Multi-chip synchronization for digital radars

Information

  • Patent Grant
  • 11977178
  • Patent Number
    11,977,178
  • Date Filed
    Thursday, March 12, 2020
    4 years ago
  • Date Issued
    Tuesday, May 7, 2024
    21 days ago
Abstract
A multi-chip MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the pluralities of transmitters and receivers are arranged across a plurality of chips. The multi-chip MIMO radar system is configured to provide an exemplary chip synchronization such that the transmitters and receivers of each chip of the radar system are synchronized with the transmitters and receivers of every other chip of the radar system.
Description
FIELD OF THE INVENTION

The present invention is directed to radar systems, and in particular to digital radar systems.


BACKGROUND OF THE INVENTION

The use of radar to determine location and velocity of objects in an environment is important in a number of applications including, for example, automotive radar, industrial processes, and gesture detection. A radar system typically transmits radio signals and listens for the reflection of the radio signals from objects in the environment. By comparing the transmitted radio signals with the received radio signals, a radar system can determine the distance to an object, and the velocity of the object. Using multiple transmitters and/or receivers, or a movable transmitter or receiver, the location (angle) of an object can also be determined.


A radar system consists of transmitters and receivers. The transmitters generate a baseband signal which is up-converted to a radio frequency (RF) signal that propagates according to an antenna pattern. The transmitted signal is reflected off of object or targets in the environment. The received signal at each receiver is the totality of the reflected signal from all targets in the environment. The receiver down-converts the received signal to baseband and compares the baseband received signal to the baseband signal at one or more transmitters. This is used to determine the range, velocity, and angle of targets in the environment.


A MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the plurality of transmitters is coupled to a corresponding antenna, and each of the plurality of receivers is coupled to a corresponding antenna. The transmitter and receiver antennas are used to form a first set of virtual antenna locations. The more virtual antennas the better the angular resolution.


SUMMARY OF THE INVENTION

Embodiments of the present invention provide methods and a system for synchronizing multiple radar chips so that they can be used together to improve performance and/or angular resolution (MIMO radar systems). By synchronizing the chips (each with separate radar systems), all the transmitters (TX's) of each chip can be aligned so that all TX's from different chips are synchronized. In addition, all receivers (RX's) can be aligned so that all RX's from different chips are synchronized, and therefore, more TX's and RX's can be used (even if on different radar system chips) to increase performance and/or angular resolution. Such synchronization is achieved by using available high frequency TX/RX, as well as a controller for controller the synchronization of the TX's and RX's.


A multi-chip MIMO radar system in accordance with an embodiment of the present invention includes a first integrated circuit chip and a second integrated circuit chip. The first integrated circuit chip includes a first plurality of transmitters and a first plurality of receivers. The second integrated circuit chip includes a second plurality of transmitters and a second plurality of receivers. The first integrated circuit chip is a master chip and the second integrated circuit chip is a slave chip. The first integrated circuit chip includes a synchronization clock operable to synchronize the operation of each of the first and second integrated circuit chips.


A method for synchronizing a multi-chip MIMO radar system in accordance with an embodiment of the present invention includes powering up the chips of the radar system. Transmitters and receivers of each chip are synchronized on an intra chip basis such that all the transmitters and receivers of each chip are synchronized. Roughly synchronizing a plurality of chips of the radar system, such that the plurality of chips are synchronized to within 10-100 ns. Performing a 2 GHz chip synchronization using a 2 GHz chip scan on a master chip of the plurality of chips. Performing a fine-tuned inter-chip synchronization by computing a sub-chip misalignment using inter-rangebin interpolation between the master chip and each slave chip of the plurality of chips. The sub-chip misalignment is corrected via pulse swallowing a required number of pulses, in 62.5 ps increments, to align the transmission scans. Finally, the synchronization is validated to ensure the transmission scans are synchronized to a desired sub-chip accuracy. As necessary, the method repeats the 2 GHz chip synchronization and the fine-tuned inter chip synchronization steps.


In an aspect of the present invention, an internal sync signal or START signal is used by each chip to synchronize their respective pluralities of transmitters and pluralities of receivers. The internal sync signal is used such that all transmitter dividers and receiver dividers will transition on a same edge of an LO 16 GHz input clock.


In another aspect of the present invention, for the rough inter chip synchronization, a 2 GHz signal may be used between the plurality of chips to synchronize internal timers. Roughly synchronized chips are synchronized to within 10-100 ns.


In a further aspect of the present invention, 2 GHz chip synchronization includes sending a small scan, such as one pulse repetition interval, using a known pattern from a master chip of the plurality of chips and correlating that pattern on the master chip and the slave chips of the plurality of chips. Using the correlation output, internal timer offsets of each slave chip may be adjusted such that subsequent scans will start with a desired clock boundary.


In another aspect of the present invention, fine-tuned inter chip synchronization includes the use of inter-range bin interpolation to compute a sub-chip misalignment between the master chip and the slave chips. With this sub-chip misalignment, pulse swallowing (in 62.5 ps increments) is used to remove the required number of clock pulses to ensure that the subsequent scans are aligned to the desired degree of synchronization.


In an aspect of the present invention, data converters are configured to operate at a divide down factor from 16 GHz LO.


In another aspect of the present invention, a single LO clock distribution network is used.


In yet another aspect of the present invention, local dividers in each chip are synchronized.


In a further aspect of the present invention, a first portion of a plurality of chips are used in a first scan, while a second portion of the plurality of chips are used for a second scan.


In another aspect of the present invention, a first portion of a plurality of chips performs a first portion of post processing of received data. A second portion of the plurality of chips performs a second portion of the post processing of the received data.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of an automobile equipped with a radar system in accordance with the present invention;



FIGS. 2A and 2B are block diagrams of radar systems in accordance with the present invention;



FIG. 3 is a block diagram illustrating a radar system using a single chip with a plurality of receivers and a plurality of transmitters in accordance with the present invention;



FIG. 4 is a block diagram illustrating a radar system with multiple chips, each with a plurality of receivers and a plurality of transmitters in accordance with the present invention;



FIG. 5 is a diagram illustrating the local oscillator (LO) distribution from either a master chip or an alternative source to all chips to be synchronized in accordance with the present invention;



FIG. 6 is a diagram illustrating the use of a free running system timer which can be used for rough clock synchronization in accordance with the present invention;



FIG. 7 is a diagram illustrating the use of mini radarscans (e.g. for a single pulse repetition interval) which is provided through either a dedicated TX or a coupled TX and forwarded through a direct connect or over the air to the other slave chips in accordance with the present invention;



FIG. 8 is a diagram illustrating a perfect match with a known correlation peak output as well as an interpolated peak with a known correlation peak;



FIG. 9 is a diagram illustrating the hardware components for “pulse swallowing” to control the alignment across chips; and



FIG. 10 is.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will now be described with reference to the accompanying figures, wherein numbered elements in the following written description correspond to like-numbered elements in the figures. Methods and systems of the present invention result in better performance from a radar system. An exemplary radar system provides an exemplary chip operating frequency for a multi-chip MIMO radar system. The MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the plurality of transmitters is coupled to a corresponding antenna, and each of the plurality of receivers is coupled to a corresponding antenna. The transmitter and receiver antennas are used to form a set of virtual antenna locations.



