1. Field of the Invention
This invention relates generally to audio enhancement systems and methods for improving the realism and dramatic effects obtainable from two channel sound reproduction. More particularly, this invention relates to apparatus and methods for enhancing multiple audio signals and mixing these audio signals into a two channel format for reproduction in a conventional playback system.
2. Description of the Related Art
Audio recording and playback systems can be characterized by the number of individual channel or tracks used to input and/or play back a group of sounds. In a basic stereo recording system, two channels each connected to a microphone may be used to record sounds detected from the distinct microphone locations. Upon playback, the sounds recording by the two channels are typically reproduced through a pair of loudspeakers, with one loudspeaker reproducing an individual channel. Providing two separate audio channels for recording permits individual processing of these channels to achieve an intended effect upon playback. Similarly, providing more discrete audio channels allows more freedom in isolating certain sounds to enable the separate processing of these sounds.
Professional audio studios use multiple channel recordings systems which can isolate and process numerous individual sounds. However, since many conventional audio reproduction devices are delivered in traditional stereo, use of a multi-channel system to record sounds requires that the sounds be “mixed” down to only two individual signals. In the professional audio recording world, studios employ such mixing methods since individual instruments and vocals of a given audio work may be initially recorded on separate tracks, but must be replayed in a stereo format found in conventional stereo systems. Professional systems may use 48 or more separate audio channels which are processed individually before receded onto two stereo tracks.
In multi-channel playback systems, i.e., deed herein as systems having more than two individual audio channels, each sound recorded from an individual channel may be separately processed and played through a corresponding speaker or speakers. Thus, sounds which are recorded from, or intended to be placed at, multiple locations about a listener, can be realistically reproduced through a dedicated speaker placed at the appropriate location. Such systems have found particular use in theaters and other audio-visual environments where a captive and fixed audience experiences both an audio and visual presentation. These systems, which include Dolby Laboratories' “Dolby Digital” system; the Digital Theater System (DTS); and Sony's Dynamic Digital Sound (SDDS), are all designed to initially record and then reproduce multi-channel sounds to provide a surround listening experience.
In the personal computer and home theater arena, recorded media is being standardized so that multiple channels, in addition to the two conventional stereo channels, are stored on such recorded media. One such standard is Dolby's AC-3 multi-channel encoding standard which provides six separate audio signals. In the Dolby AC-3 system, two audio channels are intended for playback on forward left and right speakers, two channels are reproduced on rear left and right speakers, one channel is used for a forward center dialogue speaker, and one channel is used for low-frequency and effects signals. Audio playback systems which can accommodate the reproduction of all these six channels do not require that the signals be mixed into a two channel format. However, many playback systems, including today's typical personal computer and tomorrow's personal computer/television, may have only two channel playback capability (excluding center and subwoofer channels). Accordingly, the information present in additional audio signals, apart from that of the conventional stereo signals, like those found in an AC-3 recording, must either be electronically discarded or mixed into a two channel format.
There are various techniques and methods for mixing multi-channel signals into a two channel format. A simple mixing method may be to simply combine all of the signals into a two-channel format while adjusting only the relative gains of the mixed signals. Other techniques may apply frequency shaping, amplitude adjustments, time delays or phase shifts, or some combination of all of these, to an individual audio signal during the final mixing process. The particular true or techniques used may depend on the format and content of the individual audio signals as well as the intended use of the final two channel mix.
For example, U.S. Pat. No. 4,393,270 issued to van den Berg discloses a method of processing electrical signals by modulating each individual signal corresponding to a pre-selected direction of perception which may compensate for placement of a loudspeaker. A separate multi-channel processing system is disclosed in U.S. Pat. No. 5,438,623 issued to Begault. In Begault, individual audio signals are divided into two signals which are each delayed and filtered according to a head related transfer function (HRTF) for the left and right ears. The resultant signals are then combined to generate left and right output signals intended for playback through a set of headphones.
The techniques found in the prior art, including those found in the professional recording arena, do not provide an effective method for mixing multi-channel signals into a two channel format to achieve a realistic audio reproduction through a limited number of discrete channels. As a result, much of the ambiance information which provides an immersive sense of sound perception may be lost or masked in the final mixed recording. Despite numerous previous methods of processing multi-channel audio signals to achieve a realistic experience through conventional two channel playback, there is much room for improvement to achieve the goal of a realistic listening experience.
