1. Technical Field
The present disclosure relates to electrosurgical instruments used for open and endoscopic surgical procedures. More particularly, the present disclosure relates to an apparatus with multi-circuit seal plates, method of manufacturing multi-circuit seal plates and methods of sealing tissue with multi-circuit seal plates.
2. Description of Related Art
Electrosurgical forceps utilize mechanical clamping action along with electrical energy to effect hemostasis on the clamped tissue. The forceps (open, laparoscopic or endoscopic) include electrosurgical sealing plates that engage tissue and deliver electrosurgical energy to the engaged tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the sealing plates to tissue, the surgeon can coagulate, cauterize, and/or seal tissue.
During an electrosurgical procedure, seal plates deliver electrosurgical energy and/or heat to tissue. Ideally, the seal plates evenly distribute energy and uniformly heats tissue positioned between the seal plates. The seal plates and varying tissue properties and thicknesses can result in uneven distribution of energy, uneven heating and generation of hot zones within or between the sealing plates. As a result, the uneven distributed of energy may result in a longer duration sealing procedure and/or may result in a low-quality seal.
Additionally, a surgical procedure may often require several energy delivery sequences. The seal plates are heated during each electrosurgical energy delivery sequence and the time between each electrosurgical energy delivery may be insufficient to cool the seal plates. As such, thermal energy may accumulate during subsequent energy delivery sequences thereby resulting in a higher than desired temperature for the seal plates and a higher than desired temperature of tissue positioned between the seal plates.
According to an aspect of the present disclosure, an end effector assembly adapted to couple to an electrosurgical instrument includes a pair of opposing jaw members pivotably attached about a pivot member and moveable from a first spaced position to a second grasping position. Each jaw member includes a jaw housing and a seal plate formed on an inner surface of the jaw member. The seal plate includes at least two seal plate segments extending along a substantial portion of the length of the jaw members. The jaw member also includes an insulating member positioned between adjacent seal plate segments and configured to provide electrical isolation between adjacent seal plate segments. Each sealing plate segment is adapted to selectively connect to an electrosurgical energy source and form part of an electrosurgical energy delivery circuit.
Each jaw member may also include a seal plate mount configured to operably couple the seal plate and the jaw housing and further configured to electrically couple each of the two or more seal plate segments to an electrosurgical energy source. The seal plate mount may include one or more switch circuit boards disposed on and operably coupled atop each seal plate.
Each seal plate may include a first seal plate segment, a second seal plate segment and a middle seal plate segment operably coupled between the first and second seal plate segments. A first insulating member is positioned between the first seal plate segment and the middle seal plate segment to provide electrical isolation therebetween. A second insulating member is positioned between the second seal plate segment and the middle seal plate segment to provide electrical isolation therebetween. The first, second and middle seal plate segments on each opposing jaw member form a planar sealing surface. Each of the first, second and middle seal plate segments is configured to selectively form part of an electrosurgical energy delivery circuit for sealing tissue positioned between the pair of opposing jaw members.
The middle seal plate segments may be configured to form part of an electrosurgical energy delivery circuit for cutting tissue positioned between the pair of opposing jaw members. A middle seal plate segment may include a geometry that is raised with respect to the planar sealing surface. The geometry may form a ridge or may include a radius of curvature.
According to a further aspect of the present disclosure, an electrosurgical instrument includes a housing, a handle assembly, a shaft having a proximal end and a distal end, the proximal end operably coupled to the housing and the distal end operably coupled to an end effector assembly. The end effector assembly includes a pair of opposing jaw members pivotably attached about a pivot member and moveable from a first, spaced, position to a second, grasping, position. Each jaw member includes a jaw housing, a seal plate formed on an inner surface of the jaw member including at least two seal plate segments extending along a substantial portion of the length of the jaw members and an insulating member positioned between adjacent seal plate segments. The insulating members are configured to provide electrical isolation between adjacent seal plate segments. Each sealing plate segment is adapted to selectively connect to an electrosurgical energy source and form part of an electrosurgical energy delivery circuit.
The electrosurgical instrument may further include a seal plate mount formed on each of the pair of opposing jaw members. The seal plate mount is configured to operably couple the seal plate and the jaw housing and electrically couple each of the two or more seal plate segments to an electrosurgical energy source. A switch, formed in the housing, may operably couple to the seal plate mount. The seal plate mount may further include a circuit board that includes at least two circuit board switches operably coupled to the switch. The switch and circuit board switches may selectively couple each of the seal plate segments to the electrosurgical energy source.
