A device for the molecular integration and disintegration of solid, liquid and/or gaseous through-flowing, entrained and/or counter-flowing components by means of cavitation in order to modify, build or disintegrate molecular compounds. The invention offers the possibility of obtaining stable mixtures from immiscible or difficult-to-mix components or to separate such mixtures. Complex compounds which so far could be modified or produced either not at all, or only by very complex multiple processing and with high technical cost and complexity, can also be built, disintegrated or modified by means of the present supercavitation molecular reactor with very low expenditure in terms of energy.
The invention relates to a device for the molecular integration and disintegration of solid, liquid and/or gaseous through-flowing, entrained and counter-flowing components by means of cavitation. Thereby, a hydrodynamic cavitation field is built up in a reactor, preferably a through-flow reactor.
Cavitative through-flow reactors in which the cavitation fields are generated by ultrasound are known from the prior art. Depending on the number and arrangement of the ultrasound generators, supercavitation fields, that is, a plurality of superposed cavitation fields, which considerably improve the effect, can also be built up by these reactors. They are used to disintegrate molecular compounds, e.g. harmful substances, or to integrate new molecular compounds. Common to all of them, however, is the fact that the generation of cavitation fields using ultrasound is very energy-intensive and therefore can be economically used only for limited quantities.
Hydrodynamic cavitation generators are known in the prior art. These, too, can be extended to form supercavitation generators by a suitable arrangement of the bodies around which flow is difficult (hereinafter called flow-impeding bodies), as per DE 10009326. In most cases use is made of static components, which must be optimized by experimentation for the particular fluids concerned. A regulating function is then achieved by varying the admission pressure or displacing the turbulence-generating elements. These hydrodynamic supercavitation generators according to the prior art achieve good results when mixing constituents or components of a mass flow passing through them, by building up a supercavitation field.
In the previously known systems, regulation via admission pressure or via the arrangement of the turbulence-generating systems was necessary. However, depending on the components used, regulability and/or the maximum admission pressure is limited, and often difficult to achieve. In addition, in the case of displacement or variation of the turbulence-generating systems, mechanical modification or complete reconstruction, or alternative construction, of the apparatus must be undertaken, and requires frequent and complex optimization. The mechanical variability of these turbulence-generating systems is achieved at the cost of a simple and cost-effective construction, or necessitates other compromises regarding effectiveness. For many components this problem has not yet been solved, or cannot be solved without changes to the operating principle of cavitation reactors.
It is the object of the invention to provide a device for the molecular integration and disintegration of solid, liquid and/or gaseous through-flowing, parallel-flowing and counter-flowing components which is able, dependently on or independently of high or low admission pressures and independently of composition and density differences of the components, continuously to ensure a highly effective supercavitation field as a result of its capacity for dynamic regulation. In this case the through-flow of a component in a primary flow is no longer obligatory, and can be split up into a plurality of secondary flows.
This object is achieved by the molecular reactor, that is, in the device according to the invention, in that supply/discharge passages are introduced on the centre axis of the through-flow chamber, via which components, for example, fluids, can be introduced/discharged both against and with the flow direction of the mass flow, ensuring, in conjunction with the flow-impeding bodies, a highly efficient superposition in opposite directions of at least two supercavitation fields. The energy potential made available thereby provides the precondition for building new molecular compounds or modifying/disintegrating existing ones, and/or allows homogenized mixing and/or dissolution and/or suspension of the counter-flowing and entrained components.
The device of the invention for the molecular integration and disintegration of solid, liquid and/or gaseous components by means of cavitation builds up in a reactor a hydrodynamic cavitation field which can be utilized in many ways: firstly, it can be used for physically mixing difficult-to-mix and/or difficult-to-dissolve components, for example, hydrophobic and hydrophilic mixtures such as water/oil, milk/fat, fuel/water; secondly, it can be used to produce radical, reactive intermediates (e.g. polyoxides) in dependence on the concentration of the added or dissolved substances (e.g. gases), which can be used as catalysts and reaction partners in building, disintegrating or reconstructing molecular compounds. This makes possible reactions of components which are incompatible (e.g. immiscible) under standard conditions. Examples of such reactions comprise mixing, emulsifying, dispersing, homogenizing, de-mixing, separating, degassing and gasifying within systems which comprise components in the form of solid-liquid, liquid-solid, liquid-liquid, gaseous-liquid and liquid-gaseous phases.
A modified aspect of the invention enables the production of new materials, an extensive field of new, alternative or improved chemical reactions, together with electrolysis and/or reaction in an applied magnetic field within the cavitation field.
In a preferred embodiment cavitation fields are controlled by pressure variation and mass flows having very diverse pressures are combined in the entrained-flow or counter-flow method, offering the following advantages as compared to systems premixed outside the cavitation field:
The control is effected by variation of the admission pressure of the mass flow and/or by variation of the pressure of the mass flows supplied with and against the flow direction and may or may not also take place in an auxiliary manner by mechanical variation of the apparatus. The device (200) with chamber cavitator (device (300)) and the device (500) represent a preferred embodiment of such control.
The reaction control of the cavitation of the mass flows is effected via various inlet/outlet pressures of the mass flows at the housing (1-1) and the cavitation chamber reactor according to device (300) and via the supply/discharge of mass flow or mixed-flow components to/from the chamber housing 11 or mixed-flow components via the inlet/outlet connecting pieces (2-3) and/or (2-8).