Accordingly, it is an object of the present invention to provide an improved method of mixing multi-channel audio signals which can be used in all aspects of recording and playback to provide an improved and realistic listening experience. It is an object of the present invention to provide an improved system and method for mastering professional audio recordings intended for playback on a conventional stereo system. It is also an object of the present invention to provide a system and method to process multi-channel audio signals extracted from an audio-visual recording to provide an immersive listening experience when reproduced through a limited number of audio channels.
For example, personal computers and video players are emerging with the capability to record and reproduce digital video disks (DVD) having six or more discrete audio channels. However, since many such computers and video players do not have more than two audio playback channels (and possibly one sub-woofer channel), they cannot use the full amount of discrete audio channels as intended in a surround environment. Thus, there is a need in the art for a computer and other video delivery system which can effectively use all of the audio information available in such systems and provide a two channel listening experience which rivals multi-channel playback systems. The present invention fulfills this need.
An audio enhancement system and method is disclosed for processing a group of audio signals, representing sounds existing in a 360 degree sound field, and combining the group of audio signals to create a pair of signals which can accurately represent the 360 degree sound field when played through a pair of speakers. The audio enhancement system can be used as a professional recording system or in personal computers and other home audio systems which include a limited amount of audio reproduction channels.
In a preferred embodiment for use in a home audio reproduction system having stereo playback capability, a multi-channel recording provides multiple discrete audio signals consisting of at least a pair of left and right signals, a pair of surround signals, and a center channel signal. The home audio system is configured with speakers for reproducing two channels from a forward sound stage. The left and right signals and the surround signals are first processed and then mixed together to provide a pair of output signals for playback through the speakers. In particular, the left and right signals from the recording are processed collectively to provide a pair of spatially-corrected left and right signals to enhance sounds perceived by a listener as emanating from a forward sound stage.
The surround signals are collectively processed by first isolating the ambient and monophonic components of the surround signals. The ambient and monophonic components of the surround signals are modified to achieve a desired spatial effect and to separately correct for positioning of the playback speakers. When the surround signals are played through forward speakers as part of the composite output signals, the listener perceives the surround sounds as emanating from across the entire rear sound stage. Finally, the center signal may also be processed and mixed with the left, right and surround signals, or may be directed to a center channel speaker of the home reproduction system if one is present.
The above and other aspects, features, and advantages of the present invention will be more apparent from the following particular description thereof presented in conjunction with the following drawings, wherein:
In operation, the audio enhancement system 10 of
For illustrative purposes,
As will be explained in more detail in connection with
Referring now to
The amplifier 32 delivers an amplified left output signal 80, LOUT, to the left speaker 34 and delivers an amplified right output signal 82, ROUT, to the right speaker 36. Also, an amplified bass effects signal 84, BOUT, is delivered to a sub-woofer 86. An amplified center signal 88, COUT, may be delivered to an optional center speaker (not shown). For near field reproductions of the signals 80 and 82, i.e., where a listener is position close to and in between the speakers 34 and 36, use of a center speaker may not be necessary to achieve adequate localization of a center image. However, in far-field applications where listeners are positioned relatively far from the speakers 34 and 36, a center speaker can be used to fix a center image between the speaker 34 and 36.
The combination consisting largely of the decoder 56 and the processor 60 is represented by the dashed line 90 which may be implemented in any number of different ways depending on a particular application, design constraints, or mere personal preference. For example, the processing performed within the region 90 may be accomplished wholly within a digital signal processor (DSP), within software loaded into a computer's memory, or as part of a micro-processor's native signal processing capabilities such as that found in Intel's Pentium generation of micro-processors.
Referring now to
In
The circuits 140 and 142 output a respective modified sum and difference signal, (M1+M2)p and (M1−M2)p, along paths 144 and 146, respectively. The original input signal M1 and M2, as well as the processed signals (M1+M2)p and (M1−M2)p are fed to multipliers which adjust the gain of the received signals. After processing, the modified signals exit the enhancement module 100 at outputs 150, 152, 154, and 156. The output 150 delivers the signal K1M1, the output 152 delivers the signal K2F1(M1+M2), the output 154 delivers the signal K3F4(M1−M2), and the output 156 delivers the signal K4M2, where K1-K4 are constants determined by the setting of multipliers 148. The type of processing performed by the modules 100, 102, 104, and 116, and in particular the circuits 134, 140, and 142 may be user-adjustable to achieve a desired effect and/or a desired position of a reproduced sound. In some cases, it may be desirable to process only an ambient component or a monophonic component of a pair of input signals. The processing performed by each module may be distinct or it may be identical to one or more other modules.