According to a further aspect of the present disclosure, an electrosurgical instrument includes a first and second shafts pivotably attached to one another about a common pivot. Each shaft includes a jaw member on a distal end thereof that includes a jaw housing, a seal plate and an insulating member. Each seal plate is formed on an inner surface of the respective jaw member and includes two or more seal plate segments extending along a substantial portion of the length of the jaw member. An insulating member is positioned between adjacent seal plate segments and configured to provide electrical isolation therebetween. Each seal plate segment is adapted to selectively connect to an electrosurgical energy source and form part of an electrosurgical energy delivery circuit.
Various aspects of the subject instrument are described herein with reference to the drawings wherein:
Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.
In accordance with the present disclosure, generally an end effector includes an upper seal plate and a lower seal plate described collectively as seal plates. The seal plates according to the present disclosure are manufactured to include a plurality of seal plate segments. The seal plate segments are configured to be selectively energized by a control circuit. Alternatively, two or more seal plate segments may be configured to be simultaneously energized by one or more electrical circuits. In this manner, tissue is selectively treated by one or more the individual seal plate segments or sequentially treated by one or more of the circuits that connect to the various seal plate segments. As such, the end effectors according to the present disclosure are configured and/or customized such that the tissue, or separate portions of the tissue, grasped between the jaw members, may be selectively treated.
Referring now to the figures,
Turning now to
Forceps 10 is coupled to generator 40 via a cable 34. Cable 34 is configured to transmit one or more RF energy signals and/or energy control signals between the generator 40 and the forceps 10. Forceps 10 may alternatively be configured as a self-contained instrument that includes the functionality of the generator 40 within the forceps 10 (e.g., an energy source, a signal generator, a control circuit, etc. . . . ). For example, forceps 10 may include a battery (not explicitly shown) that provides electrical energy, an RF generator (40) connected to the battery and configured to generate one or more RF energy signals and a microprocessor to perform measurement and control functions and to selectively delivery one or more RF energy signals to the end effector 100.
Forceps 10 include a housing 20, a handle assembly 22, a rotating assembly 28, a trigger assembly 30 and an end effector 100. Forceps 10 further include a shaft 12 having a distal end 14 configured to engage the end effector 100 and a proximal end 16 configured to engage the housing 20 and/or the rotating assembly 28. Cable 34 connects to wires (not explicitly shown) in the housing 20 that extend through the housing 20, shaft 12 and terminate in the end effector 100 thereby providing one or more electrical energy signals to the upper and lower sealing plates 112, 122.
Handle assembly 22 includes a fixed handle 26 and a moveable handle 24. Fixed handle 26 is integrally associated with housing 20 and moveable handle 24 is moveable relative to the fixed handle 26 to actuate the end effector 100 between an open condition and a closed condition and to grasp and treat tissue positioned therebetween. Rotating assembly 28 is rotatable in a clockwise and a counter-clockwise rotation to rotate end effector 100 about longitudinal axis “X-X”. Housing 20 houses the internal working components of forceps 10.
End effector 100 includes upper and lower jaw members 110 and 120 are pivotable about a pivot 19 and are moveable between a first condition wherein jaw members 110 and 120 are closed and mutually cooperate to grasp, seal and/or sense tissue therebetween (See
Each jaw member 110, 120 include a tissue contacting surface 112, 122, respectively, disposed on an inner-facing surface thereof. Tissue contacting surfaces 112 and 122 cooperate to grasp tissue positioned therebetween and are configured to coagulate and/or seal tissue upon application of energy from generator 40. Tissue contacting surfaces 112 and 122 may be further configured to cut tissue and/or configured to position tissue for cutting after tissue coagulation and/or tissue sealing is complete. One or more of the tissue contacting surfaces 112, 122 may form part of the electrical circuit that communicates energy through the tissue held between the upper and lower jaw members 110 and 120, respectively.
Trigger assembly 30 is configured to actuate a knife (e.g., knife assembly 186, See
Referring now to
Shafts 12a′ and 12b′ include respective handles 17a′ and 17b′ disposed at the proximal ends 14a′ and 14b′ thereof. Handles 17a′ and 17b′ facilitate scissor-like movement of the shafts 12a′ and 12b′ relative to each other, which, in turn, actuate the jaw members 110′ and 120′ between a first condition and a second condition. In the first condition, the jaws 110′ and 120′ cooperate to grasp tissue therebetween and, in a second condition, the jaw members 110′ and 120′ are disposed in spaced relation relative to one another.
