The present invention relates generally to an algorithm aimed at neurophysiology monitoring, and more particularly to an algorithm capable of quickly finding stimulation thresholds over multiple channels of a neurophysiology monitoring system.
The risk of neurological impairment is a prime concern when performing surgical procedures in close proximity to the spine or nerves. To combat this risk, surgeons are increasingly relying on neurophysiology monitoring techniques to monitor nerves and alert them to potential impairment during a surgical procedure. Often times effective nerve monitoring requires monitoring neurophysiologic results over a multitude of channels. While this is generally advantageous, it may have the negative effect of increasing the time required to complete nerve monitoring and therefore increasing the overall surgery time as well, which in turn increases the costs and risks associated with the surgery. Based on the foregoing, a need exists for an improved means of neurophysiology monitoring, and in particular a needs exists for a means to reduce the time required to monitor neurophysiologic results over a multitude of channels. The present invention is aimed at addressing these needs.
The present invention endows surgeons with valuable information that allows for the efficient assessment of risk to neural tissue before, during, and/or after a surgical procedure. This is accomplished by quickly and accurately determining a stimulation threshold for neural tissue and relaying that information to the surgeon in a simple comprehensible fashion. Stimulation thresholds are determined by electrically stimulating nerve tissue and analyzing resulting muscle activity relative to determine the stimulation current level at which nerve tissue depolarizes. To make stimulation threshold determinations muscle activity may be monitored by measuring electrical signals associated with muscle contraction, called electromyography (“EMG”). EMG responses can be characterized by a peak-to-peak voltage of Vpp=Vmax−Vmin. Characteristics of the electrical stimulation signal used may vary depending upon several factors including; the particular nerve assessment performed, the spinal target level, the type of neural tissue stimulated (e.g. nerve root, spinal cord, brain, etc. . . . ) among others.
A basic premise underlying the stimulation threshold technique is that nerves have a characteristic threshold current level (Ithresh) at which they will depolarize and cause a significant EMG response. A significant EMG response may be defined as having a Vpp greater than a predetermined threshold voltage (Vthresh), such as, by way of example only, 100 μV. Stimulation with a current below the threshold level, Ithresh, will not evoke a significant EMG response, while stimulation with a current at or above the threshold level will evoke a significant EMG response. This relationship between the stimulation current and the EMG response may be represented via a “recruitment curve.” When stimulation does not evoke a significant EMG response (represented in the onset region) the stimulation current is said to have not “recruited.” When stimulation does evoke a significant EMG response (represented in the linear and saturation regions) the stimulation current is said to have “recruited.” Ithresh, is the lowest stimulation current that recruits (evokes a significant EMG response).
The algorithm described herein may considerably reduce the number of stimulations, and thus time, required to determine Ithresh, particularly for a number of channels, over the course of a procedure. The basic method for finding Ithresh utilizes a bracketing method and a bisection method. The bracketing method quickly finds a range (bracket) of stimulation currents that must contain Ithresh and the bisection method narrows the bracket until Ithresh is known within a specified accuracy.
The bracketing method adjusts the stimulation current as follows. Stimulation begins at a minimum stimulation current. Each subsequent stimulation is delivered at a current level double that of the preceding current. This doubling continues until a stimulation current results in an EMG response with a Vpp greater than Vthresh. This first stimulation current to recruit, together with the last stimulation current to have not recruited, forms the initial bracket.
After bracketing the threshold current Ithresh, the bisection method is used to reduce the bracket to a selected width or resolution. The stimulation current at the midpoint of the bracket is used. If the stimulation current recruits, the bracket shrinks to the lower half of the previous range. If the stimulation current does not recruit, the bracket shrinks to the upper half of the previous range. This process continues until Ithresh is bracketed by stimulation currents separated by the selected width or resolution. Ithresh is preferably defined as the midpoint of this final bracket. The bracketing and bisection steps are repeated for each channel with an in range Ithresh.
To reduce the number of stimulations required to complete the bracketing and bisection steps when Ithresh Ithresh is determined repeatedly and/or over multiple channels, the algorithm omits stimulations for which the result is predictable from data acquired during previous stimulations. When a stimulation is omitted the algorithm proceeds as if the stimulation had taken place. However, instead of reporting an actual recruitment result, the reported result is inferred from the previous data. This permits the algorithm to proceed to the next step immediately, without the delay associated with a stimulation. For every stimulation signal delivered, the EMG response, or lack there of, is detected and recorded on each channel (no matter which channel is actually being processed for Ithresh). Later the data can be referred back to, allowing the algorithm to omit a stimulation and infer whether or not the channel would recruit at the given stimulation current.
There are two scenarios in which the algorithm may omit a stimulation and report previously obtained recruitment results. A stimulation may be omitted if the selected stimulation current would be a repeat of a previous stimulation. If the specific stimulation current is not a repeat, the stimulation may be omitted if the results are already clear from the previous data.
To determine whether to deliver an actual stimulation or omit the stimulation and report previous results, the algorithm first checks whether the selected stimulation current has been previously used. If the stimulation current has been used the stimulation is omitted and the results of the previous stimulation are reported for the present channel. If the stimulation current has not been used, the algorithm determines Irecruit and Inorecruit for the present channel. Irecruit is the lowest stimulation current that has recruited on the present channel. Inorecruit is the highest stimulation current that has failed to recruit on the present channel. If Irecruit is not greater than Inorecruit the algorithm will stimulate at the selected current and report the results for the present channel. If Irecruit is greater than Inorecruit the algorithm identifies whether the selected stimulation current is higher than Irecruit, lower than Inorecruit, or between Irecruit and Inorecruit. If the selected stimulation current is higher than Irecruit the algorithm omits the stimulation and reports that the present channel recruits at the specified current. Conversely, when the selected stimulation current is lower than Inorecruit the algorithm infers that the present channel will not recruit at the selected current and reports that result. If the selected stimulation current falls between Irecruit and Inorecruit the result of the stimulation cannot be inferred. The algorithm stimulates at the selected current and reports the results for the present channel. This method may be repeated until Ithresh has been determined for every active channel.
The order in which channels are processed is immaterial. The channel processing order may be biased to yield the highest or lowest threshold first or an arbitrary processing order may be used. It is also not necessary to complete the algorithm for one channel before beginning to process the next channel. Channels are still processed one at a time, however, the algorithm may cycle between one or more channels, processing as few as one stimulation current for that channel before moving on to the next channel. In this manner the algorithm may advance all channels essentially together and bias the order to find the lower threshold channels first or the higher threshold channels first.
To further reduce the number of stimulations required to repeatedly find Ithresh over the course of a procedure, the algorithm includes a confirmation step. If Ithresh has been previously determined for a specific channel the algorithm may simply confirm that Ithresh has not changed rather than beginning anew with the bracketing and bisection methods.