FIG. 1 illustrates an exemplary radar system 100 configured for use in a vehicle 150. In an aspect of the present invention, a vehicle 150 may be an automobile, truck, or bus, etc. The radar system 100 may utilize multiple radar systems (e.g., 104a-104d) embedded in the vehicle 150 (see FIG. 1). Each of these radar systems may employ multiple transmitters, receivers, and antennas (see FIG. 3). These signals are reflected from objects (also known as targets) in the environment and received by one or more receivers of the radar system. A transmitter-receiver pair is called a virtual radar (or sometimes a virtual receiver). As illustrated in FIG. 1, the radar system 100 may comprise one or more transmitters and one or more receivers (104a-104d) for a plurality of virtual radars. Other configurations are also possible. FIG. 1 illustrates the receivers/transmitters 104a-104d placed to acquire and provide data for object detection and adaptive cruise control. As illustrated in FIG. 1, a controller 102 receives and then analyzes position information received from the receivers 104a-104d and forwards processed information (e.g., position information) to, for example, an indicator 106 or other similar devices, as well as to other automotive systems. The radar system 100 (providing such object detection and adaptive cruise control or the like) may be part of an Advanced Driver Assistance System (ADAS) for the automobile 150.


An exemplary radar system operates by transmitting one or more signals from one or more transmitters and then listening for reflections of those signals from objects in the environment by one or more receivers. By comparing the transmitted signals and the received signals, estimates of the range, velocity, and angle (azimuth and/or elevation) of the objects can be estimated.


There are several ways to implement a radar system. One way, illustrated in FIG. 2A, uses a single antenna 202 for transmitting and receiving. The antenna 202 is connected to a duplexer 204 that routes the appropriate signal from the antenna 202 to a receiver 208 or routes the signal from a transmitter 206 to the antenna 202. A control processor 210 controls the operation of the transmitter 206 and the receiver 208 and estimates the range and velocity of objects in the environment. A second way to implement a radar system is shown in FIG. 2B. In this system, there are separate antennas for transmitting (202A) and receiving (202B). A control processor 210 performs the same basic functions as in FIG. 2A. In each case, there may be a display 212 to visualize the location of objects in the environment.


A radar system with multiple antennas, transmitters, and receivers is shown in FIG. 3. Using multiple antennas 302, 304 allows an exemplary radar system 300 to determine the angle (azimuth or elevation or both) of targets in the environment. Depending on the geometry of the antenna system different angles (e.g., azimuth or elevation) can be determined.


The radar system 300 may be connected to a network via an Ethernet connection or other types of network connections 314, such as, for example, CAN-FD and FlexRay. The radar system 300 may also have memory (310, 312) to store software used for processing the signals in order to determine range, velocity, and location of objects. Memory 310, 312 may also be used to store information about targets in the environment. There may also be processing capability contained in the application-specific integrated circuit (ASIC) 300 apart from the transmitters 302 and receivers 304.


The description herein includes an exemplary radar system in which there are NT transmitters and NR receivers for NT×NR virtual radars, one for each transmitter-receiver pair. For example, a radar system with eight transmitters and eight receivers will have 64 pairs or 64 virtual radars (with 64 virtual receivers). When three transmitters (Tx1, Tx2, Tx3) generate signals that are being received by three receivers (Rx1, Rx2, Rx3), each of the receivers is receiving the transmission from each of the transmitters reflected by objects in the environment.


There are several different types of signals that transmitters in radar systems employ. A radar system may transmit a pulsed signal or a continuous signal. In a pulsed radar system, the signal is transmitted for a short time and then no signal is transmitted. This is repeated over and over. When the signal is not being transmitted, the receiver listens for echoes or reflections from objects in the environment. Often a single antenna is used for both the transmitter and receiver and the radar transmits on the antenna and then listens to the received signal on the same antenna. This process is then repeated. In a continuous wave radar system, the signal is continuously transmitted. There may be an antenna for transmitting and a separate antenna for receiving.


Another classification of radar systems is the modulation of signal being transmitted. A first type of continuous wave radar signal is known as a frequency modulated continuous wave (FMCW) radar signal. In an FMCW radar system, the transmitted signal is a sinusoidal signal with a varying frequency. By measuring a time difference between when a certain frequency was transmitted and when the received signal contained that frequency, the range to an object can be determined. By measuring several different time differences between a transmitted signal and a received signal, velocity information can be obtained.


A second type of continuous wave signal used in radar systems is known as a phase modulated continuous wave (PMCW) radar signal. In a PMCW radar system, the transmitted signal from a single transmitter is a sinusoidal signal in which the phase of the sinusoidal signal varies. Typically, the phase during a given time period (called a chip period or chip duration) is one of a finite number of possible phases. A spreading code consisting of a sequence of chips, (e.g., +1, +1, −1, +1, −1 . . . ) is mapped (e.g., +1→0, −1→p) into a sequence of phases (e.g., 0, 0, p, 0, p . . . ) that is used to modulate a carrier to generate the radio frequency (RF) signal. The spreading code could be a periodic sequence or could be a pseudo-random sequence with a very large period, so it appears to be a nearly random sequence. The spreading code could be a binary code (e.g., +1 or −1). The resulting signal has a bandwidth that is proportional to the rate at which the phases change, called the chip rate fchip, which is the inverse of the chip duration, Tchip=1/fchip. In a PMCW radar system, the receiver typically performs correlations of the received signal with time-delayed versions of the transmitted signal and looks for peaks in the correlation as a function of the time-delay, also known as correlation lag. The correlation lag of the transmitted signal that yields a peak in the correlation corresponds to the delay of the transmitted signal when reflected off an object. The round-trip distance to the object is found by multiplying that delay (correlation lag) by the speed of light.


In some radar systems, the signal (e.g. a PMCW signal) is transmitted over a short time period (e.g. 1 microsecond) and then turned off for a similar time period. The receiver is only turned on during the time period where the transmitter is turned off. In this approach, reflections of the transmitted signal from very close targets will not be completely available because the receiver is not active during a large fraction of the time when the reflected signals are being received. This is called pulse mode.


The radar sensing system of the present invention may utilize aspects of the radar systems described in U.S. Pat. Nos. 10,261,179; 9,971,020; 9,954,955; 9,945,935; 9,869,762; 9,846,228; 9,806,914; 9,791,564; 9,791,551; 9,772,397; 9,753,121; 9,689,967; 9,599,702; 9,575,160, and/or 9,689,967, and/or U.S. Publication Nos. US-2017-0309997; and/or U.S. patent application Ser. No. 16/674,543, filed Nov. 5, 2019, Ser. No. 16/259,474, filed Jan. 28, 2019, Ser. No. 16/220,121, filed Dec. 14, 2018, Ser. No. 15/496,038, filed Apr. 25, 2017, Ser. No. 15/689,273, filed Aug. 29, 2017, Ser. No. 15/893,021, filed Feb. 9, 2018, and/or Ser. No. 15/892,865, filed Feb. 9, 2018, and/or U.S. provisional application, Ser. No. 62/816,941, filed Mar. 12, 2019, which are all hereby incorporated by reference herein in their entireties.