In accordance with a preferred embodiment where a pair of audio signals is collectively enhanced before mixing, each module 100, 102, and 104 will generate four processed signals for receipt by the mixer 24 shown in
By processing multi-channel signals at the stereo level, i.e., in pairs, subtle differences and similarities within the paired signals can be adjusted to achieve an immersive effect created upon playback through speakers. This immersive effect can be positioned by applying HRTF-based transfer functions to the processed signals to create a fully immersive positional sound field. Each pair of audio signals is separately processed to create a multi-channel audio mixing system that can effectively recreate the perception of a live 360 degree sound stage. Through separate HRTF processing of the components of a pair of audio signals, e.g., the ambient and monophonic components, more signal conditioning control is provided resulting in a more realistic immersive sound experience when the processed signals are acoustically reproduced. Examples of HRTF transfer functions which can be used to achieve a certain perceived azimuth are described in the article by E. A. B. Shaw entitled “Transformation of Sound Pressure Level From the Free Field to the Eardrum in the Horizontal Plane”, J. Acoust. Soc. Am., Vol. 56, No. 6, December 1974, and in the article by S. Mehrgardt and V. Mellen entitled “Transformation Characteristics of the External Human Ear”, J. Acoust. Soc. Am., Vol. 61, No. 6, June 1977, both of which are incorporated herein by reference as though fully set forth.
Although principles of the present invention as described above in connection with
Referring now to
Referring now to
The main front left and right signals, ML and MR, are each fed to summing junctions 264 and 266. The summing junction 264 has an inverting input which receives MR and a non-inverting input which receives ML which combine to produce ML−MR along an output path 268. The signal ML−MR is fed to an enhancement circuit 270 which is characterized by a transfer function P1. A processed difference signal, (ML−MR)p, is delivered at an output of the circuit 270 to a gain adjusting multiplier 272. The output of the multiplier 272 is fed directly to a left mixer 280 and to an inverter 282. The inverted difference signal (MR−ML)p is transmitted from the inverter 282 to a right mixer 284. A summation signal ML+MR exits the junction 266 and is fed to a gain adjusting multiplier 286. The output of the multiplier 286 is fed to a summing junction which adds the center channel signal, C, with the signal ML+MR. The combined signal, ML+MR+C, exits the junction 290 and is directed to both the left mixer 280 and the right mixer 284. Finally, the original signals ML and MR are first fed through fixed gain adjustment circuits, i.e., amplifiers, 290 and 292, respectively, before transmission to the mixers 280 and 284.
The surround left and right signals, SL and SR, exit the multipliers 260 and 262, respectively, and are each fed to summing junctions 300 and 302. The summing junction 300 has an inverting input which receives SR and a non-inverting input which receives SL which combine to produce SL−SR along an output path 304. All of the summing junctions 264, 266, 300, and 302 may be configured as either an inverting amplifier or a non-inverting amplifier, depending on whether a sum or difference signal is generated. Both inverting and non-inverting amplifiers may be constructed from ordinary operational amplifiers in accordance with principles common to one of ordinary skill in the art. The signal SL−SR is fed to an enhancement circuit 306 which is characterized by a transfer function P2. A processed difference signal, (SL−SR)p, is delivered at an output of the circuit 306 to a gain adjusting multiplier 308. The output of the multiplier 308 is fed directly to the left mixer 280 and to an inverter 310. The inverted difference signal (SR−SL)p is transmitted from the inverter 310 to the right mixer 284. A summation signal SL+SR exits the junction 302 and is fed to a separate enhancement circuit 320 which is characterized by a transfer function P3. A processed summation signal, (SL+SR)p, is delivered at an output of the circuit 320 to a gain adjusting multiplier 332. While reference is made to sum and difference signals, it should be noted that use of actual sum and difference signals is only representative. The same processing can be achieved regardless of how the ambient and monophonic components of a pair of signals are isolated. The output of the multiplier 332 is fed directly to the left mixer 280 and to the right mixer 284. Also, the original signals SL and SR are first fed through fixed-gain amplifiers 330 and 334, respectively, before transmission to the mixers 280 and 284. Finally, the low-frequency effects channel, B, is fed through an amplifier 336 to create the output low-frequency effects signal, BOUT. Optionally, the low frequency channel, B, may be mixed as part of the output signals, LOUT and ROUT, if no subwoofer is available.