The confirmation step attempts to ascertain whether Ithresh has moved from its last known value. To do this the algorithm applies two stimulation currents, one at or just above the threshold value and one just below the threshold value. If the stimulation at or above Ithresh recruits and the stimulation just below Ithresh does not recruit then Ithresh is confirmed and the algorithm may report the initial value again as Ithresh and proceed to process another channel. If the stimulation just below Ithresh recruits it may be concluded that Ithresh has decreased and likewise, if the stimulation at or just above Ithresh fails to recruit it may be assumed that Ithresh has increased and therefore Ithresh can not be confirmed.
If Ithresh cannot be confirmed the algorithm enters the bracketing state. Rather than beginning the bracketing state from the minimum stimulation current, however, the bracketing state may begin from the previous Ithresh. The bracketing may advance up or down depending on whether Ithresh has increased or decreased. When the algorithm enters the bracketing state the increment used in the confirmation step is exponentially doubled until the channel recruits, at which time it enters the bisection state. The confirmation step may be performed for each channel, in turn, in any order. Again stimulations may be omitted and the algorithm may begin processing a new channel before completing the algorithm for another channel, as described above.
The algorithm described herein may be particularly useful when employed to monitor nerve pathology in conjunction with the use of a nerve retractor. A typical nerve retractor serves to pull or otherwise maintain a nerve outside the surgical corridor, thereby protecting the nerve from inadvertent damage or contact by the “active” instrumentation used to perform the actual surgery. While generally advantageous, it has been observed that such retraction can cause nerve function to become impaired or otherwise pathologic over time due to the retraction. Monitoring Ithresh during nerve retraction may be useful to assess the degree to which retraction of a nerve or neural structure affects the nerve function over time. One advantage of such monitoring is that the conduction of the nerve may be monitored during the procedure to determine whether the neurophysiology and/or function of the nerve changes (for the better or worse) as a result of the particular surgical procedure. For example, it may be observed that the nerve conduction decreases (indicated by an increase in Ithresh over time) during the retraction, indicating that the nerve function has been negatively affected. In contrast, the nerve conduction may increase (indicated by a decrease in Ithresh over time), indicating that the nerve function may have been restored or improved by the surgical procedure (such as during a successful decompression surgery, etc. . . . ). As mentioned, a change in Ithresh may occur on any channel; therefore it is advantageous to calculate the actual Ithresh for each channel, as opposed to determining a value for just the channel with the highest or lowest Ithresh. The algorithm of the present invention accomplishes this while substantially limiting the number of stimulations required to do so. This may substantially reduce the time required to make an Ithresh determination which in turn may reduce the overall surgical time and risk to the patient.
The algorithm of the present invention may also be of particular use during Motor Evoked Potential (MEP) monitoring. When surgical procedures are performed in the proximity of the spinal cord, potential damage to the spinal cord is a paramount concern. Consequences of spinal cord damage may range from a slight loss of sensation to complete paralysis of the extremities, depending on the location and extent of damage. MEP monitoring, generally involving monitoring transmission of an electrical signal along the spinal cord, may be employed to assess the spinal cord before, during, and/or after surgery. Degradation or decreased conduction of an electrical signal, indicated by an increase in Ithresh, may indicate that the health of the spinal cord is compromised. Obtaining such information quickly may allow the surgeon to initiate corrective measures before the damage gets worse and/or becomes permanent. Similar to the nerve pathology monitoring mentioned above, changes in Ithresh indicating potential damage to the spinal cord may occur on any monitored channel, thus it is advantageous to calculate the actual Ithresh for each channel, as opposed to determining just the channel with the highest or lowest Ithresh. Employing the algorithm of the present invention again allows this to be done accurately and efficiently.
The algorithm of the present invention may be employed for use on any of a number of neurophysiology monitoring systems. By way of example only, a preferred multi-channel neurophysiology monitoring system for employing the algorithm of the present invention to quickly find stimulation thresholds for a multitude of channels may be capable of carrying out neurophysiologic assessment functions including, but not necessarily limited to, Twitch Test (neuromuscular pathway assessment), Screw Test (pedicle integrity testing), Detection (nerve proximity testing during surgical access), Nerve Retractor (nerve pathology monitoring), MEP (Motor Evoked Potential spinal cord monitoring), and SSEP (Somatosensory Evoked Potential spinal cord monitoring).
The surgical system includes a control unit, a patient module, an MEP stimulator, an EMG harness, including eight pairs of EMG electrodes and a return (anode) electrode coupled to the patient module, at least one pair of stimulation electrodes coupled to the MEP stimulator, and a host of surgical accessories (including a nerve retractor) capable of being coupled to the patient module via one or more accessory cables. Information generated by the system is shown on a screen display and may include, but is not necessarily limited to, alpha-numeric and/or graphical information regarding MEP, nerve pathology, myotome/EMG levels, stimulation levels, the function selected.
Neural pathology monitoring may be performed by electrically stimulating a nerve root according to the hunting algorithm, via one or more stimulation electrodes at the distal end of the nerve root retractor and monitoring each channel for corresponding evoked muscle responses. Threshold hunting continues according to the algorithm until Ithresh is determined for each channel in range. A pathology assessment is made by determining a baseline stimulation threshold with direct contact between the nerve retractor and the nerve, prior to retraction. Subsequent stimulation thresholds are determined during retraction and they are compared to the baseline threshold. An increase in Ithresh over time is an indication that the nerve function is deteriorating and retraction should be reduced or stopped altogether to prevent permanent damage. A decrease in Ithresh over time may be an indication that nerve function has been at least partially restored. The display of Ithresh values may be accompanied by a color code making use of the colors Red, Yellow, and Green to indicate predetermined unsafe, intermediate and safe levels, respectively.
MEP may be performed by electrically stimulating the motor cortex of the brain with electrical stimulation signals which creates an action potential that travels along the spinal cord and into the descending nerves, evoking activity from muscles innervated by the nerves. EMG responses of the muscles are recorded by the system and analyzed in relation to the stimulation signal. The multi-channel threshold hunting algorithm described above may be utilized to determine a baseline Ithresh for each channel. Having determined a baseline Ithresh for each channel, subsequent monitoring may be performed as desired throughout the procedure and recovery period to obtain updated Ithresh values for each channel. Each new determination of Ithresh is compared by the surgical system to the baseline Ithresh for the appropriate channel. The difference (ΔIthresh) between the baseline Ithresh and the new Ithresh is calculated by the system 40 and the ΔIthresh value is compared to predetermined “safe” and “unsafe” values. The display of Ithresh may be accompanied by a color code making use of the colors Red, Yellow, and Green to indicate predetermined unsafe, intermediate and safe levels, respectively.
Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The methods disclosed herein boast a variety of inventive features and components that warrant patent protection, both individually and in combination.
