Claims
- 1. A multi-channel wavelength division multiplexing (WDM) device, comprising:
a photonic crystal; at least one waveguide created by a line defect formed in said photonic crystal; and a plurality of frequency-selective elements formed in said photonic crystal, wherein each frequency-selective element is capable of selecting a single frequency from a light pulse propagating through said at least one waveguide.
- 2. A multi-channel wavelength division multiplexing (WDM) device as recited in claim 1, wherein each frequency-selective element has a different point defect size than the other frequency-selective elements, and all of said plurality of frequency-selective elements have the same dielectric constant.
- 3. A multi-channel wavelength division multiplexing (WDM) device as recited in claim 1, wherein said plurality of frequency-selective elements comprises a plurality of high Q-value microcavities.
- 4. A multi-channel wavelength division multiplexing (WDM) device as recited in claim 1, wherein each frequency-selective element is capable of re-routing its corresponding single frequency from the light pulse propagating through said at least one waveguide to another waveguide.
- 5. A multi-channel wavelength division multiplexing (WDM) device as recited in claim 2, wherein increasing the point defect size of said plurality of frequency-selective elements, increases the spanning of the available bandwidth of the light pulse.
- 6. A method of making a multi-channel wavelength division multiplexing (WDM) device, comprising:
providing a photonic crystal; forming at least one waveguide in the photonic crystal by removing at least one row of dielectric rods from the photonic crystal; and forming a plurality of frequency-selective elements in the photonic crystal, wherein each frequency-selective element is capable of selecting a single frequency from a light pulse propagating through the at least one waveguide.
- 7. A method of making a multi-channel wavelength division multiplexing (WDM) device as recited in claim 6, wherein each frequency-selective element has a different point defect size than the other frequency-selective elements, and all of the plurality of frequency-selective elements have the same dielectric constant.
- 8. A method of making a multi-channel wavelength division multiplexing (WDM) device as recited in claim 6, wherein the plurality of frequency-selective elements comprises a plurality of high Q-value microcavities.
- 9. A method of making a multi-channel wavelength division multiplexing (WDM) device as recited in claim 6, wherein each frequency-selective element is capable of re-routing its corresponding single frequency from the light pulse propagating through the at least one waveguide to another waveguide.
- 10. A method of making a multi-channel wavelength division multiplexing (WDM) device as recited in claim 7, wherein increasing the point defect size of the plurality of frequency-selective elements, increases the spanning of the available bandwidth of the light pulse.
- 11. A method of making a multi-channel wavelength division multiplexing (WDM) device, comprising:
providing a plurality of photonic crystals; forming a waveguide in each of the plurality of photonic crystals by removing at least one row of dielectric rods from each of the plurality of the photonic crystals; forming a plurality of frequency-selective elements in each of the plurality of the photonic crystals, wherein each frequency-selective element is capable of selecting a single frequency from a light pulse propagating through the waveguide; and combining plurality of photonic crystals to form a multi-channel wavelength division multiplexing (WDM) device.
CLAIM FOR PRIORITY
[0001] The present application claims priority of U.S. Provisional Patent Application Serial No. 60/297,389, the disclosure of which being incorporated by reference herein in its entirety.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60297389 |
Jun 2001 |
US |