In some aspects, one or more of the shafts, e.g., shaft 12a′, includes a switch assembly 32′ configured to selectively provide electrical energy to the end effector assembly 100′. Forceps 10′ is depicted having a cable 34′ that connects the forceps 10′ to generator 40 (as shown in
Trigger assembly 30′ is configured to actuate a knife assembly 186, as described with respect to
With reference to
Each seal plate 112, 122 may form a planar sealing surface that includes a plurality of seal plate segments 112a-112c and 122a-122c, respectively, electrically isolated from each other by insulating members 125a, 125b. Each seal plate segment 112a-112c and 122a-122c may form a substantially equal portion of the sealing surface (see
Insulating members 125a and 125b may be formed from any suitable insulating material or dielectric material that provides electrical isolation between the middle seal plate segments 112b and 122b and the inner and outer seal plate segments 112a, 122a and 112c, 122c, respectively. Insulating members 125a and 125b may be formed from a polytetrafluorethylene (PTFE), polypropylene, polychlorotrifluoroethylene (IPCTFE), polyethylene, polyethyleneterephthalate (PET), polyvinylchloride (PVC), a ceramic material or even air in a gap formed between adjacent seal segments.
The individual seal plate segments 112a-112c and 122a-122c may be pre-selected, or dynamically selected, as part of one or more electrical circuits that deliver electrosurgical energy to tissue positioned between the jaw members 110 and 120. For example, in one configuration the end effector 100 may include a first bipolar circuit that includes the outer seal plate segments 112a and 122a, a second bipolar circuit that includes the middle seal plate segments 112b and 122b and a third bipolar circuit that includes the inner seal plate segments 112c and 122c wherein the first, second and third bipolar circuits are independently enabled and/or controlled to deliver electrosurgical energy to tissue.
The seal plate segments on each jaw (e.g., lower seal plate segments 122a-122c on lower jaw 120) are arranged such that the seal plate segments are positioned radially outward from the lower knife channels 115b in a step-like manner. In this embodiment each seal plate segment forms a radius on the distal end thereof, thereby extending proximally along each side of the upper and lower jaw members 110 and 120. The seal plate segments 112a-112c on the upper seal plate 112 may have corresponding seal plate segments 122a-122c on the lower seal plate 122 positioned oppose and one another, as illustrated in
As shown by the cross-section of the end effector 100 in
In another embodiment, seal plates 112 and 122 mount directly to the respective jaw housing 110a and 120a and an electrical connection from the generator 40 connects directly to each seal plate segment 112a-112c and 122a-122c. A control circuit (See control circuit 42 in
The control circuit (e.g., controller 42; See
In another embodiment, the selected bipolar circuit does not include a corresponding seal plate segment on the upper and lower jaw members 110 and 120. For example, the bipolar circuit may include the outer seal segment 112a on the upper jaw member 110 and the middle and/or inner seal plate segment 122b and 122c on the lower jaw member 120 (See
In another embodiment, the seal plate segments 112a-112c and 122a-122c selected to form a bipolar circuit are determined by a measured tissue parameter, wherein the measured tissue parameter is related to tissue positioned between the upper jaw member 110 and the lower jaw member 120. For example, the generator 40 (e.g., controller, 42 sensor module 48 and multiplexer 60) may be configured to measure the impedance of tissue positioned between two selected seal plate segments (e.g., upper seal plate segments 112a-112c and/or lower seal plate segments 122a-122c). Based on the measured value, the generator 40 may form one or more bipolar circuits between selected seal plate segments (e.g., upper seal plate segments 112a-112c and/or lower seal plate segments 122a-122c). The generator 40 may also generate an energy delivery sequence wherein the seal plate segments that form part of the one or more bipolar circuits are dynamically selected based on one or more measured tissue parameters. The generator 40 may also be configured to perform a subsequent measurement after energy delivery is initiated.
Generator 40 may perform a series of impedance measurements between the seal plate segments (e.g., upper seal plate segments 112a-112c and/or lower seal plate segments 122a-122c). The measurements may form a tissue impedance profile of the tissue positioned between the upper and lower jaw members 110 and 120. The tissue impedance profile may be utilized by the generator 40 to determine an energy delivery sequence specific to the tissue positioned between the upper and lower jaw members 110 and 120.