The present invention endows surgeons with valuable information that allows for the efficient assessment of risk to neural tissue before, during, and/or after a surgical procedure. This is accomplished by quickly and accurately determining a stimulation threshold for neural tissue and relaying that information to the surgeon in a simple comprehensible fashion. Stimulation thresholds are determined by electrically stimulating nerve tissue and analyzing resulting muscle activity relative to determine the stimulation current level at which nerve tissue depolarizes. To make stimulation threshold determinations muscle activity may be monitored by measuring electrical signals associated with muscle contraction, called electromyography (“EMG”). EMG responses, such as that represented in
A basic premise underlying the stimulation threshold technique is that nerves have a characteristic threshold current level (Ithresh) at which they will depolarize and cause a significant EMG response. A significant EMG response may be defined as having a Vpp greater than a predetermined threshold voltage (Vthresh), such as, by way of example only, 100 μN. Stimulation with a current below the threshold level, Ithresh, will not evoke a significant EMG response, while stimulation with a current at or above the threshold level will evoke a significant EMG response. This relationship between the stimulation current and the EMG response may be represented via a “recruitment curve,” such as that illustrated in
Knowing Ithresh allows the surgeon to make various useful assessments regarding the safety of nerves during a surgical procedure. For example, it is often necessary to move or maintain a nerve outside of the surgical area using a nerve retractor. While retraction is generally necessary to provide better access to the surgical area and protect the nerve from inadvertent damage (e.g. through contact with various surgical implements), over time such retraction may impair nerve. A decrease in nerve function is likely to be accompanied by a corresponding increase in Ithresh as a greater stimulation will be required to depolarize the nerve. Thus, by monitoring for changes in Ithresh over the course of retraction, the surgeon may be alerted to potential danger and take steps to correct the condition (e.g. such as releasing or reducing pressure on the nerve) before nerve impairment gets worse and/or becomes permanent.
In many cases, to effectively utilize the valuable information Ithresh provides, Ithresh must be determined frequently and for a number of different channels (corresponding to different EMG recording sites and the muscles they monitor) because Ithresh may vary between channels. Additionally, changes in Ithresh (indicating a potential problem) may occur independently on one channel and not another, thereby necessitating repeated determinations over multiple channels in order to gain the maximum benefit. Numerous stimulations may potentially be required to make a single Ithresh determination and making Ithresh determinations for multiple channels significantly increases this potential. For each stimulation signal emitted, a certain period of time (equaling the signal duration plus nerve recovery time) is exhausted. Over a number of stimulations this time adds up, such that the surgeon may experience a lag time upwards of 30 seconds or longer between initiating a test and receiving the Ithresh for each channel. Added over an entire procedure this may amount to a significant increase in surgery time and/or a reluctance to monitor effectively.
The algorithm described herein may considerably reduce the number of stimulations, and thus time, required to determine Ithresh. This reduction may be especially evident when determining Ithresh over every channel of a multi-channel neurophysiology monitoring system, such as that described below.
To find the initial bracket the bracketing method adjusts the stimulation current as follows. Stimulation begins at a predetermined minimum stimulation current. The minimum stimulation current depends upon the selected function, by way of example only, the minimum stimulation current used for nerve pathology monitoring may be 0.2 mA while the minimum stimulation current used for MEP monitoring may be 60 mA. Each subsequent stimulation is delivered at a current level double that of the preceding current. This exponential doubling continues until a stimulation current results in an EMG response with a Vpp greater than Vthresh (i.e. it recruits). This first stimulation current to recruit, together with the last stimulation current to have not recruited, forms the initial bracket, as illustrated in
With respect to
Significantly, the algorithm further operates to reduce the number of actual stimulations required to complete bracketing and bisection when Ithresh is determined repeatedly and/or over multiple channels. The algorithm does so by omitting stimulations for which the result is predictable from data acquired during previous stimulations. When a stimulation is omitted the algorithm proceeds as if the stimulation had taken place. Instead of reporting an actual recruitment result, however, the reported result is inferred from the previous data. This permits the algorithm to proceed to the next step immediately, without the delay associated with a stimulation.
For every stimulation signal delivered, the EMG response, or lack there of, is detected and recorded on each channel, no matter which channel is actually being processed for Ithresh. That is, every channel either recruits or does not recruit (again, a channel is said to have recruited if a stimulation signal evokes a significant EMG response from the muscle associated with that channel) in response to a given stimulation signal. These recruitment results are detected and saved for each channel. Later, when a different channel is processed for Ithresh, the saved data can be referred back to such that the algorithm may omit a stimulation if it may infer whether or not the channel would recruit at the given stimulation current.
There are two scenarios in which the algorithm may omit a stimulation and report previously obtained recruitment results. A stimulation may be omitted if the selected stimulation current would be a repeat of a previous stimulation. By way of example only, if a stimulation at 1.0 mA was performed to determine Ithresh for one channel, and a stimulation at 1.0 mA is later required to determine Ithresh for another channel, the algorithm may omit the stimulation and report the previous results. If the specific stimulation current required has not previously been used, a stimulation may still be omitted if the results are already clear from the previous data. By way of example only, if a stimulation at 2.0 mA was performed to determine Ithresh for a previous channel and the present channel did not recruit, when a stimulation at 1.0 mA is later required to determine Ithresh for the present channel, the algorithm may infer that the present channel will not recruit at 1.0 mA since it did not recruit at 2.0 mA. The algorithm may omit the stimulation and report the previous result.
For the purposes of example only,
The first stimulation current selected in the bisection state, 12 mA, was used previously and the algorithm may omit the stimulation and report that channel 2 recruits at that stimulation current. The next stimulation current selected in the bisection phase, 10 mA, was not previously used and the algorithm must therefore determine whether the result of a stimulation at 10 mA may still be inferred. Irecruit and Inorecruit are determined to be 12 mA and 8 mA respectively. 10 mA lies inbetween the Irecruit value of 12 mA and Inorecruit value of 8 mA, thus the result may not be inferred from the previous data and the stimulation may not be omitted. The algorithm stimulates at 10 mA and reports that the channel recruits. The bracket shrinks to the lower half, making 9 mA the next stimulation current. 9 mA has not previously been used so the algorithm again determines Iremit and Inorecruit, now 10 mA and 8 mA respectively. The selected stimulation current, 9 mA, falls inbetween Irecruit and Inorecruit, thus, the algorithm stimulates at 9 mA and reports the results. The bracket now stands at its final width of 1 mA (for the purposes of example only) and the midpoint of the bracket, 8.5 mA, is selected and reported as Ithresh for channel 2.
Although the algorithm is discussed and shown to process channels in numerical order, it will be understood that the actual order in which channels are processed is immaterial. The channel processing order may be biased to yield the highest or lowest threshold first (discussed below) or an arbitrary processing order may be used. Furthermore, it will be understood that it is not necessary to complete the algorithm for one channel before beginning to process the next channel. Channels are still processed one at a time, however, the algorithm may cycle between one or more channels, processing as few as one stimulation current for that channel before moving on to the next channel. By way of example only, the algorithm may stimulate at 1 mA while processing a first channel for Ithresh. Before stimulating at 2 mA (the next stimulation current in the bracketing phase) the algorithm may cycle to any other channel and process it for the 1 mA stimulation current (omitting the stimulation if applicable). Any or all of the channels may be processed this way before returning to the first channel to apply the next stimulation. Likewise, the algorithm need not return to the first channel to stimulate at 2 mA, but instead, may select a different channel to process first at the 2 mA level. In this manner the algorithm may advance all channels essentially together and bias the order to find the lower threshold channels first or the higher threshold channels first. By way of example only, the algorithm may stimulate at one current level and process each channel in turn at that level before advancing to the next stimulation current level. The algorithm may continue in this pattern until the channel with the lowest Ithresh is bracketed. The algorithm may then process that channel exclusively until Ithresh is determined, then return to processing the other channels one stimulation current level at a time until the channel with the next lowest Ithresh is bracketed. This process may be repeated until Ithresh is determined for each channel in order of lowest to highest Ithresh. Should Ithresh for more than one channel fall within the same bracket, the bracket may be bisected, processing each channel within that bracket in turn until it becomes clear which one has the lowest Ithresh. If it becomes more advantageous to determine the highest Ithresh first, the algorithm may continue in the bracketing state until the bracket is found for every channel and then bisect each channel in descending order.