The enhancement circuit 250 of
In a preferred embodiment, the immersion processor circuit 250 uniquely conditions a set of AC-3 multi-channel signals to provide a surround sound experience through playback of the two output signals LOUT and ROUT. Specifically, the signals ML and MR are processed collectively by isolating the ambient information present in these signals. The ambient signal component represents the differences between a pair of audio signals. An ambient signal component derived from a pair of audio signals is therefore often referred to as the “difference” signal component. While the circuits 270, 306, and 320 are shown and described as generating sum and difference signals, other embodiments of audio enhancement circuits 270, 306, and 320 may not distinctly generate sum and difference signals at all. This can be accomplished in any number of ways using ordinary circuit design principles. For example, the isolation of the difference signal information and its subsequent equalization may be performed digitally, or performed simultaneously at the input stage of an amplifier circuit. In addition to processing of AC-3 audio signal sources, the circuit 250 of
In accordance with a preferred embodiment, the ambient information of the front channel signals, which can be represented by the difference ML−MR, is equalized by the circuit 270 according to the frequency response curve 350 of
The enhancement circuits 306 and 320 modify the ambient and monophonic components, respectively, of the surround signals SL and SR. In accordance with a preferred embodiment, the transfer functions P2 and P3 are equal and both apply the same level of perspective equalization to the corresponding input signal. In particular, the circuit 306 equalizes an ambient component of the surround signals, represented by the signal SL−SR, while the circuit 320 equalizes a monophonic component of the surround signals, represented by the signal SL+SR. The level of equalization is represented by the frequency response curve 352 of
The perspective equalization curves 350 and 352 are displayed in
Referring now to
Apparatus and methods suitable for implementing the equalization curves 350 and 352 of
In operation, the circuit 250 of
By separating the surround signal processing into sum and difference components, greater control is provided by allowing the gain of each signal, SL−SR and SL+SR, to be adjusted separately. The present invention also recognizes that creation of a center rear phantom speaker 218, as shown in
The approximate relative gain values of the various signals within the circuit 250 can be measured against a 0 dB reference for the difference signals exiting the multipliers 272 and 308. With such a reference, the gain of the amplifiers 290, 292, 330, and 334 in accordance with a preferred embodiment is approximately −18 dB, the gain of the sum signal exiting the amplifier 332 is approximately −20 dB, the gain of the sum signal exiting the amplifier 286 is approximately −20 dB, and the gain of the center channel signal exiting the amplifier 258 is approximately −7 dB. These relative gain values are purely design choices based upon user preferences and may be varied without departing from the spirit of the invention. Adjustment of the multipliers 272, 286, 308, and 332 allows the processed signals to be tailored to the type of sound reproduced and tailored to a user's personal preferences. An increase in the level of a sum signal emphasizes the audio signals appearing at a center stage positioned between a pair of speakers. Conversely, an increase in the level of a difference signal emphasizes the ambient sound information creating the perception of a wider sound image. In some audio arrangements where the parameters of music type and system configuration are known, or where manual adjustment is not practical, the multipliers 272, 286, 308, and 332 may be preset and fixed at desired levels. In fact, if the level, adjustment of multipliers 308 and 332 are desirably with the rear signal input levels, then it is possible to connect the enhancement circuits directly to the input signals SL and SR. As can be appreciated by one of ordinary skill in the art, the final ratio of individual signal strength for the various signals of
Accordingly, the audio output signals LOUT and ROUT produce a much improved audio effect because ambient sounds are selectively emphasized to fully encompass a listener within a reproduced sound stage. Ignoring the relative gains of the individual components, the audio output signals LOUT and ROUT are represented by the following mathematical formulas:
LOUT=ML+SL+(ML−MR)p+(SL−SR)p+(ML+MR+C)+(SL+SR)p (1)
ROUT=MR+SR+(MR−ML)p+(SR−SL)p+(ML+MR+C)+(SL+SR)p (2)
The enhanced output signals represented above may be magnetically or electronically stored on various recording media, such as vinyl records, compact discs, digital or analog audio tape, or computer data storage media. Enhanced audio output signals which have been stored may then be reproduced by a conventional stereo reproduction system to achieve the same level of stereo image enhancement.