In another embodiment, seal plate segments 112a-112c and 122a-122c may be configured to energize from an outside-to-inside direction or from an inside-to-outside direction. For example, outer seal plate segments 112a and 122a may be initially energized for a first energization period, followed by a subsequent energization period wherein the middle seal plate segments 112b and 122b and/or the inner seal plate segments 112c and 122c are energized.
Seal plate segments 312a-312e and 322a-322e may be mounted on a respective seal plate mounts 314 and 324. Seal plate mount 314 and 324 may be formed as part of each respective seal plate 312 and 322, formed as part of each respective jaw housing 310a and 320a or configured to interconnect each seal plate 312 and 322 with the respective jaw housing 310a and 320a. Seal plate mount 314 and 324 may include a circuit or circuit board that provides an electrical connection to one or more of the seal plate segments (e.g., upper seal plate segments 312a-312e, lower seal plate segments 322a-322e). Seal plate mount 314 and 324 and/or circuit (or circuit board) formed therein provide an electrical connection between the source of electrical energy (e.g., generator 40, See
Seal plates 312 and 322 and/or seal plate mounts 314 and 324 may include one or more switches (not explicitly shown) configured to selectably connect one or more seal plate segments 312a-312e and 322a-322e to the source of electrical energy (e.g., generator 40 in
In one embodiment, the seal plate segments 312a-312e and 322a-322e are energized from an outside-to-inside manner or from an inside-to-outside manner. For example, corresponding upper and lower outer seal plate segments 312a and 322a, 312e and 322e may be initially energized for a first energization period, followed by a subsequent energization period wherein any one or more of the interior seal plate segments 312b-312d and 322b-322d, or combination thereof, are energized.
In a further embodiment, the upper and lower middle seal plate segments 312c and 322c may be configured to cut tissue positioned therebetween and the upper and lower outer seal plate segments 312a, 312b, 313d, 312e and 322a, 322b, 322d, 322e, respectively, are configured to seal tissue. The generator 40 may be configured to provide electrosurgical energy to seal tissue during a seal sequence and electrosurgical energy to cut tissue during a cut sequence. During the seal sequence, the generator 40 may provide an electrosurgical energy signal to select upper and lower seal plate segments 312a-312e and 322a-322e to coagulate and seal tissue. During a subsequent cut sequence, the generator 40 may provide an electrosurgical energy signal to the upper and lower middle seal plate segments 312c and 322c to cut tissue positioned therebetween. Providing a multi-circuit end effector 300 capable off electrosurgically sealing tissue during a first energy delivery period and capable of electrosurgical cutting tissue during a second energy delivery period eliminates the need for providing a means for mechanical cutting tissue (i.e., elimination of the trigger assembly 30′ and knife assembly 186 of forceps 10′, See
The upper or lower middle seal plate segments 412c and 422c may include a geometry configured to facilitate tissue cutting, in addition to tissue sealing, while the remaining outer seal plate segments 412a, 412b, 412d, 412e and 422a, 422b, 422d, 422e may include a geometry configured to facilitate tissue sealing. In this aspect, the lower middle seal plate segment 422c forms a ridge “R” wherein the ridge “R” is raised with respect to the sealing surface to facilitate tissue cutting during a second energization period as discussed above with respect to
Upper and lower middle seal plate segments 412c and 422c may be included in a tissue sealing circuit in an initial tissue sealing stage and may form a tissue cutting circuit in a subsequent tissue cutting stage. For example, in an initial tissue sealing stage the upper middle seal plate segment 412c may form a sealing circuit with outer seal plate segment 412a and 422a and lower middle seal plate segment 412c may form a sealing circuit with the outer seal plate segments 412e and 422e. The sealing stage may include the selection of additional sealing circuits that may or may not include the upper and lower middle seal plate segments 412c and 422c. After the sealing stage is complete and the tissue positioned between the upper and lower jaws members 410 and 420 has been sufficiently sealed, a tissue cutting circuit that includes the upper and lower middle seal plate segments 412c and 422c is selected and upon activation thereof cuts the tissue positioned therebetween.
