The present techniques relate generally to electronic assembly. More specifically, the present techniques relate generally to electronic assembly with multi-channel outputs.
In applications where a plurality of loads are divided into multiple channels for separate driving, a number of drive wires no less than the output channels are typically needed to provide drive signal respectively. For example, in an LED strip product, one or more LEDs are connected in series, in parallel, or both on each channel. Different illumination modes, such as blinking or various illumination patterns, are implemented by providing individual control signal for each channel by the driver.
However, such products are generally compact in structure, since the drive wire has a certain width, it is difficult to connect more drive wires along a limited width, and the number of output channels is thus greatly limited. In order to control more channels to achieve various complex controlling, it is necessary to increase the size (for example, width) of the entire product to allow more drive wires.
The present disclosure provides an electrical assemble with multi-channel outputs being capable of controlling more channels of output without increasing the number of drive wires.
One aspect of the disclosure is an electronic assembly with multi-channel outputs. The electronic assembly may include a controller and a driver. The controller may be configured to gate m channels of outputs thereof. The driver may be configured to provide n channels of modulated signal to the controller via n wires. The n is less than m.
Another aspect of the disclosure is a lighting device. The lighting device may include a substrate, a controller and a plurality of lighting units. The controller may be mounted on one end of the substrate and includes m channels of outputs. The driver may be configured to provide n channels of modulated signal to the controller via n wires. The driver may include a communication module. The communication module may be configured to receive control signal. The driver may be configured to generate the n channels of modulated signal based on the control signal. The plurality of lighting units may be coupled to the m channels of outputs of the controller. The n is less than m. The n wires may be aligned along a width direction of the substrate at the end of the substrate. The controller may be configured to gate the m channels of outputs based on a correspondence between the at least one of the characteristics of the n channels of modulated signal and m channels of output signal. The characteristics may be selected from a group consists of voltage, current and a combination thereof.
Yet another aspect of the disclosure is a lighting device. The lighting device may include a substrate, a controller and a plurality of lighting units. The controller may be mounted on one end of the substrate and includes m channels of outputs. The driver may be configured to provide n channels of modulated signal to the controller via n wires. The driver may include a communication module. The communication module may be configured to receive control signal. The driver may be configured to generate the n channels of modulated signal based on the control signal. The plurality of lighting units may be coupled to the m channels of outputs of the controller. The controller may further comprise at least one decoder to gate the m channels of outputs based on the n channels of modulated signal. The n is less than m. The n wires may be aligned along a width direction of the substrate at the end of the substrate.
The present disclosure can be better understood in light of description of embodiments of the present disclosure with reference to the accompanying drawings, in which:
Unless defined otherwise, the technical or scientific terms used herein should have the same meanings as commonly understood by one of ordinary skilled in the art to which the present disclosure belongs. The terms “first”, “second” and the like in the Description and the Claims of the present application for disclosure do not mean any sequential order, number or importance, but are only used for distinguishing different components. Likewise, the terms “a”, “an” and the like do not denote a limitation of quantity, but denote the existence of at least one. The terms “comprises”, “comprising”, “includes”, “including” and the like mean that the element or object in front of the “comprises”, “comprising”, “includes” and “including” covers the elements or objects and their equivalents illustrated following the “comprises”, “comprising”, “includes” and “including”, but do not exclude other elements or objects. The terms “coupled”, “connected” and the like are not limited to being connected physically or mechanically, but may comprise electric connection, no matter directly or indirectly.
In the following description and claims, the terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
An embodiment is an implementation or example. Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” “various embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the present techniques. The various appearances of “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments. Elements or aspects from an embodiment can be combined with elements or aspects of another embodiment.
Not all components, features, structures, characteristics, etc. described and illustrated herein need be included in a particular embodiment or embodiments. If the specification states a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, for example, that particular component, feature, structure, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, that does not mean there is only one of the element. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
It is to be noted that, although some embodiments have been described in reference to particular implementations, other implementations are possible according to some embodiments. Additionally, the arrangement and/or order of circuit elements or other features illustrated in the drawings and/or described herein need not be arranged in the particular way illustrated and described. Many other arrangements are possible according to some embodiments.
In each system shown in a figure, the elements in some cases may each have a same reference number or a different reference number to suggest that the elements represented could be different and/or similar. However, an element may be flexible enough to have different implementations and work with some or all of the systems shown or described herein. The various elements shown in the figures may be the same or different. Which one is referred to as a first element and which is called a second element is arbitrary.
The electronic assembly 100 includes a controller 12 and a driver 14. The driver 14 is connected to the controller 12 via a drive wire 16 to provide modulated input signal. The controller 12 has three channels of outputs. Each channel of the outputs may be coupled to one or more loads in series, in parallel, or both. Load may be lighting unit such as LED, sound output component, or the like.
Term “modulated” or “modulation” used herein refers to changing the voltage and/or current of a signal over time series.
The controller 12 may be mounted e.g. by soldering or fixed on a substrate 18 to gate the three channels of outputs based on the input signal. In some embodiments, the controller 12 may be mounted on one end (e.g. in x (length) direction) of the substrate 18. The substrate 18 may be a strip, such as flexible circuit board having a strip shape, such that the substrate 18 may be folded or bent into any shape. In some embodiments, the substrate 18 may be a printed circuit board. The drive wire 16 has a width less than the substrate 18. Here, drive wire refers to a physical wire component, which may include an insulating layer, a protective layer, etc. in addition to conductive portion and thus has a non-negligible width.