Referring to
The output of the filter 360 is split into three separate signal paths 362, 364, and 366 in order to spectrally shape the signal ML−MR. Specifically, ML−MR is transmitted along the path 362 to an amplifier 368 and then on to a summing junction 378. The signal ML−MR is also transmitted along the path 364 to a low-pass filter 370, then to an amplifier 372, and finally to the summing junction 378. Lastly, the signal ML−MR is transmitted along the path 366 to a high-pass filter 374, then to an amplifier 376, and then to the summing junction 378. Each of the separately conditioned signals ML MR are combined at the summing junction 378 to create the processed difference signal (ML−MR)p. In a preferred embodiment, the low-pass filter 370 has a cutoff frequency of approximately 200 Hz while the high-pass filter 374 has a cutoff frequency of approximately 7 kHz. The exact cutoff frequencies are not critical so long as the ambient components in a low and high frequency range, relative to those in a mid-frequency range of approximately 1 to 3 kHz, are amplified. The filters 360, 370, and 374 are all first order filters to reduce complexity and cost but may conceivably be higher order filters if the level of processing, represented in
The signals, which exit the amplifiers 368, 372, and 376, make up the components of the signal (ML−MR)p. The overall spectral shaping, i.e., normalization, of the ambient signal ML−MR occurs as the summing junction 378 combines these signals. It is the processed signal (ML−MR)p which is mixed by the left mixer 280 (shown in
Referring again to
Implementation of the perspective curve by a digital signal processor will, in most cases, more accurately reflect the design constraints discussed above. For an analog implementation, it is acceptable if the frequencies corresponding to points A, B, and C, and the constraints on gain separation, vary by plus or minus 20 percent. Such a deviation from the ideal specifications will still produce the desired enhancement effect, although with less than optimum results.
Referring now to
Referring again to
Through the foregoing description and accompanying drawings, the present invention has been shown to have important advantages over current audio reproduction and enhancement systems. While the above detailed description has shown, described, and pointed out the fundamental novel features of the invention, it will be understood that various omissions and substitutions and changes in the form and details of the device illustrated may be made by those skilled in the art, without departing from the spirit of the invention. Therefore, the invention should be limited in its scope only by the following claims.
This application is a continuation of U.S. application Ser. No. 09/256,982, filed on Feb. 24, 1999, which is a continuation of U.S. application Ser. No. 08/743,776, filed on Nov. 7, 1996, now U.S. Pat. No. 5,912,976, the entirety of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3170991 | Glasgal | Feb 1965 | A |
3229038 | Richter | Jan 1966 | A |
3246081 | Edwards | Apr 1966 | A |
3249696 | Van Sickle | May 1966 | A |
3665105 | Chowning | May 1972 | A |
3697692 | Hafler | Oct 1972 | A |
3725586 | Iida | Apr 1973 | A |
3745254 | Ohta et al. | Jul 1973 | A |
3757047 | Ito dt al. | Sep 1973 | A |
3761631 | Ito et al. | Sep 1973 | A |
3772479 | Hilbert | Nov 1973 | A |
3849600 | Ohshima | Nov 1974 | A |
3885101 | Ito et al. | May 1975 | A |
3892624 | Shimada | Jul 1975 | A |
3925615 | Nakano | Dec 1975 | A |
3943293 | Bailey | Mar 1976 | A |
