The present invention relates generally to optical tap couplers and more specifically to multi-channel, multi-port mono-directional and bi-directional optical tap couplers.
The use of optical fiber for the transmission of communication signals is rapidly growing in importance due to its high bandwidth, low attenuation, and other distinct advantages such as radiation immunity, small size, and light weight. In optical communication networks, it is often necessary or desirable to split the optical signal into parts having either predetermined proportions of the original signal intensity in order to monitor the state of the communication system, or to split optical frequencies for multiplexing independent signals. A device having the capability of extracting a portion of the optical signal intensity from a communication channel is herein referred to as an optical tap coupler, and a device capable of combining or separating optical frequency components in an optical communications signal is herein referred to as a wavelength division multiplexer (WDM).
Presently, and in future optical networks, the desired properties of optical tap couplers include tight control of the proportions of the split optical signals, low insertion loss, and minimizing variations in modal and polarization states as well as signal spectrum. In addition, in communication systems where higher data rates are achieved by transmitting aggregated data rates over parallel fibers, it is important to reduce the form factor of optical tap couplers in order to achieve high density in optical networks employing the monitoring function.
State of the art optical tap couplers do not provide the means of achieving all of the above mentioned desirable characteristics. The most commonly used technology based on fused biconical tapered optical fibers are spectral and modal dependent. Therefore, when these tap couplers are installed in optical networks utilizing multimode fiber, a significant degradation in the network performance results. Other optical taps technologies based on lensing and filtering technology have reduced or negligible degradation on network performance; however, they require multiple components to support channels operating over parallel transmission lanes. Deploying multiple optical tap couplers for channels utilizing parallel optics significantly increases system cost and size, while reducing channel reliability. In practice, size and cost scale with the number of parallel fibers. For example, the transmission of 100 Gbps Ethernet over 10 parallel lanes of multimode fiber (100GBASE-SR10), utilizing full duplex optical tap couplers based on filter technology, requires more than 40 lenses, 20 filters, and other multiple components.
In traditional fiber network systems, the optical transmitter on one end is connected to the optical receiver at the other end via a fiber optic cable. With such a system, two fibers are required to complete a full duplex circuit, one fiber connects an optical transmitter at the near end to an optical receiver at the distal end and the other fiber connects an optical receiver at the near end to an optical transmitter at the distal end. Bi-directional fiber optic transceivers, on the other hand, are capable sending and receiving optical signals on only one fiber. The signal moving in one directional is transmitted at a different wavelength from the signal moving in the opposite direction. Although only a single fiber is required, in a typical bi-directional system, a second fiber may be used to double the traffic capacity.
This application describes multi-channel, multi-port mono-directional and bi-directional optical tap couplers with an alignment base element, a pair of sub-assemblies located at opposite ends of the alignment base element, a pair of focusing elements, and an optical filter. The first sub-assembly has an array of waveguides with each waveguide having a radial offset and an azimuthal position with respect to a center axis of the array. The first array includes at least two transmission waveguides and at least two receiving waveguides and each receiving waveguide has a corresponding transmission waveguide that is separated by an azimuthal angle of 180 degrees. For a mono-directional tap coupler, the second sub-assembly has a second array of waveguides including a waveguide having the same radial offset and the same azimuthal position for each of the transmission waveguides of the first array. For a bi-directional tap coupler, the second sub-assembly has a second array of waveguides including a waveguide having the same radial offset and the same azimuthal position for each waveguide (transmission and tapping) of the first array. The first and second focusing elements are adjacent to the first and second sub-assemblies, respectively and an optical filter is located adjacent to, and in between, the first and second focusing elements.
a shows the mono-directional optical coupling for multi-channel, multi-port optical tap coupler of
b and 3c show the optical coupling for a single set of waveguides for a multi-channel, multi-port bi-directional optical tap coupler which is similar in structure to the optical tap coupler of
a is a partially exploded perspective view of a third embodiment of a multi-channel, multi-port mono-directional optical tap coupler.
b is a partially exploded perspective view of a multi-channel, multi-port bi-directional optical tap coupler using an assembly similar to that of
a shows the mono-directional optical coupling for a single set of fiber waveguides, where the communications input signal waveguide 103 from the first sub-assembly 100 is focused by the ¼ pitch GRIN lens 114 onto the optical filter 116 where a portion of the signal is reflected by the optical filter 116 to a first receiving waveguide 107 also located in the first sub-assembly 100, and the remaining portion is transmitted into the second ¼ pitch GRIN lens 115 where the signal is lensed into a second receiving waveguide 119 (symmetrically positioned in the second sub-assembly 118).