Digital frequency modulated continuous wave (FMCW) and phase modulated continuous wave (PMCW) are techniques in which a carrier signal is frequency or phase modulated, respectively, with digital codes using, for example, GMSK. Digital FMCW radar lends itself to be constructed in a MIMO variant in which multiple transmitters transmitting multiple codes are received by multiple receivers that decode all codes. The advantage of the MIMO digital FMCW radar is that the angular resolution is that of a virtual antenna array having an equivalent number of elements equal to the product of the number of transmitters and the number of receivers. Digital FMCW MIMO radar techniques are described in U.S. Pat. Nos. 9,989,627; 9,945,935; 9,846,228; and 9,791,551, which are all hereby incorporated by reference herein in their entireties.


Multi-Chip Synchronization:


The present invention provides a method for synchronization of multiple digital radar ASICs of a multi-chip MIMO radar system where each ASIC (chip) can support multiple transmitters and multiple receivers. By synchronizing the different ASICs, and therefore ensuring that all TXs can transmit exactly at the same time and all RXs can receive exactly at the same time, the overall performance of the radar system can be improved. Additional improvements which are possible with a multi-chip synchronized radar system include, e.g.

    • different ASICs can be used to process a different range region, or
    • improve the total number of virtual receivers (angular resolution), or
    • operate different scans on different ASICs, or
    • boost the TX power, or
    • provide more processing power by splitting up the RDC3 post processing on different ASICs.


As discussed herein, all transmitters and all receivers of an exemplary radar system operate in lockstep.


More specifically, all transmitters transmit their corresponding chips at the same time with respect to the START of the scan, and all receivers sample the received data at the same time with respect to the START of the scan. These conditions are grouped into two synchronization requirements for the multichip system:

    • Intra-Chip synchronization (synchronization within the ASIC) and
    • Inter-Chip synchronization. (synchronization between the ASIC).


      Both are satisfied to better than 62.5 ps alignment accuracy to not appreciably affect the performance of the radar system. Processing/control commands can be passed between different ASICs e.g. using an Ethernet connection/switch.


Intra-chip synchronization is used to synchronize all n RX's and all m TX's on each chip (FIG. 3). The m TX channels and n RX channels on each chip have independent clock dividers, which locally generate the corresponding sample clocks, derived from the common 16 GHz LO clock (FIG. 8). All individual dividers associated with the TX and RX channels are synchronized. Since these dividers cannot be synchronized by simply releasing them from reset at exactly the same time, a system was put in place which achieves synchronization by using a centralized clock gating method.


The first “START” signal will release the clock gating and ensure that all TX's and RX's are aligned for subsequent radar scans. There are other methods for intra-synchronization. In an aspect of the present invention, inter chip delays are controlled in increments smaller than a sample rate.


In addition to the exemplary intra-chip synchronization discussed herein, all TXs and RXs can also be delayed by a programmable sub-clock value to account for the different TX/RX routing on the board and chip. This delay can be achieved either through individual FIFOs (for a number of clocks) and through the use of, e.g., inverters to specify sub-clock delays on a per RX/TX basis.


Inter-chip synchronization: even though the intra-chip synchronization described above ensures that all 12 TX channels and 8 RX channels on each individual chip are in lockstep, one chip with respect to another can have a completely random timing relationship. Since each chip generates its own START of scan signal, the inter-chip timing relationship corresponds fundamentally to the inter-chip START timing relationship. The uncertain relative timing between STARTs is caused by three categories of uncertainty mechanisms:

    • 1. START of scan uncertainty caused by inter-chip communication—a very large error, order of μs.
    • 2. FIFO clock-domain-synchronizers—order of a few chip delays.
    • 3. TX/RX channel clock generation on each chip resulting from dividing down from the 16 GHz LO clock—divider start uncertainty for the sample rate which can be e.g. 1 or 2 GHz.


Accordingly, the inter-chip synchronization will have three types of synchronization processes:

    • 1. SW sync (getting closer to 1-2 μs accuracy)
    • 2. Coarse sync (getting closer to 1 clock accuracy)
    • 3. Fine sync (sub-clock accuracy).


The multi-chip arrangement, illustrated in FIG. 4, is as follows:

    • There is one ASIC chip assigned as “master;”
    • Each ASIC chip can contain multiple TX antennas and RX antennas; and
    • Each ASIC chip provides an internal synchronization scheme (intra TX/RX synchronization) to ensure the TX and RX's of each ASIC chip are properly aligned.


The multi-chip arrangement for clock distribution, illustrated in FIG. 5, is as follows:

    • There is one ASIC chip assigned as “master.”
    • Exemplary embodiments use either a “master,” which provides the 16 GHz reference clock to all slaves and the master device itself, or alternatively, an external LO will be used.
    • Wilkinson dividers are used to split the LO and to provide it to the different ASICs.
    • The distribution of the 16 GHz clock needs to be balanced so that all chips are phase aligned. The alignment impacts both the 80 GHz carrier phase alignment and the inter-chip VRX alignment.
      • The phase alignment requires matching lengths to within 0.93 mm (dk=4) for a better than 180° alignment at 80 GHz. The matching requirement is directly related to the beam-forming calibration range.


The multi-chip arrangement for rough clock synchronization, illustrated in FIG. 6, is as follows:

    • There is one ASIC chip assigned as “master.”
    • Each ASIC chip contains a free running system timer for controlling the timing of the “START” of a scan. The free running system timer is started when the chip is released from reset. The start of a scan is scheduled relative to the internal free running system timer. For example, scheduling the “START of a Scan at z” means that the START will be issued when the internal free running timer reaches value z.
    • After reset, the system needs to identify the relative offset between each free running system timer across all chips.


In an exemplary process, the synchronization process follows the steps listed below:

    • Each ASIC chip can generate an output signal A at a programmable time relative to the free running system timer.
    • Each ASIC chip can monitor an input signal B and copy the current value of the free running system timer into an internal register, e.g. at the rising edge of the input signal.
    • In order to perform a rough clock synchronization, the “master” chip will assert the output signal A at a specific time in the future and all slave chips (can also include master) are programmed to copy their system timer value as soon as they detect a rising edge on the input signal B.
    • Based on the difference of the retrieved input copy of each ASIC, the Master chip can compute the relative offset of each free running system counter compared to the master free running system counter.
    • This allows synchronization of all chips within 1-2 μs accuracy using a normal GPIO signal which can operate at a lower frequency (e.g. 200 MHz).
    • Other synchronization methods can be used, e.g., Ethernet based synchronization, PTP. The more accurate the SW synchronization, the faster the convergence to a fully lock-stepped system.