4024344 | Dolby et al. | May 1977 | A |
4063034 | Peters | Dec 1977 | A |
4069394 | Doi et al. | Jan 1978 | A |
4118599 | Iwahara et al. | Oct 1978 | A |
4139728 | Haramoto et al. | Feb 1979 | A |
4192969 | Iwahara | Mar 1980 | A |
4204092 | Bruney | May 1980 | A |
4209665 | Iwahara | Jun 1980 | A |
4218583 | Poulo | Aug 1980 | A |
4218585 | Carver | Aug 1980 | A |
4219696 | Kogure et al. | Aug 1980 | A |
4237343 | Kurtin et al. | Dec 1980 | A |
4239937 | Kampmann | Dec 1980 | A |
4303800 | DeFreitas | Dec 1981 | A |
4308423 | Cohen | Dec 1981 | A |
4308424 | Bice, Jr | Dec 1981 | A |
4309570 | Carver | Jan 1982 | A |
4332979 | Fischer | Jun 1982 | A |
4349698 | Iwahara | Sep 1982 | A |
4355203 | Cohen | Oct 1982 | A |
4356349 | Robinson | Oct 1982 | A |
4393270 | van den Berg | Jul 1983 | A |
4394536 | Shima et al. | Jul 1983 | A |
4408095 | Ariga et al. | Oct 1983 | A |
4479235 | Griffis | Oct 1984 | A |
4489432 | Polk | Dec 1984 | A |
4495637 | Bruney | Jan 1985 | A |
4497064 | Polk | Jan 1985 | A |
4503554 | Davis | Mar 1985 | A |
4567607 | Bruney et al. | Jan 1986 | A |
4569074 | Polk | Feb 1986 | A |
4589129 | Blackmer et al. | May 1986 | A |
4594610 | Patel | Jun 1986 | A |
4594729 | Weingartner | Jun 1986 | A |
4594730 | Rosen | Jun 1986 | A |
4622691 | Tokumo et al. | Nov 1986 | A |
4648117 | Kunugi et al. | Mar 1987 | A |
4696036 | Julstrom | Sep 1987 | A |
4703502 | Kasai et al. | Oct 1987 | A |
4748669 | Klayman | May 1988 | A |
4856064 | Iwamatsu | Aug 1989 | A |
4862502 | Griesinger | Aug 1989 | A |
4866774 | Klayman | Sep 1989 | A |
4866776 | Kasai et al. | Sep 1989 | A |
4888809 | Knibbeler | Dec 1989 | A |
4933768 | Ishikawa | Jun 1990 | A |
4953213 | Tasaki et al. | Aug 1990 | A |
5033092 | Sadaie | Jul 1991 | A |
5046097 | Lowe et al. | Sep 1991 | A |
5105462 | Lowe et al. | Apr 1992 | A |
5146507 | Satoh et al. | Sep 1992 | A |
5208860 | Lowe et al. | May 1993 | A |
5228085 | Aylward | Jul 1993 | A |
5251260 | Gates | Oct 1993 | A |
5255326 | Stevenson | Oct 1993 | A |
5319713 | Waller, Jr. et al. | Jun 1994 | A |
5325435 | Date et al. | Jun 1994 | A |
5371799 | Lowe et al. | Dec 1994 | A |
5400405 | Petroff | Mar 1995 | A |
5533129 | Gefvert | Jul 1996 | A |
5546465 | Kim | Aug 1996 | A |
5572591 | Numazu | Nov 1996 | A |
5579396 | Iida et al. | Nov 1996 | A |
5677957 | Hulsebus | Oct 1997 | A |
5734724 | Kinoshita | Mar 1998 | A |
5742688 | Ogawa | Apr 1998 | A |
5771295 | Waller | Jun 1998 | A |
5799094 | Mouri | Aug 1998 | A |
5912976 | Klayman | Jun 1999 | A |
5970152 | Klayman | Oct 1999 | A |
6009179 | Wood | Dec 1999 | A |
6236730 | Cowieson et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
33 31 352 | Mar 1985 | DE |
0 097 982 | Jan 1984 | EP |
0 312 406 | Apr 1989 | EP |
0 320 270 | Jun 1989 | EP |
0 367 569 | Oct 1989 | EP |
0 354 517 | Feb 1990 | EP |
0 357 402 | Mar 1990 | EP |
0 526 880 | Feb 1993 | EP |
0 637 191 | Feb 1996 | EP |
0 699 012 | Feb 1996 | EP |
35 014 | Feb 1966 | FI |
2 154 835 | Sep 1985 | GB |
2 277 855 | Sep 1994 | GB |
40-29936 | Oct 1940 | JP |
43-12585 | May 1943 | JP |
54058402 | May 1979 | JP |
58-144989 | Sep 1983 | JP |
59-27692 | Feb 1984 | JP |
61-33600 | Feb 1986 | JP |
61-166696 | Oct 1986 | JP |
06269097 | Sep 1994 | JP |
WO 8706090 | Oct 1987 | WO |
WO 9119407 | Dec 1991 | WO |
WO 9416538 | Jul 1994 | WO |
WO 9634509 | Oct 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20070165868 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09256982 | Feb 1999 | US |
Child | 11694650 | US | |
Parent | 08743776 | Nov 1996 | US |
Child | 09256982 | US |