamber manifold 500, the manifold comprising a housing, a plurality of fluid inlets, a plurality of fluid outlets, a vortex chamber, and a secondary mixing chamber.


The methods further involve supplying two or more input fluids to the manifold through the fluid inlets of the manifold 502. The fluids may flow through inlet nozzles and into the vortex chamber. The fluid nozzles may be angled to induce a vortex in the vortex chamber 504. The vortex serves the purpose of stirring the input fluids for thorough mixing, producing a fluid mixture.


The fluid mixture may be directed downwards from the vortex chamber through a gate to a secondary mixing chamber 506 for further mixing. Baffles may be used to guide the flow path of the fluid mixture in various directions. The fluid mixture may be directed in a first direction towards a first end of the manifold 508. The fluid mixture may also be directed in a second direction opposite the first direction towards a second end of the manifold 510. Changing the direction of the fluid mixture flow path facilitates further mixing of the fluids.


The resulting homogeneous fluid blend may be distributed among the plurality of fluid outlets to discharge from the manifold 512. The destination of the fluid mixture after discharging from the manifold depends on the particular application. Fluid flow can be directed in its entirety to one destination or distributed either evenly or proportionally to multiple destinations.


It is to be understood that the invention is not to be limited or restricted to the specific examples or embodiments described herein, which are intended to assist a person skilled in the art in practicing the invention. For example, the number of fluids to be mixed, the number of inlets, the number of outlets, the number of spill over plates, and the number of chambers may vary according to the desired results of a particular application. Also, the dimensions of the various components of the multi-chamber manifold may be scaled to achieve the desired results of a particular application. Accordingly, numerous changes may be made to the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.


The following is a list of reference numerals:












LIST FOR REFERENCE NUMERALS








(Part No.)
(Description)





100
multi-chamber manifold


104
elongate housing


116a
first end 116a


120a
second end


116b
blocking end flange


120b
blocking end flange


108
fluid inlets (108a-108d)


112
plurality of fluid (outlets 112a-112j)


124
a primary mixing chamber (vortex chamber)


128
secondary mixing chamber


132
chamber separation structure


136
horizontal chamber separation plate


140a
vertical chamber separation plate


140b
vertical chamber separation plate


144a
side wall


144b
side wall


152
outwardly protruding portions (152a-152d)



of the inlet nozzles


156
inwardly protruding portions (156a-156d)



of the inlet nozzles are angled to affect an



angular velocity on the fluids


160a
baffle plate


160b
baffle plate


164
gate


168
L-shaped baffle plate


500
step of providing a multichamber manifold


502
step of supplying two or more input fluids to



the manifold


504
step of inducing a vortex in the vortex chamber 504


506
step of directing fluids from the vortex chamber to a



secondary mixing chamber


508
step of directing the mixture of fluids in a first direction



towards a first end of the manifold


510
step of directing mixture of fluids in a second



direction, which second direction is substantially the



opposite direction as the first direction, and towards



a second end of the manifold


512
step of distributing the mixture of fluids among outlets to



discharge from the manifold









All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise.


It will be understood that each of the elements described above, or two or more together may also find a useful application in other types of methods differing from the type described above. Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention set forth in the appended claims. The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.

Claims
  • 1. A mixing chamber comprising: (a) a cylindrical body having first and second ends, the body having a cylindrical cross section of substantially constant diameter between the first and second ends, and an exterior wall with an interior having first and second chambers, and a plurality of inputs and at least one output;(b) the first chamber and second chamber being fluidly connected to each other;(c) the plurality of inputs entering the first chamber and the plurality of outputs exiting from the second chamber;(d) the plurality of inputs being directed toward each other; and(e) wherein separating the first and second chambers is a dividing structure, which dividing structure includes a transverse plate and longitudinal plate, the dividing structure having a gate opening located in the longitudinal plate, and one or more of the outlets are in between the transverse plate and the gate opening.
  • 2. The mixing chamber of claim 1, wherein there are one or more baffles next to the gate opening.
  • 3. The mixing chamber of claim 2, wherein one or more baffles extend above the gate opening and one or more baffles extend below the plate.
  • 4. A mixing chamber comprising: (a) an elongated body having a first upstream and a second downstream end portions and a wall surrounding an interior;(b) the interior having a dividing structure that divides the interior into primary and secondary chambers;(c) the dividing structure including a transverse plate that connects to the body side wall at a position in between the body end portions, the plate extending over only a part of the cross section of the housing;(d) the dividing structure including a longitudinal plate that extends longitudinally from one end portion of the housing a partial distance of the housing length connecting with the transverse plate;(e) a first mixing chamber formed by the transverse plate, the longitudinal plate, and a portion of the body wall, the first mixing chamber extending only a partial distance along the length of the body;(f) a second mixing chamber that is longer than the first mixing chamber, the second mixing chamber having a portion that contacts the longitudinal plate;(g) multiple inlets through the body wall that enable fluid to be added to the first mixing chamber;(h) outlets in the body wall that enable fluid discharge from the second chamber; and(i) the longitudinal plate having a gate that enables fluid flow from the first chamber to the second chamber.
  • 5. The mixing chamber of claim 4 wherein some of the inlets are on opposing sides of the gate.
  • 6. The mixing chamber of claim 4, wherein the gate is in between two of said inlets.
  • 7. The mixing chamber of claim 4, wherein the elongated body has a longitudinal length including first, second, and third longitudinal portions each longitudinal portion being of equal length, with the second portion being between the first and third portions, and the transverse plate is positioned in the second portion.
  • 8. The mixing chamber of claim 5, wherein there are outlets on the upstream side of the transverse plate.
  • 9. The mixing chamber of claim 5, wherein some of the outlets are in between the transverse plate and one of the inlets.
  • 10. The mixing chamber of claim 4, wherein all of the inlets are between the transverse plate and the first end portion of the body.
  • 11. The mixing chamber of claim 5, wherein some of the inlets include an elbow shaped fitting.
  • 12. The mixing chamber of claim 4, wherein a majority of the inlets are in between the transverse plate and the second end portion of the body.
  • 13. The mixing chamber of claim 4, wherein at least one of the elbow shaped fittings discharges flow toward the gate.
  • 14. The mixing chamber of claim 4, wherein multiple of the elbow shaped fittings discharge flow toward the gate.
US Referenced Citations (22)
Number Name Date Kind
2933293 Ferrari, Jr. Apr 1960 A
3908702 Klosse et al. Sep 1975 A
4072296 Doom Feb 1978 A
4112520 Gilmore Sep 1978 A
4179222 Strom et al. Dec 1979 A
4264212 Tookey Apr 1981 A
4647212 Hankison Mar 1987 A
5165440 Johnston Nov 1992 A
5322551 Payne Jun 1994 A
5765946 Lott Jun 1998 A
6280615 Phillips et al. Aug 2001 B1
6742924 Kearney Jun 2004 B2
6840039 Huh Jan 2005 B2
7045060 Liles et al. May 2006 B1
7140558 McCracken et al. Nov 2006 B2
7581387 Bui et al. Sep 2009 B2
8042988 Ding et al. Oct 2011 B2
8171993 Hefley May 2012 B2
20080141706 Tucker et al. Jun 2008 A1
20090308613 Smith Dec 2009 A1
20100116512 Henry May 2010 A1
20120269699 Kumar et al. Oct 2012 A1
Foreign Referenced Citations (3)
Number Date Country
455957 Feb 1928 DE
2863696 Dec 2003 FR
WO2004024306 Mar 2004 WO
Provisional Applications (1)
Number Date Country
61479641 Apr 2011 US