The multi-chip arrangement for coarse/fine synchronization, illustrated in FIG. 7, is as follows:

    • There is one ASIC chip assigned as “master.”
    • Exemplary embodiments use either a direct path from the “master” TX to all RX of all chips in the multichip system or spill-over. A direct path could be one dedicated TX to one RX pin of each of the slave devices.
    • The Master ASIC will perform a small scan for one PRI, e.g. transmit 10,000 chips at 2 GHz chip rate with, for example, a known PRBS pattern. The slave chips are programmed to capture a SCAN, for example, 2.5 μs before the master starts transmitting (5,000 chips/2 GHz=2.5 μs based on the known offsets from the free running system timer achieved through.
    • Each slave chip is configured to receive, for example, 10,000 chips and correlates against the known PRBS pattern which was sent out by the master chip.
    • Depending on the range bin where the correlation peak from the master TX was detected, the “offset” for each slave chip can be further refined, since the range bin provides the exact delay between the master TX and the RX on the slave chips.
    • Based on this synchronization, the “offset” for each slave chip can now be properly adjusted (2 GHz). Assume the original offset between master and slave chip 1, in regard to the system timer, was −1,000 and the correlation result places the TX pattern at range bin 15 on the slave chip 1. That means the slave chip 1 started the correlation 15 chips too early and the corrected offset should have been −1000+15=−985. So, if the master schedules a scan to be performed at time X, slave chip 1 should start its “START” scan at time Y=X−985 (see FIGS. 6 and 7).
    • If the correlation peak cannot be observed because it fell outside the correlation window, the chip rate shall be reduced to half of the initial frequency and the previous step repeated. This situation may appear if software synchronization is based on Ethernet as opposed to the hardwired method illustrated in FIG. 6. Alternatively, the chip rate can initially be started low, for example, 125 MHz, and increased to 2 GHz after the offset was adjusted by the amount identified by the correlation peak range bin.


The correlation output from an exemplary coarse/fine synchronization illustrated in FIG. 7 can also be used for fine synchronization. The Fine Synchronization step ensures that the data converters sampling clocks are synchronous across all chips in the system to a relative time accuracy smaller than the sampling clock period, a.k.a. sub-clk synchronization.


If, for a given slave chip, the master and slave clocks are in perfect phase alignment, the correlation peak output should reach the maximum possible magnitude with respect to the adjacent range bin correlation magnitudes. The adjacent range bin magnitudes are smaller and equal to one another. If the master and slave clock phase alignment is off by a small fraction, the adjacent correlation range bin magnitudes are imbalanced. In that case, the sub range bin offset can be extracted from the correlation output through, for example, parabolic or quadratic interpolation.


The fractional part of the interpolated correlation peak range bin can be used to determine the actual sub-clock time delay by dividing the fractional part with the chip rate, e.g. 0.345/2 GChips/s=0.1725 ns. That time delay can be compensated by the hardware described below.


Each exemplary chip contains the HW shown in FIG. 9 to support the fine synchronization process. The pulse-swallow block can be controlled to skip one 8 GHz pulse. When a pulse is skipped, the div-32 block state does not advance, therefore, the 250 MHz clock edges will be delayed by 125 ps. The glitchless flip circuit allows for a delay of 62.5 ps to be realized. The pulse-swallow and flip blocks provide a mechanism through which the state of the div-32 blocks on each chip of the multi-chip system can be independently controlled (delayed) in 62.5 ps increments.


The clock gating block, which can stop and restart the 8 GHz clock going to all 12 TX and 8 RX dividers, is used for intra-chip synchronization. Since the 8 GHz clock distribution is using transmission lines, the first rising edge of the restarted clock arrives at the input of all 20 dividers at substantially the same time (<30 ps error). Intra-chip synchronization is accomplished by stopping the 8 GHz clock, asynchronously resetting all 20 dividers, and restarting the clock.


Even though the command to restart the TX/RX clocks can be issued at any time, asynchronously, the clock gating block will release the TX and RX clocks only when the rising edge of the 250 MHz GTCLK occurs. This extra synchronization clock was put in place to support TDM operation, which requires the repeated synchronization of the RX dividers only.


The actual number of clock pulses to be swallowed for the fine alignment can be computed by diving the sub clock time, e.g. 0.1725 ns/62.5 ps=2.76≈3. That means we need to swallow 3 elks (@16 GHz), which is the same as 1 clk 8 GHz together with the inverter. In case the sub-clock time is larger than ½*1/(2 GChips/s)=0.25 ns.



FIG. 10 illustrates the steps to an exemplary method for synchronizing the chips of a multi-chip MIMO radar system. In step 1002 of FIG. 10, the radar system is powered up. In powering the radar system, each chip of a plurality of chips are powered up and clocks on each chip are started. In step 1004 of FIG. 10, intra chip synchronization is performed. Such intra chip synchronization includes the use of an internal synchronization signal (e.g., a START signal) on each chip that synchronizes all transmitter dividers and all receiver dividers to transition on a same edge of an LO-I 16 GHz input clock. By using such a START signal, all transmitters and receivers of a chip will be synchronized and the synchronization should not change between a new START signal initiation assuming no clocks were stopped.


In step 1006 of FIG. 10, a rough inter chip synchronization is performed. Such rough inter chip synching uses a signal between each of the chips to roughly synchronize an internal timer (e.g., 2 GHz), such that the chips will be synchronized to within 10-100 ns.


In step 1008 of FIG. 10, a 2 GHz chip synchronization is performed. This 2 GHz chip synchronization is performed on a master chip of the plurality of chips. A small scan (e.g., one pulse repetition interval) can be transmitted by the master chip using a known pattern. The transmitted pattern is correlated by the master Chip as well as on each slave chip of the plurality of chips. A correlation output can then be used to adjust internal timer offsets (e.g., 2 GHz) of each slave chip, such that subsequent scans will start at a proper clock boundary and range bin (RB) 0 will be aligned across all chips.


In step 1010 of FIG. 10, fine-tuned inter-chip synchronization is performed. Such fine-tuned inter-chip synchronization includes the use of inter-rangebin interpolation to compute sub-chip misalignments between the master chip and the slave chips. The determined misalignment can be corrected via “pulse swallowing” (in 62.5 ps increments) the required number of clock pulses to ensure that the subsequent scans are aligned to the desired tolerance level.


In step 1012 of FIG. 10, the inter-chip synchronization is validated to ensure that the scans are properly synchronized on a sub-chip accuracy. In step 1014 of FIG. 10, if the validation fails, the process returns to step 1010 to repeat the fine-tuned inter-chip synchronization, after which, the synchronization validation in step 1012 is repeated.