Through the mutually independent increase and/or decrease of the pressure of mass flows or mixed-flow components in the chamber housing 11 (2-2) and in the inlet opening/outlet openings (2-3), superpositions of cavitation fields are already produced in the region of the nozzle constriction (2-5-1). The chamber cavitator according to device (300) may be subdivided by partitions (3-6) into a plurality of individual chambers via which different components can be supplied or discharged. This mechanism may also be used for control. The mass flows may be introduced into the apparatus by, among other methods, pressure from outside and/or low pressure from inside, and removed from the apparatus by low pressure from outside and/or high pressure from inside.
The supercavitation fields are generated by the effect of entrainment of the mass flows out of the main chamber housing I (2-6), and therefore the increase in the flow velocity of the mass flows in the main chamber region, in particular of the shear-inducing rebound faces of the reaction body (2-1), without mechanical modification of the flow-impeding bodies (reaction bodies) (flow-impeding bodies (1-8) and/or flow-impeding sub-zones (1-9) and/or chamber cavitators according to device (300)). This control can be applied variably and flexibly to the mass flow according to the viscosity of the media concerned. This pressure-controlled reaction modification is referred to as “controlled cavitation” (Cavi Control Technology: “CCT”) and forms part of the basis of the invention. Contrary to the prior art, control is effected exclusively via pressure and, in a preferred embodiment, can take place at different locations within the housing (1-1) with different mass flows having different components, and can therefore be utilized for specified control of the individual processes at different locations in the device (100).
In a multi-chamber reactor a plurality of reactors may also be arranged sequentially (one behind the other) or nested one inside the other.
In a particular embodiment, through the combination of very diverse mass flows in the reactor, parts of the component flows can be introduced multiple times in a kind of circulation until the desired effect is achieved.
In addition, in another preferred embodiment, the variation (preferably the basic setting) of the cavitation fields in the inventive device may be effected by variation of the position of the flow-impeding bodies along or perpendicular to the centre axis of the through-flow chamber, whereby bandwidths for the pressures to be applied are defined or the reaction conditions and/or dissolution conditions of the different components can be defined by variation of the cavitation effect.
The device according to the invention offers specific applications in use:
The reaction bodies (2-1) (see description of
The reaction bodies are parts of the flow-impeding bodies and have on their surfaces properties which cause additional turbulence and shearing of flow.
1. Improved Operation
As compared to other systems of the prior art (DE1009326), higher degrees of mixing at lower pressure have been achieved in experiments with the device (100). The number of cycles of any required repetitions of the process is thereby also reduced. All these simplifications represent an optimization of the cost potential in application. Especially in comparison to energy-intensive cavitation generating methods such as ultrasound and laser technology, the invention represents a low-cost, less energy-intensive method which is simpler to control and install.
2. New and Improved Applications
In the degassing of water a smaller quantity of dissolved gases (e.g. oxygen) was demonstrated even after a single reaction cycle than with >5 reaction cycles using systems of the prior art.
In the mixing of hydrophobic and hydrophilic substances, faster, more efficient and more long-lasting mixing was achieved. For example, an emulsion of water in fuels has a smaller droplet size of the water particles and, in contrast to conventional systems, no demixing was observable even after an extended period.
Synthesizing of methanol from water and methane was carried out with substantially higher efficiency than with conventional systems.
In waste water and bacteriologically contaminated waste water, sterilization of the water after treatment with a device (100) was demonstrated.
Sewage slurries showed faster biological decomposition, difficult-to-dissolve substances contained therein being solubilized and aeration for biological decomposition being carried out.
The aeration of original wort with carbon dioxide during beer manufacture also takes place more effectively and is reproducibly controllable for the first time using the system.
The carbonization of water with carbon dioxide for mineral water production takes place more effectively, with a faster and quantitatively greater dissolution of carbon dioxide, leading to completely new effervescent flavors of the carbonized drinks.
The difficult dissolution of oxygen in drinks or water was carried out with greater oxygen solubility than using conventional methods.
Through treatment with a device (100) milk was homogenized, rendering the known technically conventional homogenizing process superfluous.
The enrichment of fuel with water or oxygen for passenger/heavy goods vehicle engines, desired for more effective engine performance, has not been achieved in the prior art hitherto. By means of the device (100) water and oxygen were mechanically suspended so finely in fuel that no separation took place and the combustion process can thus be carried out in a more effective and environmentally-friendly manner using the new fuel.
The aeration of bodies of water in environmental regeneration is effected according to the prior art by passing air through the body of water to be regenerated. Using the invention, more effective dissolution of the gas in the body of water to be aerated took place.
Through the high cavitation forces complex compounds such as heavy metals in waste water can be broken up and more easily separated later. Gases could be isolated from the system and separated, and salts were separated/precipitated with application of an electrical field (electrolysis via main chamber and chamber housing) (see
The above-mentioned effects for sterilizing waste water were also used to destroy germs in swimming pools, so that chlorinization could be avoided, or smaller quantities of disinfectants needed to be added. Even when adding disinfectants such as chlorine and ozone, more effective introduction was achieved. The same applies to the treatment of drinking water and to the sterilization of production media in process engineering, food processing and bio-technological plants.
For selected chemical processes, such as the methanol synthesis mentioned above, rapid and effective reaction of the components was achieved. In particular, hydrophobic and hydrophilic components were effectively mixed by the device (100), and the high energies arising during implosion of the cavitation bubbles could be used for the reaction.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 019 241.3 | Apr 2004 | DE | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP04/09856 | Sep 2004 | US |
Child | 11679665 | Feb 2007 | US |