The present invention relates generally to liquid pumping systems, wherein one liquid is pumped or fed into the stream of another liquid. More particularly, the present invention relates to an apparatus that couples multiple pump heads to one driving motor, while utilizing a new ceramic design that allows for inlet and outlet ports to be on the same side of the pump, all while being backwards compatible to legacy instrumentation.
There exists in the medical field, for example, a variety of analytical machines, which are employed for purposes of analyzing sample fluids such as blood and urine obtained from human or animal subjects. Such analyses are typically done to determine if the subject has normal or abnormal physiology, which may suggest the need for additional medical intervention.
These machines typically perform their analyses by mixing small amounts of specified chemicals together with the subject's fluid sample. The fluid sample is typically metered into a suitable container, such as an ampule, the specified chemical is added, and then a variety of tests are conducted on the mixture. Often, the operation of the machine will involve a production line arrangement, wherein a large number of test sample mixtures progress through the dispense, mix and test phases so that a sizable batch of analyses can be performed on an efficient scale. Once the tests on a particular sample have concluded, it becomes necessary to remove the fluid mixture from machine container for disposal. This removed sample/chemical mixture is termed “waste” in the industry. The empty container (ampule) is then appropriately cleaned and reused or discarded.
The task of removing waste fluids in such machines is often handled by some sort of multi-channel pump. Such a pump is most often a positive displacement design such as provided by peristaltic or diaphragm pumps. Multiple channels are created by ganging together individual pumps and either driving the pumps with a single motor, multiple motors or solenoids.
Waste pumps based upon the designs mentioned above suffer from a variety of problems. Peristaltic pumps employ a repeating sequence of flattening and then releasing an elastomeric tube which relies on the elastic memory properties of the tubing material to restore the tube cross section to the non-flattened shape. This sequence of flattening and then relaxing of the tubing is repeated a very large number of times during a typical waste removal cycle. Two problems arise from this cyclical tube stress/strain activity:
1. As the elastomeric tube fatigues, it begins to tire and become less able to restore its round cross-section after being squeezed flat. This necessarily results in a reduction of displaced fluid with each pump rotation. If the pump is being driven at a constant RPM, this tubing degradation results in a lowering of fluid flow through the pump.
2. A second related problem is the inevitability of catastrophic tubing fatigue failure if the tubing is not removed and replaced as part of a strict preventive maintenance protocol. Tubing failure results in waste fluid being discharged from the pump body onto nearby machine parts and then further dripping down out of the machine onto the floor below. Aside from the obvious health and machine contamination effects from tubing failure, the associated interruption of waste removal from the production-line sample analysis can severely impact throughput of the machine.
Diaphragm pumps rely on check valves working in concert with flexing diaphragms to move fluid from the intake to the output ports of the pump. Check valves can be problematic in waste pump applications as they are often a site for contamination entrapment, which can lead to valve malfunction. When this occurs, flow through the pump is interrupted. Additionally, the diaphragm in this style of pump is typically made from an elastomeric material which can suffer from fatigue and ultimate failure. Such diaphragm failure can lead to the same contamination and loss of machine function as described above for peristaltic pumps.
Valveless piston pumps, that make up a third category of positive displacement pumps, have been around for many years. These pumps include a specially designed piston/liner set, wherein a rotating and reciprocating piston has a cutout at the end of the piston in the shape of the letter “D”. During the intake stroke, the inlet port of the liner is open and fluid is sucked into the liner and travels down the “D” cut-out on the piston to fill the liner. During the outtake stroke, the inlet port is blocked and fluid is pushed out an outlet port.
However, there are several requirements for a multi-channel waste pump that heretofore made the use of valveless pump technology impractical as a substitute for multi-channel peristaltic and diaphragm pumps. For example, size constraints make it difficult to sufficiently shrink individual pumps to the point where a multi-channel version of the valveless pump could be incorporated into existing legacy equipment. Also, the need to have all inlets and outlets of all channels on one side of the pump is not possible with existing piston pump designs.
Therefore, it would be desirable to provide a multi-channel valveless piston pump that is compatible with legacy equipment in order to allow use in the large quantity of analytical machines presently equipped with peristaltic type waste pumps. Compatibility requirements extend beyond mechanical issues such as size to include electrical (drive and sensor), and fluid connection issues.
A multi-channel positive displacement piston pump apparatus according to one aspect of the present invention generally includes a motor and a plurality of positive displacement piston pumps driven by said motor. The plurality of pumps are aligned in a stacking direction, and each pump has an intake port and an outlet port, wherein the intake ports and the outlet ports of all pumps face in the same direction generally perpendicular to the stacking direction.
The motor includes a rotatable shaft engaged with a piston of a first of the plurality of pumps. The motor drives at least a second of the plurality of pumps via at least one of a gear arrangement or a pulley arrangement.