Thus, embodiments of the present invention provide methods and a system for improving performance of a radar system through the synchronization of multiple radar system ASCIs that make up a MIMO radar system. As described herein, after each chip of a multi-chip radar system is individually synchronized, a single scan from a master chip of a plurality of chips of the radar system is used to synch slave chips of the plurality of chips to the master chip. Further synchronization is performed through inter-rangebin interpolation to compute a sub-chip misalignment that may be adjusted by removing (“pulse swallowing”) a desired number of clock pulses to align subsequent scans. Thus, all the transmitters and receivers of a given chip of the plurality of chips will be synchronized with all the transmitters and receivers of another chip of the plurality of chips to within a desired tolerance level. By synchronizing the different chips of the radar system, and therefore ensuring that all transmitters of the radar system can transmit exactly at the same time and all receivers of the radar system can receive exactly at the same time, the overall performance of the radar system can be improved.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the present invention which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A multi-chip MIMO radar system comprising a plurality of chips, the MIMO radar system comprising: a first integrated circuit chip (chip) of the plurality of chips comprising a first plurality of transmitters and a first plurality of receivers; anda second chip of the plurality of chips comprising a second plurality of transmitters and a second plurality of receivers;wherein the second chip is configured to align an own internal timing clock value of the second chip with respect to a reference clock signal, and wherein the first chip is configured to align an own internal timing clock value of the first chip with respect to the reference clock signal, wherein the reference clock signal is defined by the first chip, such that the internal timing clock value of the second chip is aligned to the internal timing clock value of the first chip, and the first pluralities of transmitters and receivers are respectively synchronized with the second pluralities of transmitters and receivers; andwherein the second chip is configured to delay the reference clock signal at the second chip by a selected multiple of a sub-value of the reference clock signal such that the delay of the reference clock signal at the second chip accounts for propagation delays of the reference clock signal.
  • 2. The multi-chip MIMO radar system of claim 1, wherein each chip of the plurality of chips is configured to perform an intra synchronization such that all transmitters and receivers of each chip are synchronized.
  • 3. The multi-chip MIMO radar system of claim 2, wherein each chip of the plurality of chips comprises a local clock operable to generate a common clock signal, wherein each chip is configured to divide a respective common clock signal such that each transmitter and receiver of each respective chip receives a respective sample clock signal derived from the respective common clock signal, and wherein each chip is configured to synchronize respective transmitter clock dividers and receiver clock dividers to transition on a same edge as their respective common clock signals.
  • 4. The multi-chip MIMO radar system of claim 2, wherein each chip is individually operable to delay clock signal values by selected multiples of a sub-clock value to account for different transmitter/receiver routing on the respective chips.
  • 5. The multi-chip MIMO radar system of claim 1, wherein the first chip is a MASTER chip and each of the other chips of the plurality of chips are SLAVE chips, such that the SLAVE chips synchronize their operations with respect to the MASTER chip.
  • 6. The multi-chip MIMO radar system of claim 1 comprising a reference clock operable to transmit the reference clock signal that is received by the first and second chips, wherein the second chip is configured to synchronize with the first chip with respect to the reference clock signal received by the first and second chips.
  • 7. The multi-chip MIMO radar system of claim 1, wherein the first chip comprises a reference clock operable to transmit the reference clock signal that is received by the first and second chips, and wherein the second chip is configured to synchronize with the first chip with respect to the reference clock signal received by the first and second chips.
  • 8. The multi-chip MIMO radar system of claim 1, wherein a first portion of the plurality of chips are used for a first scan, and wherein a second portion of the plurality of chips are used for a second scan.
  • 9. The multi-chip MIMO radar system of claim 1, wherein a first portion of the plurality of chips performs a first portion of post processing of received data, and wherein a second portion of the plurality of chips performs a second portion of the post processing of the received data.
  • 10. A method for synchronizing the chips of a multi-chip MIMO radar system, the method comprising: powering up each chip of a plurality of chips and starting local clocks of each chip;intra synchronizing transmitters and receivers of each chip of the plurality of chips;performing a first synchronization of the plurality of chips with respect to a reference clock signal received by each of the plurality of chips, wherein the reference clock signal is defined by a first chip of the plurality of chips, wherein the first synchronization comprises synchronizing respective own timers of the plurality of chips to the reference clock signal; andperforming a second synchronization of the plurality of chips, wherein the second synchronization comprises: transmitting, with the first chip of the plurality of chips, a scan of a selected duration comprising a selected quantity of codes of a selected pattern;receiving, with the plurality of chips, the radio signal that is the transmitted scan;correlating, with the plurality of chips, the received radio signal;using the correlation output of a second chip of the plurality of chips to determine an offset between the second chip and the first chip; andadjusting a clock signal of the second chip such that the offset between the first chip and the second chip is reduced to below a threshold value;wherein adjusting a clock signal of the second chip comprises delaying the reference clock signal at the second chip by a selected multiple of a sub-value of the reference clock signal; andwherein the second synchronization of the plurality of chips synchronizes the transmitters and receivers of the second chip to the transmitters and receivers of the second first chip to account for a propagation delay of the reference clock signal.