In another significant aspect of the present invention, to further reduce the number of stimulations required to repeatedly find Ithresh over the course of a procedure, the algorithm includes a confirmation step. If Ithresh has been previously determined for a specific channel the algorithm may simply confirm that Ithresh has not changed rather than beginning anew with the bracketing and bisection methods.
If Ithresh cannot be confirmed the algorithm enters the bracketing state. Rather than beginning the bracketing state from the minimum stimulation current, however, the bracketing state may begin from the previous Ithresh. The bracketing may advance up or down depending on whether Ithresh has increased or decreased. By way of example only, if the previous value of Ithresh was 4 mA the confirmation step may stimulate at 4 mA and 3.8 mA. If the stimulation at 4 mA fails to evoke a significant response it may be concluded that the Ithresh has increased and the algorithm will bracket upwards from 4 mA. When the algorithm enters the bracketing state the increment used in the confirmation step (i.e. 0.2 mA in this example) is doubled. Thus the algorithm stimulates at 4.4 mA. If the channel fails to recruit at this current level the increment is doubled again to 0.8 mA, and the algorithm stimulates at 5.2 mA. This process is repeated until the maximum stimulation current is reached or the channel recruits, at which time it may enter the bisection state.
If, during the confirmation step, the stimulation current just below the previously determined Ithresh recruits, it may be concluded that Ithresh for that channel has decreased and the algorithm may bracket down from that value (i.e. 3.8 mA in this example). Thus, in this example the algorithm would double the increment to 0.4 mA and stimulate at 3.4 mA. If the channel still recruits at this stimulation current the increment is doubled again to 0.8 mA such that the algorithm stimulates at 2.6 mA. This process is repeated until the minimum stimulation current is reached, or the channel fails to recruit, at which time the algorithm may enter the bisection state. The confirmation step may be performed for each channel, in turn, in any order. Again stimulations may be omitted and the algorithm may begin processing a new channel before completing the algorithm for another channel, as described above.
By way of example only, the algorithm of the present invention may be particularly useful when employed to monitor nerve pathology in conjunction with the use of a nerve retractor, such as nerve retractor 60 and 61 (shown in
By way of example only, the algorithm of the present invention may also be of particular use during Motor Evoked Potential (MEP) monitoring. When surgical procedures are performed in the proximity of the spinal cord, potential damage to the spinal cord is a paramount concern. Consequences of spinal cord damage may range from a slight loss of sensation to complete paralysis of the extremities, depending on the location and extent of damage. MEP monitoring, generally involving monitoring transmission of an electrical signal along the spinal cord, may be employed to assess the spinal cord before, during, and/or after surgery. Degradation or decreased conduction of an electrical signal, indicated by an increase in Ithresh, may indicate that the health of the spinal cord is compromised. Obtaining such information quickly may allow the surgeon to initiate corrective measures before the damage gets worse and/or becomes permanent. Similar to the nerve pathology monitoring mentioned above, changes in Ithresh indicating potential damage to the spinal cord may occur on any monitored channel, thus it is advantageous to calculate the actual Ithresh for each channel, as opposed to determining just the channel with the highest or lowest Ithresh. Employing the algorithm of the present invention again allows this to be done accurately and efficiently.
The algorithm of the present invention may be employed for use on any of a number of neurophysiology monitoring systems, including but not limited to that shown and described in commonly owned Int'l Patent App. No. PCT/US02/30617, entitled “System and Methods for Performing Surgical Procedures and Assessments,” filed on Sep. 25, 2002; and Intl Patent App. No. PCT/US2006/003966, entitled “System and Methods for Performing Neurophysiologic Assessments During Spine Surgery,” filed on Feb. 2, 2006, both of which are hereby incorporated by reference as if set forth fully herein.
The surgical system 40 includes a control unit 42, a patient module 44, an MEP stimulator 46, an EMG harness 48, including eight pairs of EMG electrodes 50 and a return (anode) electrode 52 coupled to the patient module 44, at least one pair of stimulation electrodes 54 coupled to the MEP stimulator 46, and a host of surgical accessories 56 capable of being coupled to the patient module 44 via one or more accessory cables 58. The surgical accessories 56 may include, but are not necessarily limited to, a neural pathology monitoring device such as nerve root retractors 60 and 62. Additional surgical accessories may include stimulation accessories (such as a screw test probe 70 and dynamic stimulation clips 72, 74), surgical access components (such as a K-wire 76, one or more dilating cannula 78, a working cannula 80, and a tissue retraction assembly 82).
The patient module 44 is connected via a data cable 67 to the control unit 42, and contains the electrical connections to electrodes, signal conditioning circuitry, stimulator drive and steering circuitry, and a digital communications interface to the control unit 42. In use, the control unit 42 is situated outside but close to the surgical field (such as on a cart adjacent the operating table) such that the display 64 is directed towards the surgeon for easy visualization. The patient module 44 may be located near the patient's legs or may be affixed to the end of the operating table at mid-leg level using a bedrail clamp. The position selected should be such that all EMG electrodes can reach their farthest desired location without tension during the surgical procedure. The information displayed to the user on the display 62 may include, but is not necessarily limited to, alpha-numeric and/or graphical information regarding MEP, nerve pathology, myotome/EMG levels, stimulation levels, the function selected, and the instrument in use.
In a preferred embodiment, EMG response monitoring for the system 40 is accomplished via 8 pairs of EMG electrodes 50 placed on the skin over the muscle groups to be monitored, a common electrode 51 providing a ground reference to pre-amplifiers in the patient module 44, and an anode electrode 52 providing a return path for the stimulation current. The EMG responses provide a quantitative measure of the nerve depolarization caused by the electrical stimulus. It should be appreciated that any of a variety of known electrodes can be employed with system 40, including but not limited to surface pad electrodes and needle electrodes. A preferred EMG electrode is the dual surface electrode which is shown and described in detail in the commonly owned and co-pending U.S. patent application Ser. No. 11/048,404, entitled “Improved Electrode System and Related Methods,” filed on Jan. 31, 2005, which is expressly incorporated by reference into this disclosure as if set forth in its entirety herein.