In a further embodiment, geometry, similar to the ridge “R” formed on the lower middle seal plate segment 422c of
As illustrated in
In
The controller 42 includes a microprocessor 50 having a memory 52 which may be volatile type memory (e.g., RAM) and/or non-volatile type memory (e.g., flash media, disk media, etc.). The microprocessor 50 includes a connection to the power supply 44 and/or RF output stage 46 that allows the microprocessor 50 to control the output of the generator 40 according to an open-loop and/or closed-loop control scheme. The power supply 44, RF output stage 46, multiplexer 60 and sensor module 48 are connected to, and controlled by, the controller 42 and configured to operate in concert to perform a selected surgical procedure.
For example, controller 42 may instruct the multiplexer 60 to connect an RF energy signal generated by the RF output stage 46 between any two or more segments of the end effector 100. For example, multiplexer 60 may be instructed by the controller 42 to form an electrosurgical energy delivery circuit between with outer seal segment 112a on the upper jaw member 110 and the inner seal portion 122c on the lower jaw member 120 (See
In a further embodiment, during operation the controller 42 may instruct the multiplexer 60 to direct an RF energy signal, generated by the RF output stage 46, to each of the first, second and third circuits during the respective first, second and third treatment cycles. The first, second and third treatment cycles may be executed consecutively, simultaneously or any portion of a treatment cycle may overlap with any other treatment cycle.
Controller 42, in executing a closed-loop control scheme, may instruct the multiplexer 60 to simultaneously connect two segments on the end effector 100 to the RF output stage 46 for delivery of electrosurgical energy and may further instruct the multiplexer to connect the sensor module 48 to two segments on the end effector 100 wherein the sensor module 48 provides feedback to the controller 42 for an energy delivery control loop (i.e., the sensor module 48 includes one or more sensing mechanisms/circuits for sensing various tissue parameters such as tissue impedance, tissue temperature, output current and/or voltage, etc.). The controller 42, using the energy delivery control loop, signals the power supply 44 and/or RF output stage 46 to adjust the electrosurgical energy signal.
The controller 42 also receives input signals from the input controls of the generator 40 and/or forceps 10, 10′. The controller 42 utilizes the input signals to generate instructions for the various components in the generator 40, to adjust the power output of the generator 40 and/or to perform other control functions. The controller 42 may include analog and/or logic circuitry for processing input signals and/or control signals sent to the generator 40, rather than, or in combination with, the microprocessor 50.
The microprocessor 50 is capable of executing software instructions for processing data received by the sensor module 48, and for outputting control signals to the generator 40, accordingly. The software instructions, which are executable by the controller 42, are stored in the memory 52 of the controller 42.
The sensor module 48 may also include a plurality of sensors (not explicitly shown) strategically located for sensing various properties or conditions, e.g., tissue impedance, voltage (e.g., voltage at the generator 40 and/or voltage at the tissue site) current (e.g., current at the generator 40 and/or current delivered at the tissue site, etc.) The sensors are provided with leads (or wireless) for transmitting information or signals to the controller 42. The sensor module 48 may include control circuitry that receives information and/or signals from multiple sensors and provides the information and/or signals, and/or the source of the information (e.g., the particular sensor providing the information), to the controller 42.
The sensor module 48 may include a real-time voltage sensing system and a real-time current sensing system for sensing real-time values related to applied voltage and current at the surgical site. Additionally, an RMS voltage sensing system and an RMS current sensing system may be included for sensing and deriving RMS values for applied voltage and current at the surgical site.
The generator 40 includes suitable input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling the generator 40, as well as one or more display screens for providing the surgeon with information (e.g., intensity settings, treatment complete indicators, etc.). The controls allow the surgeon to adjust power of the RF energy, waveform, and other parameters to achieve the desired waveform suitable for a particular task (e.g., surgical procedure such as tissue ablation, coagulation, cauterization, resection or any combination thereof). Further, the forceps 10, 10′ may include one or more input controls, some of which may be redundant, with certain input controls included in the generator 40. Placing select input controls at the instrument 10, 10′ allows for easier and faster modification of RF energy parameters during the surgical procedure without requiring interaction with the generator 40.
The generator 40 may be configured to perform monopolar and/or bipolar electrosurgical procedures. As illustrated in
In any of the above-described embodiments, the seal plates or any seal plate segment thereof may be configured to seal sense and/or cut any type of tissue. In addition, any of the end effector assemblies described above may be configured to cut tissue with or without a knife.
With respect to sealing tissue, the gap between the seal plates (e.g., seal plates 112 and 122, see
In another embodiment, seal plates according the present disclose may be configured to heat tissue. For example, seal plate assembly may be configured to include resistive heating capabilities instead of, or in addition to electrosurgical energy delivery capabilities.