  • 11. The method of claim 10, wherein each chip of the plurality of chips comprises a local clock signal that is divided such that each transmitter and receiver of each respective chip receives a respective sample clock that is derived from their respective common clock signals, and wherein intra synchronizing the transmitters and receivers of each chip comprises initiating a START signal on each chip that synchronizes all respective transmitter dividers and all receiver dividers to transition on a respective same edge of their respective clock signals, such that the transmitters and receivers of each respective chip are synchronized.
  • 12. The method of claim 11, wherein each chip individually delays each of their respective clock signal values by selected multiples of a sub-clock value to account for different transmitter/receiver routing on the respective chips.
  • 13. The method of claim 10, wherein the first chip is a MASTER chip and each of the other chips of the plurality of chips are SLAVE chips, such that the SLAVE chips synchronize their operations with respect to the MASTER chip.
  • 14. The method of claim 13, wherein performing the first synchronization of the plurality of chips comprises transmitting, with a reference clock of the first chip, the reference clock signal, wherein the reference clock signal is used to synchronize timers of each SLAVE chip to a timer of the MASTER chip.
  • 15. The method of claim 13, wherein performing the first synchronization of the plurality of chips comprising transmitting, with a reference clock of the radar system, the reference clock signal, wherein the reference clock signal is used to synchronize timers of each SLAVE chip to a timer of the MASTER chip.
  • 16. The method of claim 10, wherein the first synchronization of the plurality of chips synchronizes the plurality of chips to within 10-100 ns.
  • 17. The method of claim 10, wherein the duration of the transmitted scan is one pulse repetition interval.
  • 18. The method of claim 10, wherein the second synchronization of the plurality of chips comprises the use of inter-range bin interpolation to compute a sub-chip misalignment between the first chip and every other chip of the plurality of chips, and wherein correcting the misalignment comprises removing a selected number of clock pulses such that subsequent scans are aligned to the desired degree of synchronization.
  • 19. The method of claim 10, wherein a first portion of the plurality of chips are used for a first scan, and wherein a second portion of the plurality of chips are used for a second scan.
  • 20. The method of claim 10, wherein a first portion of the plurality of chips performs a first portion of post processing of received data, and wherein a second portion of the plurality of chips performs a second portion of the post processing of the received data.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the filing benefits of U.S. provisional application, Ser. No. 62/816,941, filed Mar. 12, 2019, which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (379)
Number Name Date Kind
1882128 Fearing Oct 1932 A
3374478 Blau Mar 1968 A
3735398 Ross May 1973 A
3750169 Strenglein Jul 1973 A
3766554 Tresselt Oct 1973 A
3896434 Sirven Jul 1975 A
3932871 Foote Jan 1976 A
4078234 Fishbein et al. Mar 1978 A
4176351 Vita et al. Nov 1979 A
4308536 Sims, Jr. et al. Dec 1981 A
4566010 Collins Jan 1986 A
4612547 Itoh Sep 1986 A
4882668 Schmid et al. Nov 1989 A
4910464 Trett et al. Mar 1990 A
4939685 Feintuch Jul 1990 A
5001486 Bächtiger Mar 1991 A
5012254 Thompson Apr 1991 A
5034906 Chang Jul 1991 A
5087918 May et al. Feb 1992 A
5151702 Urkowitz Sep 1992 A
5175710 Hutson Dec 1992 A
5218619 Dent Jun 1993 A
5272663 Jones et al. Dec 1993 A
5280288 Sherry et al. Jan 1994 A
5302956 Asbury et al. Apr 1994 A
5341141 Frazier et al. Aug 1994 A
5345470 Alexander Sep 1994 A
5361072 Barrick et al. Nov 1994 A
5376939 Urkowitz Dec 1994 A
5379322 Kosaka et al. Jan 1995 A
5497162 Kaiser Mar 1996 A
5508706 Tsou et al. Apr 1996 A
5581464 Woll et al. Dec 1996 A
5654715 Hayashikura et al. Aug 1997 A
5657021 Ehsani-Nategh et al. Aug 1997 A
5657023 Lewis et al. Aug 1997 A
5691724 Aker Nov 1997 A
5712640 Andou Jan 1998 A
5724041 Inoue et al. Mar 1998 A
5847661 Ricci Dec 1998 A
5892477 Wehling Apr 1999 A
5917430 Greneker, III et al. Jun 1999 A
5920285 Benjamin Jul 1999 A
5931893 Dent et al. Aug 1999 A
5959571 Aoyagi et al. Sep 1999 A
5970400 Dwyer Oct 1999 A
6048315 Chiao et al. Apr 2000 A
6067314 Azuma May 2000 A
6069581 Bell et al. May 2000 A
6121872 Weishaupt Sep 2000 A
6121918 Tullsson Sep 2000 A
6151366 Yip Nov 2000 A
6163252 Nishiwaki Dec 2000 A
6184829 Stilp Feb 2001 B1
6191726 Tullsson Feb 2001 B1
6208248 Ross Mar 2001 B1
6288672 Asano et al. Sep 2001 B1
6307622 Lewis Oct 2001 B1
6335700 Ashihara Jan 2002 B1
6347264 Nicosia et al. Feb 2002 B2
6400308 Bell et al. Jun 2002 B1
6411250 Oswald et al. Jun 2002 B1
6417796 Bowlds Jul 2002 B1
6424289 Fukae et al. Jul 2002 B2
6547733 Hwang et al. Apr 2003 B2
6583753 Reed Jun 2003 B1
6614387 Deadman Sep 2003 B1
6624784 Yamaguchi Sep 2003 B1
6674908 Aronov Jan 2004 B1
6683560 Bauhahn Jan 2004 B2
6693582 Steinlechner Feb 2004 B2
6714956 Liu et al. Mar 2004 B1
6747595 Hirabe Jun 2004 B2
6768391 Dent et al. Jul 2004 B1
6865218 Sourour Mar 2005 B1
6888491 Richter May 2005 B2