Each of the pumps includes a pump housing defining a central longitudinal bore and a pump piston axially and rotatably slidable within the central longitudinal bore for pumping a liquid through the pump housing. The pump housing further includes an inlet port, an outlet port, a first transverse bore communicating with the central longitudinal bore for conveying the liquid from the inlet port to the central longitudinal bore, a second transverse bore communicating with the central longitudinal bore for conveying the liquid from the central longitudinal bore to the outlet port, a longitudinal groove extending between the first transverse bore and the second transverse bore for conveying the liquid therebetween and an annular groove formed in the central longitudinal bore at a juncture of the central longitudinal bore and the second transverse bore for conveying the liquid from the longitudinal groove around the piston to the second transverse bore.
The pump housing preferably includes a pump casing having the inlet port and the outlet port and a liner received within the pump casing, wherein the liner has the central longitudinal bore, the first transverse bore, the second transverse bore, the longitudinal groove and the annular groove. The longitudinal groove can be formed in an outer surface of the liner facing the casing or in an inner surface of the liner defining the central longitudinal bore. The pump casing further preferably includes a first plugged port disposed opposite the inlet port and a second plugged port disposed opposite the outlet port.
In another aspect of the present invention, a method for retrofitting a positive displacement piston pump for use in a multi-channel pumping apparatus is provided. The method generally includes plugging an outlet port of a pump housing of the pump, plugging a flush outlet port of the pump housing and forming an alternative fluid path within the pump housing. The outlet port is disposed in line with an inlet port of the pump housing but on an opposite side of the pump housing. The flush outlet port is disposed in line with a flush inlet port of the pump housing but on an opposite side of the pump housing. In this way, the alternative fluid path is formed between the inlet port and the flush inlet port.
The alternative fluid path is defined by a longitudinal groove extending between a first transverse bore and a second transverse bore of the pump housing and an annular groove formed in a central longitudinal bore of the pump housing at a juncture between the central longitudinal bore and the second transverse bore.
In the method according to this aspect of the invention, the pump housing preferably includes a pump casing having the inlet port and the outlet port and a liner received within the pump casing. The liner has the central longitudinal bore, the first transverse bore, the second transverse bore, the longitudinal groove and the annular groove. The longitudinal groove can be formed in an outer surface of the liner facing the casing or in an inner surface of the liner defining the central longitudinal bore.
The preferred embodiments of the apparatus and method of the present invention, as well as other objects, features and advantages of this invention will be apparent from the following detailed description, which is to be read in conjunction with the accompanying drawings.
Referring first to
The pump 100 further includes a ceramic piston 118 axially and rotatably slidable within the central bore 114 of the piston liner 112. One end of the piston 118 extends out of the open end 110 of the pump casing 102 and includes a coupling 120 for engagement with a motor. At its opposite end, the piston 118 is formed with a relieved or “cutout” portion 122 disposed adjacent the transverse bore 116 of the pump liner. As will be described below, the relieved portion 122 is designed to direct fluid into and out of the pump 100.
A seal assembly 124 is provided at the open end 110 of the pump casing 102 to seal the piston 118 and the pump chamber 108. The seal assembly 124 is retained at the open end 110 of the pump casing 102 by a gland nut 126 having a central opening 128 to receive the piston 118. The gland nut 126 is preferably attached to the pump casing 102 with a threaded connection 130 provided therebetween.
In operation, a motor (not shown) drives the piston 118 to axially translate and rotate within the central bore 114 of the piston liner 112. In order to draw liquid into the transverse bore 116 from the inlet port 104, the piston 118 is rotated as required to align the relieved portion 122 with the liner inlet port 116a. The piston 118 is then drawn back as required to take in the desired volume of liquid into the central bore 114 of the pump liner 112. Withdrawal of the piston 118 produces a negative pressure within the liner inlet port 116a of the transverse bore 116, which draws in liquid from the casing inlet port 104. The piston 118 is then rotated to align the relieved portion 122 with the liner outlet port 116b. Finally, the piston 118 is driven forward the required distance to force liquid into the outlet port 116b of the transverse bore 116 to produce the desired discharge flow.
The pump liner 112 shown if
Turning now to
Size limitations typically required for multi-channel pump applications have been met by a novel construction, as shown in
The single drive motor 16 is attached in a typical fashion to a first pump 12a. Specifically, the motor 16 includes a rotatable shaft 18 (shown in
However, the drive shaft 18 of the motor 16 of the present invention further includes a lower portion 18″ that extends from the back of the motor in a direction away from the primary first pump 12a. This lower extended shaft portion 18″ can be equipped with a pulley 22, which engages a drive belt or chain 28, as shown in
In an alternative embodiment, as shown in
Returning to
However, as mentioned above, it is desirable with multi-channel pump systems to have all inlets and outlets of all channels on one side of the pump. The present invention provides a novel means for having both an inlet and outlet port on the same side of the pump head.