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications and combinations of the embodiments described herein are within the scope and spirit of the invention and the claims appended hereto.
The present application is a continuation application which claims the benefit of and priority to U.S. patent application Ser. No. 13/277,373, filed on Oct. 20, 2011, the contents of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
4655216 | Tischer | Apr 1987 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
5122137 | Lennox | Jun 1992 | A |
5190541 | Abele et al. | Mar 1993 | A |
D343453 | Noda | Jan 1994 | S |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
5443463 | Stern et al. | Aug 1995 | A |
5562720 | Stern et al. | Oct 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
D384413 | Zlock et al. | Sep 1997 | S |
H1745 | Paraschac | Aug 1998 | H |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
D416089 | Barton et al. | Nov 1999 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
H1904 | Yates et al. | Oct 2000 | H |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
H2037 | Yates et al. | Jul 2002 | H |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
6976492 | Ingle et al. | Dec 2005 | B2 |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
D582038 | Swoyer et al. | Dec 2008 | S |
7621910 | Sugi | Nov 2009 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
7753909 | Chapman et al. | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
D630324 | Reschke | Jan 2011 | S |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
8469956 | McKenna | Jun 2013 | B2 |
8968308 | Horner et al. | Mar 2015 | B2 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20090112200 | Eggers | Apr 2009 | A1 |
20100016857 | McKenna et al. | Jan 2010 | A1 |
20120059371 | Anderson et al. | Mar 2012 | A1 |
20120078250 | Orton et al. | Mar 2012 | A1 |
20120083785 | Roy et al. | Apr 2012 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120083827 | Artale et al. | Apr 2012 | A1 |
20120095456 | Schechter et al. | Apr 2012 | A1 |
20120095460 | Rooks et al. | Apr 2012 | A1 |
20120209263 | Sharp et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
201299462 | Sep 2009 | CN |
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jun 1986 | DE |
03612646 | Apr 1987 | DE |
8712328 | Feb 1988 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
19946527 | Jul 2001 | DE |
10045375 | Oct 2002 | DE |
20 2007 009317 | Aug 2007 | DE |
202007009165 | Aug 2007 | DE |
202007016233 | Jan 2008 | DE |
19738457 | Jan 2009 | DE |
102004026179 | Jan 2009 | DE |
102008018406 | Jul 2009 | DE |
1 159 926 | Dec 2001 | EP |
61-501068 | Sep 1984 | JP |
10-24051 | Jan 1989 | JP |
11-47150 | Jun 1989 | JP |
6-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
0006030945 | Feb 1994 | JP |
6-121797 | May 1994 | JP |
6-285078 | Oct 1994 | JP |
6-511401 | Dec 1994 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
8-56955 | May 1996 | JP |
08252263 | Oct 1996 | JP |
8-289895 | Nov 1996 | JP |
8-317934 | Dec 1996 | JP |
8-317936 | Dec 1996 | JP |
9-10223 | Jan 1997 | JP |
9-122138 | May 1997 | JP |
10-155798 | Jun 1998 | JP |
11-070124 | Mar 1999 | JP |
11-169381 | Jun 1999 | JP |
11-192238 | Jul 1999 | JP |
11244298 | Sep 1999 | JP |
2000-102545 | Apr 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001-8944 | Jan 2001 | JP |
2001-29356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
20013400 | Nov 2001 | JP |
2002-528166 | Sep 2002 | JP |
2003245285 | Sep 2003 | JP |
2004-517668 | Jun 2004 | JP |
2004-528869 | Sep 2004 | JP |
2011125195 | Jun 2011 | JP |
401367 | Oct 1973 | SU |
9605776 | Feb 1996 | WO |
0036986 | Jun 2000 | WO |
0059392 | Oct 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
2004073490 | Sep 2004 | WO |
2004098383 | Nov 2004 | WO |
2005110264 | Nov 2005 | WO |
2009124097 | Oct 2009 | WO |
Entry |
---|
Int'l Search Report EP 05020532 dated Jan. 10, 2006. |
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006. |
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006. |
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006. |
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006. |
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006. |
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006. |
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006. |
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006. |
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006. |
Int'l Search Report EP 06005185.1 dated May 10, 2006. |
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006. |
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009. |
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006. |
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006. |
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007. |
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007. |
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007. |
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007. |
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007. |
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007. |
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007. |
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007. |
Int'l Search Report EP 07 004429.2 dated Nov. 2, 2010. |
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007. |
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007. |
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007. |
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007. |
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007. |
Int'l Search Report EP 07 014016 dated Jan. 28, 2008. |
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008. |
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008. |
Int'l Search Report EP 07 016911 dated May 28, 2010. |
Int'l Search Report EP 07 016911.5 extended dated Mar. 2, 2011. |
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008. |