6975246 Trudeau Dec 2005 B1
7066886 Song et al. Jun 2006 B2
7119739 Struckman Oct 2006 B1
7130663 Guo Oct 2006 B2
7202776 Breed Apr 2007 B2
7289058 Shima Oct 2007 B2
7299251 Skidmore et al. Nov 2007 B2
7338450 Kristofferson et al. Mar 2008 B2
7395084 Anttila Jul 2008 B2
7460055 Nishijima et al. Dec 2008 B2
7474258 Arikan et al. Jan 2009 B1
7545310 Matsuoka Jun 2009 B2
7545321 Kawasaki Jun 2009 B2
7564400 Fukuda Jul 2009 B2
7567204 Sakamoto Jul 2009 B2
7609198 Chang Oct 2009 B2
7642952 Fukuda Jan 2010 B2
7663533 Toennesen Feb 2010 B2
7667637 Pedersen et al. Feb 2010 B2
7728762 Sakamoto Jun 2010 B2
7791528 Klotzbuecher Sep 2010 B2
7847731 Wiesbeck et al. Dec 2010 B2
7855677 Negoro et al. Dec 2010 B2
7859450 Shirakawa et al. Dec 2010 B2
8019352 Rappaport et al. Sep 2011 B2
8044845 Saunders Oct 2011 B2
8049663 Frank et al. Nov 2011 B2
8059026 Nunez Nov 2011 B1
8102306 Smith, Jr. et al. Jan 2012 B2
8115672 Nouvel et al. Feb 2012 B2
8154436 Szajnowski Apr 2012 B2
8169359 Aoyagi May 2012 B2
8212713 Aiga et al. Jul 2012 B2
8330650 Goldman Dec 2012 B2
8390507 Wintermantel Mar 2013 B2
8471760 Szajnowski Jun 2013 B2
8532159 Kagawa et al. Sep 2013 B2
8547988 Hadani et al. Oct 2013 B2
8686894 Fukuda et al. Apr 2014 B2
8686898 Beasley Apr 2014 B2
8694306 Short et al. Apr 2014 B1
8994581 Brown Mar 2015 B1
9121943 Stirlin-Gallacher et al. Sep 2015 B2
9239378 Kishigami et al. Jan 2016 B2
9239379 Burgio et al. Jan 2016 B2
9274217 Change et al. Mar 2016 B2
9282945 Smith et al. Mar 2016 B2
9335402 Maeno et al. May 2016 B2
9400328 Hsiao et al. Jul 2016 B2
9541639 Searcy et al. Jan 2017 B2
9568600 Alland Feb 2017 B2
9575160 Davis et al. Feb 2017 B1
9599702 Bordes et al. Mar 2017 B1
9689967 Stark et al. Jun 2017 B1
9720073 Davis et al. Aug 2017 B1
9726756 Jansen Aug 2017 B2
9720080 Rodenbeck Sep 2017 B1
9753121 Davis Sep 2017 B1
9753132 Bordes et al. Sep 2017 B1
9772397 Bordes Sep 2017 B1
9791551 Eshraghi et al. Oct 2017 B1
9791564 Harris et al. Oct 2017 B1
9806914 Bordes et al. Oct 2017 B1
9829567 Davis et al. Nov 2017 B1
9846228 Davis et al. Dec 2017 B2
9869762 Alland et al. Jan 2018 B1
10092192 Lashkari et al. Oct 2018 B2
10097287 Schat Oct 2018 B1
10324165 Bordes Jun 2019 B2
10641881 Searcy May 2020 B2
10659078 Nayyar May 2020 B2
10673444 Chi Jun 2020 B2
10782389 Rao Sep 2020 B2
11054516 Wu Jul 2021 B2
11296806 Coulter Apr 2022 B2
11428778 Bauduin Aug 2022 B2
20010002919 Sourour et al. Jun 2001 A1
20020004692 Nicosia et al. Jan 2002 A1
20020044082 Woodington et al. Apr 2002 A1
20020075178 Woodington et al. Jun 2002 A1
20020118522 Ho et al. Aug 2002 A1
20020130811 Voigtlaender Sep 2002 A1
20020147534 Delcheccolo et al. Oct 2002 A1
20020155811 Prismantas Oct 2002 A1
20030001772 Woodington et al. Jan 2003 A1
20030011519 Breglia et al. Jan 2003 A1
20030058166 Hirabe Mar 2003 A1
20030073463 Shapira Apr 2003 A1
20030080713 Kirmuss May 2003 A1
20030102997 Levin et al. Jun 2003 A1
20030235244 Pessoa et al. Dec 2003 A1
20040012516 Schiffmann Jan 2004 A1
20040015529 Tanrikulu et al. Jan 2004 A1
20040066323 Richter Apr 2004 A1
20040070532 Ishii et al. Apr 2004 A1
20040107030 Nishira et al. Jun 2004 A1
20040138802 Kuragaki et al. Jul 2004 A1
20040215373 Won et al. Oct 2004 A1
20050008065 Schilling Jan 2005 A1
20050069162 Haykin Mar 2005 A1
20050090274 Miyashita Apr 2005 A1
20050156780 Bonthron et al. Jul 2005 A1
20050201457 Allred et al. Sep 2005 A1
20050225476 Hoetzel et al. Oct 2005 A1
20050273480 Pugh et al. Dec 2005 A1
20060012511 Dooi et al. Jan 2006 A1
20060036353 Wintermantel Feb 2006 A1
20060050707 Sterin Mar 2006 A1
20060093078 Lewis et al. May 2006 A1
20060109170 Voigtlaender et al. May 2006 A1
20060109931 Asai May 2006 A1
20060114324 Farmer et al. Jun 2006 A1
20060140249 Kohno Jun 2006 A1
20060181448 Natsume et al. Aug 2006 A1
20060220943 Schlick et al. Oct 2006 A1
20060244653 Szajnowski Nov 2006 A1
20060262007 Bonthron Nov 2006 A1
20060262009 Watanabe Nov 2006 A1
20070018884 Adams Jan 2007 A1
20070018886 Watanabe et al. Jan 2007 A1
20070096885 Cheng et al. May 2007 A1
20070109175 Fukuda May 2007 A1
20070115869 Lakkis May 2007 A1
20070120731 Kelly, Jr. et al. May 2007 A1
20070132633 Uchino Jun 2007 A1
20070152870 Woodington et al. Jul 2007 A1
20070152871 Puglia Jul 2007 A1
20070152872 Woodington Jul 2007 A1
20070164896 Suzuki et al. Jul 2007 A1
20070171122 Nakano Jul 2007 A1
20070182619 Honda et al. Aug 2007 A1
20070182623 Zeng Aug 2007 A1
20070188373 Shirakawa et al. Aug 2007 A1
20070200747 Okai Aug 2007 A1
20070263748 Mesecher Nov 2007 A1
20070279303 Schoebel Dec 2007 A1
20080080599 Kang et al. Apr 2008 A1
20080088499 Bonthron Apr 2008 A1
20080094274 Nakanishi Apr 2008 A1
20080150790 Voigtlaender et al. Jun 2008 A1
20080180311 Mikami Jul 2008 A1
20080208472 Morcom Aug 2008 A1
20080218406 Nakanishi Sep 2008 A1
20080258964 Schoeberl Oct 2008 A1
20080272955 Yonak et al. Nov 2008 A1
20090003412 Negoro et al. Jan 2009 A1
20090015459 Mahler et al. Jan 2009 A1
20090015464 Fukuda Jan 2009 A1
20090021421 Wakayama Jan 2009 A1
20090027257 Arikan Jan 2009 A1
20090046000 Matsuoka Feb 2009 A1
20090051581 Hatono Feb 2009 A1
20090072957 Wu et al. Mar 2009 A1
20090073025 Inoue et al. Mar 2009 A1
20090074031 Fukuda Mar 2009 A1
20090079617 Shirakawa et al. Mar 2009 A1
20090085827 Orime et al. Apr 2009 A1
20090103593 Bergamo Apr 2009 A1
20090121918 Shirai et al. May 2009 A1
20090212998 Szajnowski Aug 2009 A1
20090237293 Sakuma Sep 2009 A1
20090254260 Nix et al. Oct 2009 A1
20090267822 Shinoda et al. Oct 2009 A1
20090289831 Akita Nov 2009 A1
20090295623 Falk Dec 2009 A1
20100001897 Lyman Jan 2010 A1
20100019950 Yamano et al. Jan 2010 A1
20100039311 Woodington et al. Feb 2010 A1
20100116365 McCarty May 2010 A1
20100156690 Kim et al. Jun 2010 A1
20100198513 Zeng et al. Aug 2010 A1
20100253573 Holzheimer et al. Oct 2010 A1
20100277359 Ando Nov 2010 A1
20100289692 Winkler Nov 2010 A1
20110006944 Goldman Jan 2011 A1
20110032138 Krapf Feb 2011 A1
20110074620 Wintermantel Mar 2011 A1
20110187600 Landt Aug 2011 A1
20110196568 Nickolaou Aug 2011 A1
20110234448 Hayase Sep 2011 A1
20110248796 Pozgay Oct 2011 A1
20110279303 Smith, Jr. et al. Nov 2011 A1