The arrangement of EMG electrodes depends on a multitude of factors, including for example, the spinal cord level, neural tissue at risk, and user preference, among others. In one embodiment (set forth by way of example only), the preferred EMG configuration is described for Lumbar surgery in Table 1, Thoracolumbar surgery in Table 2, and Cervical surgery in Table 3 below:
The surgical system 40 employs the algorithm described above to automatically control the delivery of stimulation signals upon test initiation. While it may be used with any of a number of the operable functions of system 40, the multi-channel aspect of the hunting algorithm is most particularly useful during Nerve Retractor and MEP modes, which will be described in greater detail below. Various additional functions of the system 40 have been previously discussed in detail elsewhere and such discussion is not included herein. Details of the Twitch Test, Screw Test (Basic, Difference, Dynamic), Detection, and SSEP modes may be found in the following commonly owned patent applications, each of which is expressly incorporated by reference as if set forth herein in their entireties: Int'l Patent App. No. PCT/US2005/036089, entitled “System and Methods for Assessing the Neuromuscular Pathway Prior to Nerve Testing,” filed Oct. 7, 2005; Int'l Patent App. No. PCT/US02/35047 entitled “System and Methods for Performing Percutaneous Pedicle Integrity Assessments,” filed on Oct. 30, 2002; Int'l Patent App. No. PCT/US2004/025550, entitled “System and Methods for Performing Dynamic Pedicle Integrity Assessments,” filed on Aug. 5, 2004; Int'l Patent App. No PCT/US02/22247, entitled “System and Methods for Determining Nerve Proximity, Direction, and Pathology During Surgery,” filed on Jul. 11, 2002; the entire contents of each are hereby incorporated by reference as if set forth fully herein.
The surgical system 40 accomplishes neural pathology monitoring (via Nerve Retractor Mode, by way of example only) by electrically stimulating a nerve root according to the hunting algorithm, via one or more stimulation electrodes at the distal end of the nerve root retractor 60 or 61 and monitoring each channel for corresponding evoked muscle responses. Threshold hunting continues according to the algorithm until Ithresh is determined for each channel in range. A pathology assessment is made by determining a baseline stimulation threshold with direct contact between the nerve retractor 60 or 61 and the nerve, prior to retraction. Subsequent stimulation thresholds are determined during retraction and they are compared to the baseline threshold. An increase in Ithresh over time is an indication that the nerve function is deteriorating and retraction should be reduced or stopped altogether to prevent permanent damage. A decrease in Ithresh over time may be an indication that nerve function has been at least partially restored.
Ithresh results determined by the algorithm may be displayed to the surgeon on the display 62, as illustrated, by way of example only, in
The nerve root retractor 60 may be dimensioned in any number of different fashions, such as retractors 60 and 61 illustrated in
The surgical system 40 may perform MEP by electrically stimulating the motor cortex of the brain with electrical stimulation signals which creates an action potential that travels along the spinal cord and into the descending nerves, evoking activity from muscles innervated by the nerves. EMG responses of the muscles are recorded by the system 40 and analyzed in relation to the stimulation signal. Stimulation and analysis are preferably executed according to the multi-channel hunting algorithm described above.
MEP stimulation signals are generated in the MEP stimulator 21 and delivered to the motor cortex via a pair of stimulation electrodes 54 connected to the MEP stimulator 21 and placed on opposite sides of the cranium. Each MEP signal is preferably delivered as a group or train of multiple pulses, such as that illustrated in
MEP stimulator 46 is communicatively linked to the control unit 42 which commands the stimulator 46 to deliver electrical signals according to predetermined parameters (such as current level, among others) at the proper time. MEP stimulator 46 may be communicatively linked to the control unit 40 via any suitable connection such as a data cable or wireless technology, etc. . . . . The MEP stimulator 46 may be positioned outside the sterile area but should be located such that the stimulation electrodes 54, attached to the stimulator 46, may be positioned on the patient's head without tension. By way of example, MEP stimulator 46 may be placed on the surgical table adjacent to the patient's head. Optionally, the MEP stimulator 46 may be fashioned with a mount or hook (not shown) and hung from an IV pole near the patient's head.
The multi-channel threshold hunting algorithm described above is utilized to determine a baseline Ithresh for each channel, preferably prior to or in the early stages of a surgical procedure. It should be appreciated, however, that a new baseline Ithresh may be determined at any time during the procedure at the option of the surgeon or other qualified operator. Having determined a baseline Ithresh for each channel, subsequent monitoring may be performed as desired throughout the procedure and recovery period to obtain updated Ithresh values for each channel. Each new determination of Ithresh is compared by the surgical system 40 to the baseline Ithresh for the appropriate channel. The difference (ΔIthresh) between the baseline Ithresh and the new Ithresh is calculated by the system 40 and the ΔIthresh value is compared to predetermined “safe” and “unsafe” values. If ΔIthresh S greater than the predetermined safe level, the user is alerted to a potential complication and action may be taken to avoid or mitigate the problem. The speed with which the multi-channel MEP threshold hunting algorithm is able to determine Ithresh across all channels, and the simplicity with which the data communicated to the user may be interpreted, allows the user to increase the frequency of MEP monitoring conducted during a procedure without a concurrent increase in overall surgery time. This provides significant benefit to the patient by reducing the time intervals in between MEP monitoring episodes during which an injury to the spinal cord may go undetected.
The display of Ithresh, shown by way of example only in the exemplary MEP screen display of
It will be readily appreciated that various modifications may be undertaken, or certain steps or algorithms omitted or substituted, without departing from the scope of the present invention. By way of example only, although the multi-channel hunting algorithm is discussed herein in terms of finding Ithresh (the lowest stimulation current that evokes a significant EMG response), it is contemplated that alternative stimulation thresholds may be determined by the hunting algorithm. By way of example only, the hunting algorithm may be employed to determine a stimulation voltage threshold, Vstimthresh. This is the lowest stimulation voltage (as opposed to the lowest stimulation current) necessary to evoke a significant EMG response, Vthresh. The bracketing and bisection states are conducted, omitting stimulations and conducting confirmation step when applicable, as described above, with brackets based on voltage being substituted for the current based brackets previously described. By way of further example, although use of the multi-channel hunting algorithm was described with reference to a nerve retractor and Tce-MEP monitoring, it will be appreciated that the algorithm may be employed for a variety or neurophysiology functions including, but not necessarily limited to, pedicle integrity testing, nerve proximity monitoring, and nerve direction monitoring.
Moreover, although use of the algorithm was illustrated with reference to the surgical system 40, it will be appreciated as within the scope of the invention to use the multi-channel hunting algorithm as described herein with any number of different neurophysiology based testing, including but not limited to the “NIM SPINE” testing system offered by Medtronic Sofamor Danek, Inc.
While this invention has been described in terms of a best mode for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the present invention. For example, the present invention may be implemented using any combination of computer programming software, firmware or hardware. As a preparatory step to practicing the invention or constructing an apparatus according to the invention, the computer programming code (whether software or firmware) according to the invention will typically be stored in one or more machine readable storage mediums such as fixed (hard) drives, diskettes, optical disks, magnetic tape, semiconductor memories such as ROMs, PROMs, etc., thereby making an article of manufacture in accordance with the invention. The article of manufacture containing the computer programming code is used by either executing the code directly from the storage device, by copying the code from the storage device into another storage device such as a hard disk, RAM, etc. or by transmitting the code on a network for remote execution. As can be envisioned by one of skill in the art, many different combinations of the above may be used and accordingly the present invention is not limited by the specified scope.