b and 3c show that an assembly that is similar to the assembly of
b) shows the equivalent optical functional as illustrated in
According to the principals of the present invention, any pair of input and output waveguides in the first sub-assembly 100 are parallel to a central longitudinal optic axis with equal radial offsets, and separated by an azimuthal angle of 180 degrees. Depending on the diameter of the GRIN lenses, the diameter and separation of the waveguides, large numbers of optical taps can be achieved in a single multichannel-multiport tap coupler. For example, for a typical GRIN lens having a diameter of 1.8 mm and optical fibers having an outer cladding diameter 125 μm, a maximum of 162 fiber waveguides can be positioned in a hexagonal close packed configuration as shown in
Although the specific exemplary embodiment shown in this invention depicts a multichannel, multiport optical tap coupler where the waveguides are arrayed with circular symmetry, it is understood that various modifications may be made without departing from the spirit of this invention.
The first and second fiber waveguides 103, 107 are separated by an azimuthal angle of 180 degrees with respect to the center optic axis 121 in the first sub-assembly 120. the third fiber waveguide element contained in the second sub-assembly (not shown) is located with the same radial distance from the optic axis as the first and second fiber waveguides in the first sub-assembly 120, but mirrored relative to the first transmission fiber waveguide 103. For a bi-directional optical tap coupler, a fourth fiber waveguide is located with the same radial distance from the optic axis as the first and second fiber waveguides, but mirrored relative to the second fiber waveguide 107.
Referring to
Once assembled into a unitary device, the sub-assemblies 127, 129, GRIN lenses 114, 115, and optical filter 116 are all collinear with their central axes aligned. With the device components all in proper relationship to one another, a quantity of an epoxy is then applied to the mating surfaces of the sub-assemblies 127, 129, GRINS lenses 114, 115, and optical filter 116. Therefore, no active signal measurement is required in the assembly of the device.
b shows an assembly similar to that of
The relative dimensions of the waveguide sub-assemblies and the support base element are such that the components can be fabricated in plastic utilizing precision injection molding manufacturing methods. Also, once the optical fiber waveguides are joined to their sub-assembly, the fiber endfaces can be cleaved and polished utilizing standard fiber optic connector polishing processes.
As an alternative version of this invention, the optical filter may be replaced with a dichronic filter, which reflects certain frequency components of the transmission signal while transmitting the remaining frequencies. In this way there is not only an intensity proportioning obtained, but also a separation of frequency components onto different optical fiber waveguides. A device according to the principals of this invention having a dichronic filter is a multichannel WDM.
In a traditional fiber optic network, a Traffic Analysis Port (TAP) module is a passive device that serves as a physical access point installed in fiber networks. TAP modules are minimally invasive ways to monitor network traffic.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing without departing from the spirit and scope of the invention as described.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/020,984, filed Sep. 9, 2013, the subject matter of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4111522 | Auracher et al. | Sep 1978 | A |
4213677 | Sugimoto et al. | Jul 1980 | A |
4732449 | Fan | Mar 1988 | A |
4733931 | Fan | Mar 1988 | A |
4810052 | Fling | Mar 1989 | A |
5553183 | Bechamps | Sep 1996 | A |
5796885 | Gonthier et al. | Aug 1998 | A |
5943454 | Aksyuk et al. | Aug 1999 | A |
6055347 | Li et al. | Apr 2000 | A |
6433924 | Sommer | Aug 2002 | B1 |
6678457 | Kim et al. | Jan 2004 | B2 |
6744944 | Matsuura et al. | Jun 2004 | B2 |
6771426 | Yamamoto et al. | Aug 2004 | B2 |
6792190 | Xin et al. | Sep 2004 | B2 |
7218828 | Feustel et al. | May 2007 | B2 |
7277620 | Vongseng et al. | Oct 2007 | B2 |
Number | Date | Country |
---|---|---|
2217688 | Oct 1997 | CA |
2002196284 | Jul 2002 | JP |
2005136033 | Nov 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20150071587 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14020984 | Sep 2013 | US |
Child | 14323367 | US |