In the embodiment, the controller 12 may gate the output channels 1-3 based on a voltage of the input signal. For example, channel 1 is selected such that the load(s) thereon is powered on when the voltage of the input signal is in a range from 1V (volt) to 2V. Similarly, channel 2 is selected such that the load(s) thereon is powered on when the voltage of the input signal is in a range from 2V to 3V, and channel 3 is selected such that the load(s) thereon is powered on when the voltage of the input signal is in a range from 3V to 4V.
Thus, one channel of voltage modulated input signal may be used to gate three channels of outputs. Therefore, the width, in turn a cost of the assembly 100 is reduced.
It is understood that the numbers of input channels (drive wires) and output channels are merely an example, not limitative. A general advantageous is that the number of output channels can be greater than that of the input channels (drive wires). It is also understood that the number of output channels controlled by each input channel (drive wire) may be same or different.
As shown in
The controller 12 is configured to gate five channels of outputs based on the input signal.
As shown in
In the above embodiments, the voltage of each of the input signal(s) is modulated. However, in some embodiments, the controller 12 may gate the output channels based on a current or a combination of the current and voltage of the input signal(s) instead of voltage.
As shown in
With the combination of voltage and current, one channel of voltage and current modulated input signal may be used to control six channels of output signal for example. The width of the substrate 18, such as strip, may be significantly reduced as compared to those that need six channels of input signal with only a few electronic components added, such as the controller 12.
In some embodiment, one channel of input signal may map more than one channel of outputs. The mapped output channels for each channel of the input signal may be partially overlapped. One skilled in the art may arbitrarily design the map as needed.
The function of determining the voltage and/or current of the input signal may be integrated in the controller 12, or be performed by a voltage detection unit and/or current detection unit separated from the controller 12. In this case, such voltage detection unit and/or current detection unit may also be mounted on the substrate 18.
The electronic assembly 600 includes a controller 12 and a driver 14. Similarly with the electronic assembly 300, the driver 14 is connected to the controller 12 via two drive wires 16 to provide modulated input signal. The controller 12 has four channels of outputs. Each channel of the outputs may be coupled to one or more loads in series, in parallel, or both. Load may be lighting unit such as LED, sound output component, or the like.
As shown in
With the usage of decoder 20, the modulation of the input signal may be simplified. It is understood that other type of decoder, such as 3-8 decoder is also applicable. In some embodiments, more than one decoder may be combined to control more output channels.
The electronic assemblies described above may be used in various applications. In most cases, the electronic assemblies may be coupled to a power supply and one or more loads. In a case where the power supply is alternating current, an adapter or a converter may be used to convert the alternating current to direct current. A typical application of the electronic assemblies described herein, namely LED strips, will be discussed below.
For example,
The controller 12 may have n inputs connected to n (shown as 2) physical wires and may have m (shown as 5) channels of outputs. Each channel of the outputs may be coupled to one or more loads, e.g. LEDs as shown. Applying the electronic assembly 900 in the lighting device enables the lighting device to gate m channels of LEDs by n (n<m) physical wires under a limited width space. Thus, the width, in turn the cost of the lighting device can be significantly reduced.
The lighting device 1000 includes a driver 14 and a LED strip. The LED strip may be a flexible circuit board having a strip shape, and include a controller 12 and a plurality of lighting units 22 mounted or fixed thereon. The driver 14 may be detachable from the LED strip. The driver 14 is connected to the controller 12 via e.g. two drive wires 16 to provide modulated input signal. The controller 12 has e.g. five channels of outputs. Each channel of the outputs is coupled to one or more (in
An optional adapter 28 is coupled to a power supply, such as AC supply, and is configured to convert alternating current (e.g. 120V ac) to direct current (e.g. 12V dc). The direct current is then transmitted to the driver 14. It is understood that the adapter 28 can be omitted when the power supply is DC supply.
The driver 14 may include a DC-DC converter 24 to perform the modulation described above. In some embodiments, the DC-DC converter 24 may operate in a manner of pulse width modulation or pulse frequency modulation or a combination thereof.
The driver 14 may further include a wireless communication module 26 to receive control signal from communication network. In some embodiments, the wireless communication module 26 may use any number of frequencies and protocols, such as 2.4 gigahertz (GHz) transmissions under the IEEE 802.15.4 standard, using the Bluetooth® low energy (BLE) standard, as defined by the Bluetooth® Special Interest Group, or the ZigBee® standard, among others. The control signal may cause the driver 14 to perform proper modulation.
With the implementations described above, m channels of loads (such as LEDs) may be controlled through n wires where n is less than m. This may significantly reduce the width of the electronic assembly such as light strip, namely reduce the material costs by adding only a few electronic components.
It is to be understood that specifics in the aforementioned examples may be used anywhere in one or more embodiments.
The person skilled in the art shall understand that many modifications and variations may be made to the present invention. Therefore, it should be recognized that the intention of the claims is to cover all these modifications and variations within the real concept and range of the present invention.
The present techniques are not restricted to the particular details listed herein. Indeed, those skilled in the art having the benefit of this disclosure will appreciate that many other variations from the foregoing description and drawings may be made within the scope of the present techniques. Accordingly, it is the following claims including any amendments thereto that define the scope of the present techniques.
Number | Date | Country | Kind |
---|---|---|---|
201910534871.4 | Jun 2019 | CN | national |