This application is a continuation of U.S. patent application Ser. No. 14/959,850 filed Dec. 4, 2015, pending, which is a continuation of U.S. patent application Ser. No. 13/960,610 filed Aug. 6, 2013 (now abandoned), which is a continuation of U.S. patent application Ser. No. 13/533,919 filed Jun. 26, 2012 (now U.S. Pat. No. 8,500,653), which is a continuation of U.S. patent application Ser. No. 11/994,409 filed Dec. 31, 2007 (now U.S. Pat. No. 8,206,312), which is the national stage entry of PCT/US2006/037013 filed Sep. 22, 2006, which claims priority to U.S. Provisional Patent Application No. 60/719,897 filed Sep. 22, 2005.
Number | Name | Date | Kind |
---|---|---|---|
972983 | Arthur | Oct 1910 | A |
1328624 | Graham | Jan 1920 | A |
1548184 | Cameron | Aug 1925 | A |
2704064 | Fizzell et al. | Jun 1955 | A |
2736002 | Oriel | Feb 1956 | A |
2808826 | Reiner et al. | Oct 1957 | A |
3364929 | Ide et al. | Jan 1968 | A |
3664329 | Naylor | May 1972 | A |
3682162 | Colyer | Aug 1972 | A |
3785368 | McCarthy et al. | Jan 1974 | A |
3830226 | Staub et al. | Aug 1974 | A |
3957036 | Normann | May 1976 | A |
4099519 | Warren | Jul 1978 | A |
4164214 | Stark et al. | Aug 1979 | A |
4207897 | Lloyd et al. | Jun 1980 | A |
4224949 | Scott et al. | Sep 1980 | A |
4226228 | Shin et al. | Oct 1980 | A |
4235242 | Howson et al. | Nov 1980 | A |
4285347 | Hess | Aug 1981 | A |
4291705 | Severinghaus et al. | Sep 1981 | A |
4461300 | Christensen | Jul 1984 | A |
4515168 | Chester et al. | May 1985 | A |
4519403 | Dickhudt | May 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4561445 | Berke et al. | Dec 1985 | A |
4562832 | Wilder et al. | Jan 1986 | A |
4573448 | Kambin | Mar 1986 | A |
4592369 | Davis et al. | Jun 1986 | A |
4595018 | Rantala | Sep 1986 | A |
4616660 | Johns | Oct 1986 | A |
4633889 | Talalla | Jan 1987 | A |
4658835 | Pohndorf | Apr 1987 | A |
4744371 | Harris | May 1988 | A |
4759377 | Dykstra | Jul 1988 | A |
4784150 | Voorhies et al. | Nov 1988 | A |
4807642 | Brown | Feb 1989 | A |
4892105 | Prass | Jan 1990 | A |
4926865 | Oman | May 1990 | A |
4962766 | Herzon | Oct 1990 | A |
4964411 | Johnson et al. | Oct 1990 | A |
5007902 | Witt | Apr 1991 | A |
5058602 | Brody | Oct 1991 | A |
5081990 | Deletis | Jan 1992 | A |
5092344 | Lee | Mar 1992 | A |
5125406 | Goldstone et al. | Jun 1992 | A |
5127403 | Brownlee | Jul 1992 | A |
5161533 | Prass et al. | Nov 1992 | A |
5196015 | Neubardt | Mar 1993 | A |
RE34390 | Culver | Sep 1993 | E |
5255691 | Otten | Oct 1993 | A |
5282468 | Klepinski | Feb 1994 | A |
5284153 | Raymond et al. | Feb 1994 | A |
5284154 | Raymond et al. | Feb 1994 | A |
5299563 | Seton | Apr 1994 | A |
5312417 | Wilk | May 1994 | A |
5313956 | Knutsson et al. | May 1994 | A |
5313962 | Obenchain | May 1994 | A |
5327902 | Lemmen | Jul 1994 | A |
5333618 | Lekhtman et al. | Aug 1994 | A |
5375067 | Berchin | Dec 1994 | A |
5383876 | Nardella | Jan 1995 | A |
5474558 | Neubardt | Dec 1995 | A |
5480440 | Kambin | Jan 1996 | A |
5482038 | Ruff | Jan 1996 | A |
5484437 | Michelson | Jan 1996 | A |
5540235 | Wilson | Jul 1996 | A |
5549656 | Reiss | Aug 1996 | A |
5560372 | Cory | Oct 1996 | A |
5566678 | Cadwell | Oct 1996 | A |
5569248 | Matthews | Oct 1996 | A |
5579781 | Cooke | Dec 1996 | A |
5593429 | Ruff | Jan 1997 | A |
5599279 | Slotman et al. | Feb 1997 | A |
5601608 | Mouchawar | Feb 1997 | A |
5630813 | Kieturakis | May 1997 | A |
5671752 | Sinderby et al. | Sep 1997 | A |
5707359 | Bufalini | Jan 1998 | A |
5711307 | Smits | Jan 1998 | A |
5728046 | Mayer et al. | Mar 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5779642 | Nightengale | Apr 1998 | A |
5759159 | Masreliez | Jun 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5775331 | Raymond et al. | Jul 1998 | A |
5776144 | Leysieffer et al. | Jul 1998 | A |
5785658 | Benaron | Jul 1998 | A |
5797854 | Hedgecock | Aug 1998 | A |
5814073 | Bonutti | Sep 1998 | A |
5830151 | Hadzic et al. | Nov 1998 | A |
5851191 | Gozani | Dec 1998 | A |
5853373 | Griffith et al. | Dec 1998 | A |
5860973 | Michelson | Jan 1999 | A |
5862314 | Jeddeloh | Jan 1999 | A |
5872314 | Clinton | Feb 1999 | A |
5885219 | Nightengale | Mar 1999 | A |
5888196 | Bonutti | Mar 1999 | A |
5902231 | Foley et al. | May 1999 | A |
5928139 | Koros et al. | Jul 1999 | A |
5928158 | Aristides | Jul 1999 | A |
5976094 | Gozani et al. | Nov 1999 | A |
6004262 | Putz et al. | Dec 1999 | A |
6011985 | Athan et al. | Jan 2000 | A |
6027456 | Feler et al. | Feb 2000 | A |
6038469 | Karlsson et al. | Mar 2000 | A |
6038477 | Kayyali | Mar 2000 | A |
6050992 | Nichols | Apr 2000 | A |
6074343 | Nathanson et al. | Jun 2000 | A |
6104957 | Alo et al. | Aug 2000 | A |
6104960 | Duysens et al. | Aug 2000 | A |
6119068 | Kannonji | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6126660 | Dietz | Oct 2000 | A |
6128576 | Nishimoto | Oct 2000 | A |
6132386 | Gozani et al. | Oct 2000 | A |
6132387 | Gozani et al. | Oct 2000 | A |
6135965 | Tumer et al. | Oct 2000 | A |
6139493 | Koros et al. | Oct 2000 | A |
6139545 | Utley | Oct 2000 | A |
6146335 | Gozani | Nov 2000 | A |
6161047 | King et al. | Dec 2000 | A |
6181961 | Prass | Jan 2001 | B1 |
6206826 | Mathews et al. | Mar 2001 | B1 |
6224549 | Drongelen | May 2001 | B1 |
6259945 | Epstein et al. | Jul 2001 | B1 |
6266558 | Gozani et al. | Jul 2001 | B1 |
6273905 | Streeter | Aug 2001 | B1 |
6292701 | Prass et al. | Sep 2001 | B1 |
6306100 | Prass | Oct 2001 | B1 |