Referring now to
Similarly, the second transverse bore 48 includes an inlet portion 48a fluidly communicating with a flush system inlet port 50 of the pump casing 34 and an outlet portion 48b, which would normally communicate with the flush system outlet port 52 of the pump casing so that a flush liquid can be pumped from the inlet port, through the liner, to the outlet port in a manner as described above.
The piston 42 of the pump 12 shown in
However, unlike the pump described above, the pump casing 34 and the liner 40 of the pump formed in accordance with one aspect of the present invention is adapted to provide an inlet and outlet port on the same side of the pump head. This is achieved by blocking both the outlet 38 of the primary pumping path and the outlet 52 of the secondary flushing path on one side of the pump. As will be discussed in further detail below, the liner 40 is also adapted to provide a fluid path within the pump head to allow transfer of the fluid from the primary inlet port 36 to the flush outlet port 50 on the same side of the pump.
Plugging of the outlet port 38 is achieved by inserting an externally threaded plug 56 into the internally threaded outlet port 38. The plug 56 is designed to provide a fluid-tight seal at the outlet port 38. Similarly, a flush outlet plug 58 is inserted into the flush outlet 52 of the casing 34 to seal the flush outlet in a fluid-tight manner. Given that a typical flush outlet is formed with a barb fitting to attach a flush fluid hose, the flush outlet plug can be designed to be press-fit into the inner diameter of the flush outlet. In this manner, fluid is prevented from leaving both the primary outlet port 38 and the flush outlet port 52 of the pump casing.
An alternative fluid path is provided in the liner 40 by forming a groove 60 in the outside surface 62 of the ceramic liner 40, as shown in
The liner 40 further includes an internal annular groove 62 formed in the inner surface of the longitudinal bore 44 adjacent the second transverse bore 48. The annular groove 62 communicates with both the inlet portion 48a and the outlet portion 48b of the second transverse bore 48 to provide a fluid path around the piston 42, as will be discussed below.
Referring now to
The fluid flows axially along the path defined by the groove 60 and the inner surface of the pump casing 34 and reenters the liner 40 through the outlet portion 48b of the second transverse bore 48. The casing flush port 52 is blocked by the plug 58 so that fluid flow has no choice but to continue through the flush circuit of the second transverse bore 48 formed into the liner 40. After entering the outlet portion 48b of the second transverse bore, the fluid now flows perpendicular to the axial direction through the liner 40 and around the piston 42 via the internal annular groove 62 formed on the inner surface of the central longitudinal bore 44. Once exiting the generous gap provided by the trepanned internal circular path of the annular groove 62, the fluid exits the liner 40 via the inlet portion 48a of the second transverse bore 48 into the flush inlet port 50 of the pump casing 34.
The longitudinal groove 60′ and the annular groove 62′ in this embodiment would create a “loop-back” channel for fluid flow very similar to what is shown in
Specifically, as shown in
One advantage of the design shown in
As a result of both alternative embodiments, the fluid to be pumped enters and exits the pump on the same side. In this fashion, the pump head has been modified from its conventional port arrangement to yield the desired single sided port location.
In another aspect of the present invention, the overall size of the multi-channel pump apparatus 10 can be further reduced by rotating each pump body, (including the pump head 12 and pump/motor coupling 15), 90° from its normal mounting arrangement. This arrangement is shown in
This 90° base rotation would normally result in neighboring pump head ports facing each other, which is an undesirable configuration making tubing connections difficult. In order to accommodate this base rotation and still allow for proper operation of the individual pump heads, another design change is presented whereby the driving pin 80 attached to the end of the piston 42 is rotated 90° from its typical orientation of having its axis perpendicular to the piston flat surface 54, (as shown as 80′ in dashed lines in
This also required 900 rotation of the pump head 12 from its normal alignment on the pump base 15 and introduction of suitable new mounting means to secure the rotated pump head 12 to the pump base 15, as shown in
As described above with respect to the gears, belts and pulleys used to drive pump channels #2, #3, and #4 from the motorized channel #1 pump 12a, another difficulty arises from the geared situation. This causes neighboring channels to be driven in opposite rotation, as shown in
For example, if the pump apparatus of
Among the particular properties of multi-channel peristaltic pumps currently used in analytical machines of the prior art is that they require high torque drives and run at relatively low speed. This has been addressed in conventional equipment by using comparatively high torque 23-frame stepper motors driving these pumps through a 5:1 gear reduction. Driving circuitry for this motor delivers stepper pulsations causing the motor to turn at about 308 RPM. The gearbox output to the peristaltic pump channels is ⅕ of this speed or close to 62 RPM.