20110279307 Song Nov 2011 A1
20110285576 Lynam Nov 2011 A1
20110291874 De Mersseman Dec 2011 A1
20110291875 Szajnowski Dec 2011 A1
20110292971 Hadani et al. Dec 2011 A1
20110298653 Mizutani Dec 2011 A1
20120001791 Wintermantel Jan 2012 A1
20120050093 Heilmann et al. Mar 2012 A1
20120105268 Smits et al. May 2012 A1
20120112957 Nguyen et al. May 2012 A1
20120133547 MacDonald et al. May 2012 A1
20120173246 Choi et al. Jul 2012 A1
20120195349 Lakkis Aug 2012 A1
20120249356 Shope Oct 2012 A1
20120257643 Wu et al. Oct 2012 A1
20120314799 In De Betou et al. Dec 2012 A1
20120319900 Johansson et al. Dec 2012 A1
20130016761 Nentwig Jan 2013 A1
20130021196 Himmelstoss Jan 2013 A1
20130027240 Chowdhury Jan 2013 A1
20130057436 Krasner et al. Mar 2013 A1
20130069818 Shirakawa et al. Mar 2013 A1
20130102254 Cyzs Apr 2013 A1
20130113647 Sentelle et al. May 2013 A1
20130113652 Smits et al. May 2013 A1
20130113653 Kishigami et al. May 2013 A1
20130135140 Kishigami May 2013 A1
20130169468 Johnson et al. Jul 2013 A1
20130169485 Lynch Jul 2013 A1
20130176154 Bonaccio et al. Jul 2013 A1
20130214961 Lee et al. Aug 2013 A1
20130229301 Kanamoto Sep 2013 A1
20130244710 Nguyen et al. Sep 2013 A1
20130249730 Adcook Sep 2013 A1
20130314271 Braswell et al. Nov 2013 A1
20130321196 Binzer et al. Dec 2013 A1
20140022108 Alberth, Jr. et al. Jan 2014 A1
20140028491 Ferguson Jan 2014 A1
20140035774 Khlifi Feb 2014 A1
20140049423 De Jong Feb 2014 A1
20140070985 Vacanti Mar 2014 A1
20140085128 Kishigami et al. Mar 2014 A1
20140097987 Worl et al. Apr 2014 A1
20140111367 Kishigami et al. Apr 2014 A1
20140111372 Wu Apr 2014 A1
20140139322 Wang et al. May 2014 A1
20140159948 Ishimori et al. Jun 2014 A1
20140220903 Schulz et al. Aug 2014 A1
20140253345 Breed Sep 2014 A1
20140253364 Lee et al. Sep 2014 A1
20140285373 Kuwahara et al. Sep 2014 A1
20140316261 Lux et al. Oct 2014 A1
20140327566 Burgio et al. Nov 2014 A1
20140340254 Hesse Nov 2014 A1
20140348253 Mobasher et al. Nov 2014 A1
20150002329 Murad et al. Jan 2015 A1
20150002357 Sanford et al. Jan 2015 A1
20150035662 Bowers et al. Feb 2015 A1
20150061922 Kishigami Mar 2015 A1
20150103745 Negus et al. Apr 2015 A1
20150153445 Jansen Jun 2015 A1
20150198709 Inoue Jul 2015 A1
20150204966 Kishigami Jul 2015 A1
20150204971 Yoshimura et al. Jul 2015 A1
20150204972 Kuehnle et al. Jul 2015 A1
20150226848 Park Aug 2015 A1
20150234045 Rosenblum Aug 2015 A1
20150247924 Kishigami Sep 2015 A1
20150255867 Inoue Sep 2015 A1
20150301172 Ossowska Oct 2015 A1
20150323660 Hampikian Nov 2015 A1
20150331090 Jeong et al. Nov 2015 A1
20150369912 Kishigami et al. Dec 2015 A1
20150373167 Murashov Dec 2015 A1
20160003938 Gazit et al. Jan 2016 A1
20160003939 Stainvas Olshansky et al. Jan 2016 A1
20160018511 Nayyar Jan 2016 A1
20160025844 Mckitterick Jan 2016 A1
20160005444 Kuo et al. Feb 2016 A1
20160033631 Searcy et al. Feb 2016 A1
20160033632 Searcy et al. Feb 2016 A1
20160041260 Cao et al. Feb 2016 A1
20160061935 McCloskey et al. Mar 2016 A1
20160084941 Arage Mar 2016 A1
20160084943 Arage Mar 2016 A1
20160091595 Alcalde Mar 2016 A1
20160103206 Pavao-Moreira et al. Apr 2016 A1
20160124075 Vogt et al. May 2016 A1
20160124086 Jansen et al. May 2016 A1
20160131752 Jansen et al. May 2016 A1
20160139254 Wittenberg May 2016 A1
20160146931 Rao et al. May 2016 A1
20160154103 Moriuchi Jun 2016 A1
20160178732 Oka et al. Jun 2016 A1
20160213258 Lashkari et al. Jul 2016 A1
20160238694 Kishigami Aug 2016 A1
20160349365 Ling Dec 2016 A1
20170010361 Tanaka Jan 2017 A1
20170023661 Richert Jan 2017 A1
20170023663 Subburaj et al. Jan 2017 A1
20170074980 Adib Mar 2017 A1
20170117950 Strong Apr 2017 A1
20170153316 Wintermantel Jun 2017 A1
20170219689 Hung et al. Aug 2017 A1
20170234968 Roger et al. Aug 2017 A1
20170293025 Davis et al. Oct 2017 A1
20170293027 Stark Oct 2017 A1
20170307728 Eshraghi et al. Oct 2017 A1
20170309997 Alland et al. Oct 2017 A1
20170310758 Davis et al. Oct 2017 A1
20170336495 Davis et al. Nov 2017 A1
20170363731 Bordes Dec 2017 A1
20180175907 Marr Jan 2018 A1
20180031674 Bordes Feb 2018 A1
20180031675 Eshraghi Feb 2018 A1
20180074168 Subburaj et al. Mar 2018 A1
20180231655 Stark Aug 2018 A1
20180231656 Maher Aug 2018 A1
20180329027 Eshraghi Nov 2018 A1
20190293755 Cohen Sep 2019 A1
20200191940 Wu Jun 2020 A1
Foreign Referenced Citations (12)
Number Date Country
0725480 Nov 2011 EP
2374217 Apr 2013 EP
2821808 Jul 2015 EP
3499264 Jul 2020 EP
2751086 Jan 1998 FR
WO-2012115518 Aug 2012 WO
WO2015175078 Nov 2015 WO
WO2015185058 Dec 2015 WO
WO2016011407 Jan 2016 WO
WO2016030656 Mar 2016 WO
WO2017175190 Oct 2017 WO
WO2017187330 Nov 2017 WO
Non-Patent Literature Citations (7)
Entry
B.P.Ginsburgetal., “Amultimode76-to-81GHzautomotiveradartransceiverwithautonomousmonitoring,”2018IEEE InternationalSolid-StateCircuitsConference—(ISSCC),2018,pp. 158-160,doi:10.1109/ISSCC.2018.8310232. (Year: 2018).
International Search Report and Written Opinion of corresponding PCT Application No. PCT/IB2020/052253, dated Jul. 20, 2020.
Chambers et al., “An article entitled Real-Time Vehicle Mounted Multistatic Ground Penetrating Radar Imaging System for Buried Object Detection,” Lawrence Livermore National Laboratory Reports (LLNL-TR-615452), Feb. 4, 2013; Retrieved from the Internet from https://e-reports-ext.llnl.gov/pdf/711892.pdf.
Fraser, “Design and simulation of a coded sequence ground penetrating radar,” In: Diss. University of British Columbia, Dec. 3, 2015.
Zhou et al., “Linear extractors for extracting randomness from noisy sources,” In: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on Oct. 3, 2011.
V. Giannini et al., “A 79 GHz Phase-Modulated 4 GHz-BW CW Radar Transmitter in 28 nm CMOS,”in IEEE Journal of Solid-State Circuits, vol. 49, No. 12, pp. 2925-2937, Dec. 2014. (Year: 2014).
Óscar Faus García, “Signal Processing for mm Wave MIMO Radar,” University of Gavle, Faculty of Engineering and Sustainable Development, Jun. 2015; Retrieved from the Internet from http://www.diva-portal.se/smash/get/diva2:826028/FULLTEXT01.pdf.
Related Publications (1)
Number Date Country
20200292666 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62816941 Mar 2019 US