6312392 | Herzon | Nov 2001 | B1 |
6325764 | Griffith et al. | Dec 2001 | B1 |
6334068 | Hacker | Dec 2001 | B1 |
6348058 | Melkent et al. | Feb 2002 | B1 |
6393325 | Mann et al. | May 2002 | B1 |
6425859 | Foley et al. | Jul 2002 | B1 |
6425901 | Zhu et al. | Jul 2002 | B1 |
6451015 | Rittman, III et al. | Sep 2002 | B1 |
6466817 | Kaula et al. | Oct 2002 | B1 |
6500128 | Marino | Dec 2002 | B2 |
6507755 | Turner et al. | Jan 2003 | B1 |
6564078 | Marino et al. | May 2003 | B1 |
6579244 | Goodwin | Jun 2003 | B2 |
6582441 | He et al. | Jun 2003 | B1 |
6585638 | Yamamoto | Jul 2003 | B1 |
6618626 | West et al. | Sep 2003 | B2 |
6719692 | Kleffner et al. | Apr 2004 | B2 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6770074 | Michelson | Aug 2004 | B2 |
6796985 | Bolger et al. | Sep 2004 | B2 |
6819956 | DiLorenzo | Nov 2004 | B2 |
6847849 | Mamo et al. | Jan 2005 | B2 |
6849047 | Goodwin | Feb 2005 | B2 |
6855105 | Jackson, III et al. | Feb 2005 | B2 |
6902569 | Parmer et al. | Jun 2005 | B2 |
6926728 | Zucherman et al. | Aug 2005 | B2 |
6929606 | Ritland | Aug 2005 | B2 |
7050848 | Hoey et al. | May 2006 | B2 |
7079883 | Marino et al. | Jul 2006 | B2 |
7089059 | Pless | Aug 2006 | B1 |
7177677 | Kaula et al. | Feb 2007 | B2 |
7207949 | Miles et al. | Apr 2007 | B2 |
7216001 | Hacker et al. | May 2007 | B2 |
7258688 | Shah et al. | Aug 2007 | B1 |
7294127 | Leung et al. | Nov 2007 | B2 |
7310546 | Prass | Dec 2007 | B2 |
7522953 | Kaula et al. | Apr 2009 | B2 |
20010039949 | Loubser | Nov 2001 | A1 |
20010056280 | Underwood et al. | Dec 2001 | A1 |
20020007129 | Marino | Jan 2002 | A1 |
20020072686 | Hoey et al. | Jun 2002 | A1 |
20020161415 | Cohen et al. | Oct 2002 | A1 |
20020193843 | Hill et al. | Dec 2002 | A1 |
20030032966 | Foley et al. | Feb 2003 | A1 |
20030078618 | Fey et al. | Apr 2003 | A1 |
20030105503 | Marino | Jun 2003 | A1 |
20040199084 | Kelleher et al. | Oct 2004 | A1 |
20040225228 | Ferree | Nov 2004 | A1 |
20050004593 | Simonson | Jan 2005 | A1 |
20050004623 | Miles et al. | Jan 2005 | A1 |
20050075578 | Gharib et al. | Apr 2005 | A1 |
20050080418 | Simonson et al. | Apr 2005 | A1 |
20050119660 | Burloin | Jun 2005 | A1 |
20050182454 | Gharib et al. | Aug 2005 | A1 |
20050256582 | Feree | Nov 2005 | A1 |
20060025703 | Miles et al. | Feb 2006 | A1 |
20060052828 | Kim et al. | Mar 2006 | A1 |
20060069315 | Miles et al. | Mar 2006 | A1 |
20060224078 | Hoey et al. | Oct 2006 | A1 |
20070016097 | Farquhar et al. | Jan 2007 | A1 |
20070021682 | Gharib et al. | Jan 2007 | A1 |
20070198062 | Miles et al. | Aug 2007 | A1 |
20070293782 | Marino | Dec 2007 | A1 |
20080015612 | Urmey | Jan 2008 | A1 |
20080039914 | Cory et al. | Feb 2008 | A1 |
20080058606 | Miles et al. | Mar 2008 | A1 |
20080064976 | Kelleher et al. | Mar 2008 | A1 |
20080064977 | Kelleher et al. | Mar 2008 | A1 |
20080065178 | Kelleher et al. | Mar 2008 | A1 |
20080071191 | Kelleher et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
299 08 259 | Jul 1999 | DE |
0 759 307 | Feb 1997 | EP |
0 972 538 | Jan 2000 | EP |
2 795 624 | Jan 2001 | FR |
2 796 846 | Feb 2001 | FR |
0038574 | Jul 2000 | WO |
0066217 | Nov 2000 | WO |
0067645 | Nov 2000 | WO |
0103604 | Jan 2001 | WO |
0137728 | May 2001 | WO |
03026482 | Apr 2003 | WO |
03037170 | May 2003 | WO |
0412809 | Feb 2004 | WO |
05013805 | Feb 2005 | WO |
06084193 | Aug 2006 | WO |
Entry |
---|
“Electromyography System,” International Search Report from International Application No. PCT/US00/32329, dated Apr. 27, 2001, 9 pages. |
“Nerve Proximity and Status Detection System and Method,” International Search Report from International Application No. PCT/US01/18606, dated Oct. 18, 2001, 6 pages. |
“Relative Nerve Movement and Status Detection System and Method,” International Search Report from International Application No. PCT/US01/18579, dated Jan. 15, 2002, 6 pages. |
“System and Method for Determining Nerve Proximity Direction and Pathology During Surgery,” International Search Report from International Application No. PCT/US02/22247, dated Mar. 27, 2003, 4 pages. |
“System and Methods for Determining Nerve Direction to a Surgical Instrument,” International Search Report from International Application No. PCT/US03/02056, dated Aug. 12, 2003, 5 pages. |
“Systems and Methods for Performing Percutaneous Pedicle Integrity Assessments,” International Search Report from International Application No. PCT/US02/35047, dated Aug. 11, 2003, 5 pages. |
“Systems and Methods for Performing Surgery Procedures and Assessments,” International Search Report from International Application No. PCT/US02/30617, dated Jun. 5, 2003, 4 pages. |
“Systems and Methods for Performing Neurophysiologic Assessments During Spine Surgery,” International Search Report from International Application No. PCT/US06/03966, dated Oct. 23, 2006, 5 pages. |
“Multi-Channel Stimulation Threshold Detection Algorithm for Use in Neurophysiology Monitoring,” International Search Report from International Application No. PCT/US06/37013, dated Mar. 19, 2007, 10 pages. |
Lenke et al., “Triggered Electromyographic Threshold for Accuracy of Pedicle Screw Placement,” Spine, 1995, 20(4): 1585-1591. |
“Brackmann II EMG System,” Medical Electronics, 1999, 4 pages. |
“Neurovision SE Nerve Locator/Monitor”, RLN Systems Inc. Operators Manual, 1999, 22 pages. |
“The Brackmann II EMG Monitoring System,” Medical Electronics Co. Operator's Manual Version 1.1, 1995, 50 pages. |
“The Nicolet Viking IV,” Nicolet Biomedical Products, 1999, 6 pages. |