The multi-channel rotating/reciprocating pump design of the present invention incorporates a smaller 17-frame stepper motor and no speed reduction gearbox. In order for this pump to achieve backward compatibility with legacy machines, it is necessary to directly connect the smaller motor to the existing driver electronics. The issue of torque is not a problem because the required rotational force to operate the reciprocating/rotating pump is far lower than that required for a peristaltic pump.
It is preferable to run the pump at lower than 308 RPM, particularly for channels 2, 3 and 4, whose role is to withdraw waste fluids from test vessels through small bore tubing of typically 0.062 inch. Small bore tubing can create problems for fluidic circuits when high pulse rates are used because the fluid column leading to the pump within the tubing must be accelerated at high rates on the pump inlet side. This acceleration of the fluid column within the tubing is limited by atmospheric pressure available to push the fluid towards the partial vacuum being created by the action of the pump. If the fluid fails to accelerate sufficiently then cavitation occurs and fluid flow through the pump drops.
There is a required flow rate in the analytical machines for aspiration of the waste liquid. Knowledge of pump speed and flow angle for pump displacement per revolution allows selection of a flow angle to achieve the desired flow rate for a given pump speed. Testing of early prototypes revealed that a pump whose displacement was so determined would not reliably aspirate at the required flow rate when run at 308 RPM when connected to the small bore tubing. The flow rate was being impeded by cavitation at the inlet to the pump. This problem was readily overcome by lowering the speed of the pump while adjusting the pumps displacement accordingly.
Early prototypes employed a 4:1 speed reduction belt and pulley arrangement between channel #1 and channel #2 which gave channels 2, 3 and 4 a speed of approximately 77 RPM. At this lower speed coupled with a higher flow angle for desired fluid displacement/revolution the pumps performed well and no cavitation was observed. The pump 12a in the #1 channel location is required to aspirate at approximately double that of the other channels and legacy equipment provides larger bore (0.125″) tubing for this channel. No cavitation issues were encountered with this arrangement. At first, this concept of channel #1 running at 308 RPM and connected to larger bore tubing while the other channels ran at 77 RPM with small bore tubing appeared to satisfy fluidic requirements but certain timing issues within the analytical testing machine revealed that the 77 RPM pump rate might be unsatisfactory.
Accordingly, it was decided that the speed of the channels 2-through-4 pumps needed to be raised to approximately 154 RPM. Although this can be achieved through suitable selection of pulley diameters to arrive at the needed 2:1 speed reduction a more direct method was chosen which employed a stepper motor of special windings and internal construction. Whereas the original 17 frame stepper motor used in early prototypes produces 1.8° of revolution for each pulse, a special version of this motor was obtained which rotates only 0.9° for each pulse. Use of this motor results in channel #1 rotating at half speed or 154 RPM. This then allows direct gearing from each channel with no need for speed reduction. At this speed it was found that the channels 2-through-4 are able to operate with small bore tubing and deliver required flow rate without cavitation.
Another compatibility issue faced by the multi-channel reciprocating/revolving pump design is associated with a flag and sensing function incorporated in the peristaltic multi-channel pumps. That apparatus is connected to the 23-frame stepper motor shaft, wherein a flag with aperture rotates with the motor shaft. An optical sensing device positioned to look through the aperture is connected electrically to the machine electronics in such a way that an interruption in motor rotation is seen as a loss in sensor pulses and an alarm function provides an alert that the waste pump has stopped functioning. In order for the multi-channel rotating/reciprocating pump to satisfy the compatibility requirement it needs to be able to provide the same alert directly to the legacy machine electronics should there be any interruption in pump operation.
Initially it was thought sensors and flags would need to be placed at each of the four channels. These four sensors would then need to be provided with additional electronics to be able to connect, as a group, into the existing machine electronics. A far simpler and more direct solution to this issue was developed by placing just one sensor and flag unit on the slave shaft of channel #4 pump. By this expedient, any malfunction of any of the channels is sensed by loss of pulses from channel #4 and no special circuitry is required in order to provide compatibility with the legacy electronics.
As a result of the present invention, a novel means for utilizing a valveless positive displacement piston pump is provided, wherein multiple pumps are configured in a multiple channel format as a substitute for multi-channel peristaltic and diaphragm pumps.
The valveless pump has known advantages ideally suited to address the problems described above. There are no elastomeric elements to fail from fatigue stress. There are no check valves to malfunction. The extreme durability of the ceramic pumping components mean fluid flow accuracy and pump integrity are not compromised for a length of time far exceeding that of other pump designs.
Although preferred embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments and that various other changes and modifications may be affected herein by one skilled in the art without departing from the scope or spirit of the invention, and that it is intended to claim all such changes and modifications that fall within the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 62/625,687, filed Feb. 2, 2018, which is incorporated herein by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/016319 | 2/1/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62625687 | Feb 2018 | US |