Anderson et al., “Pedicle screws with high electrical resistance: a potential source of error with stimulus-evoked EMG,” Spine, Department of Orthopaedic Surgery University of Virginia, Jul. 15, 2002, 27(14): 1577-1581. |
Bose et al., “Neurophysiologic Monitoring of Spinal Nerve Root Function During Instrumented Posterior Lumber Spine Surgery,” Spine, 2002, 27(13):1444-1450. |
Calancie et al., “Stimulus-Evoked EMG Monitoring During Transpedicular Lumbosacral Spine Instrumentation” Spine, 1994, 19(24): 2780-2786. |
Clements et al., “Evoked and Spontaneous Electromyography to Evaluate Lumbosacral Pedicle Screw Placement,” Spine, 1996, 21(5): 600-604. |
Danesh-Clough et al. ,“The Use of Evoked EMG in Detecting Misplaced Thoracolumbar Pedicle Screws,” Spine, Orthopaedic Department Dunedin Hospital, Jun. 15, 2001, 26(12): 1313-1316. |
Darden et al., “A Comparison of Impedance and Electromyogram Measurements in Detecting the Presence of Pedicle Wall Breakthrough,” Spine, Charlotte Spine Center North Carolina, Jan. 15, 1998, 23(2): 256-262. |
Ebraheim et al., “Anatomic Relations Between the Lumbar Pedicle and the Adjacent Neural Structures,” Spine, Department of Orthopaedic Surgery Medical College of Ohio, Oct. 15, 1997, 22(20): 2338-2341. |
Ford et al. “Electrical Characteristics of Peripheral Nerve Stimulators Implications for Nerve Localization,” Regional Anesthesia, 1984, 9: 73-77. |
Glassman et al., “A Prospective Analysis of Intraoperative Electromyographic Monitoring of Pedicle Screw Placement With Computed Tomographic Scan Confirmation,” Spine, 1995, 20(12): 1375-1379. |
Greenblatt et al., “Needle Nerve Stimulator-Locator: Nerve Blocks with a New Instmment for Locating Nerves,” Anesthesia& Analgesia, 1962, 41(5): 599-602. |
Haig, “Point of view,” Spine, 2002, 27(24): 2819. |
Haig et al., “The Relation Among Spinal Geometry on MRI, Paraspinal Electromyographic Abnormalities, and Age in Persons Referred for Electrodiagnostic Testing of Low Back Symptoms,” Spine, Department of Physical Medicine and Rehabilitation University of Michigan, Sep. 1, 2002, 27(17): 1918-1925. |
Holland et al., “Higher Electrical Stimulus Intensities are Required to Activate Chronically Compressed Nerve Roots: Implications for Intraoperative Electromyographic Pedicle Screw Testing,” Spine, Department of Neurology, Johns Hopkins University School of Medicine, Jan. 15, 1998, 23(2): 224-227. |
Holland, “Intraoperative Electromyography During Thoracolumbar Spinal Surgery,” Spine, 1998, 23(17): 1915-1922. |
Journee et al., “System for Intra-Operative Monitoring of the Cortical Integrity of the Pedicle During Pedicle Screw Placement in Low-Back Surgery: Design and Clinical Results,” Sensory and Neuromuscular Diagnostic Instrumentation and Data Analysis I, 18th Annual International Conference on Engineering in Medicine and Biology Society, Amsterdam. 1996, pp. 144-145. |
Maguire et al., “Evaluation of Intrapedicular Screw Position Using Intraoperative Evoked Electromyography,” Spine, 1995, 20(9): 1068-1074. |
Martin et al. “Initiation of Erection and Semen Release by Rectal Probe Electrostimulation (RPE),” The Journal of Urology, The Williams& Wilkins Co., 1983, 129: 637-642. |
Minahan et al., “The Effect of Neuromuscular Blockade on Pedicle Screw Stimulation Thresholds” Spine, Department of Neurology, Johns Hopkins University School of Medicine, Oct. 1, 2000, 25(19): 2526-2530. |
Pither et al., “The Use of Peripheral Nerve Stimulators for Regional Anesthesia: Review of Experimental Characteristics Technique and Clinical Applications,” Regional Anesthesia, 1985, 10:49-58. |
Raj et al., “Infraclavicular Brachial Plexus Block—A New Approach” Anesthesia and Analgesia, 1973, (52)6: 897-904. |
Raj et al., “The Use of Peripheral Nerve Stimulators for Regional Anesthesia,” Clinical Issues in Regional Anesthesia, 1985, 1(4):1-6. |
Raj et al., “Use of the Nerve Stimulator for Peripheral Blocks,” Regional Anesthesia, Apr.-Jun. 1980, pp. 14-21. |
Raymond et al., “The Nerve Seeker: A System for Automated Nerve Localization,” Regional Anesthesia, 1992, 17(3): 151-162. |
Shafik, “Cavernous Nerve Simulation through an Extrapelvic Subpubic Approach: Role in Penile Erection,” Eur. Urol, 1994, 26: 98-102. |
Toleikis et al., “The Usefulness of Electrical Stimulation for Assessing Pedicle Screw Replacements,” Journal of Spinal Disorder, 2000, 13(4): 283-289. |
Moed et al., “Insertion of an iliosacral implant in an animal model,” Journal of Bone and Joint Surgery, Nov. 1999, 81A(11): 1529-1537. |
“NIM-Response, so advanced . . . yet so simple,” XoMed, Inc., 1999, 12 pages. |
Moed et al., “Intraoperative monitoring with stimulus-evoked electromyography during placement of iliosacral screws,” The Journal of Bone and Joint Surgery, Apr. 1998, 81A(4): 10 pages. |
“New data analyzer combines the functions of six instruments in one unit” News Release, Nov. 11, 1987, 3 pages. |
“NuVasive's spine surgery system cleared in the US,” Pharm & Medical Industry Week, Dec. 10, 2001, 1 page. |
“Risk Capital Funds,” Innovation, Mar. 6, 1990, 172: 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190290149 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
60719897 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14959850 | Dec 2015 | US |
Child | 16438353 | US | |
Parent | 13960610 | Aug 2013 | US |
Child | 14959850 | US | |
Parent | 13533919 | Jun 2012 | US |
Child | 13960610 | US | |
Parent | 11994409 | US | |
Child | 13533919 | US |