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008. |
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008. |
Int'l Search Report EP 07 021647.8 dated May 2, 2008. |
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008. |
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008. |
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008. |
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008. |
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009. |
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009. |
Int'l Search Report EP 09 003677.3 dated May 4, 2009. |
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009. |
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009. |
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009. |
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009. |
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009. |
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000. |
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001. |
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001. |
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001. |
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001. |
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002. |
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002. |
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003. |
Int'l Search Report PCT/US03/18674 dated Sep. 18, 2003. |
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003. |
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003. |
Int'l Search Report PCT/US03/28539 dated Jan. 6, 2004. |
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005. |
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004. |
Int'l Search Report PCT/US04/15311dated Jan. 12, 2005. |
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008. |
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008. |
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008. |
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008. |
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009. |
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010. |
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009. |
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009. |
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009. |
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009. |
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009. |
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009. |
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009. |
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009. |
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009. |
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010. |
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010. |
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009. |
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010. |
Int'l Search Report EP 10 011750.6 dated Feb. 1, 2011. |
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010. |
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010. |
Int'l Search Report EP 10 160870.1 dated Aug. 9, 2010. |
Int'l Search Report EP 10 161596.1 dated Jul. 28, 2010. |
Int'l Search Report EP 10 167655.9 dated Aug. 31, 2011. |
Int'l Search Report EP 10 168705.1 dated Oct. 4, 2010. |
Int'l Search Report EP 10 169647.4 dated Oct. 29, 2010. |
Int'l Search Report EP 10 172005.0 dated Sep. 30, 2010. |
Int'l Search Report EP 10 175956.1 dated Nov. 12, 2010. |
Int'l Search Report EP 10 181034.9 dated Jan. 26, 2011. |
Int'l Search Report EP 10 181575.1 dated Apr. 5, 2011. |
Int'l Search Report EP 10 181969.6 dated Feb. 4, 2011. |
Int'l Search Report EP 10 182019 dated Aug. 4, 2011. |
Int'l Search Report EP 10 182022.3 dated Mar. 11, 2011. |
Int'l Search Report EP 10 185386.9 dated Jan. 10, 2011. |
Int'l Search Report EP 10 185405.7 dated Jan. 5, 2011. |
Int'l Search Report EP 10 186527.7 dated Jun. 17, 2011. |
Int'l Search Report Ep 10 189206.5 dated Mar. 17, 2011. |
Int'l Search Report EP 10 191320.0 dated Feb. 15, 2011. |
Int'l Search Report EP 11 151509.4 dated Jun. 6, 2011. |
Int'l Search Report EP 11 152220.7 dated May 19, 2011. |
Int'l Search Report EP 11 152360.1 dated Jun. 6, 2011. |
Int'l Search Report EP 11 159771.2 dated May 28, 2010. |
Int'l Search Report EP 11 161117.4 dated Jun. 30, 2011. |
Int'l Search Report EP 11 161118.2 dated Oct. 12, 2011. |
Int'l Search Report EP 11 164274.0 dated Aug. 3, 2011. |
Int'l Search Report EP 11 164275.7 dated Aug. 25, 2011. |
Int'l Search Report EP 11 167437.0 dated Aug. 8, 2011. |
Int'l Search Report EP 11 168458.5 dated Jul. 29, 2011. |
Int'l Search Report EP 11 173008.1 dated Nov. 4, 2011. |
Int'l Search Report EP 11 179514 dated Nov. 4, 2011. |
Int'l Search Report EP 11 180182.5 dated Nov. 15, 2011. |
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999. |
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999. |
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000. |
Int'l Search Report EP 98957771 dated Aug. 9, 2001. |
Int'l Search Report EP 98957773 dated Aug. 1, 2001. |
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002. |
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005. |
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005. |
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005. |
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005. |
Int'l Search Report EP 04709033.7 dated Dec. 8, 2010. |
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007. |
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008. |
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009. |
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005. |
Int'l Search Report EP 05013894 dated Feb. 3, 2006. |
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005. |
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006. |
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005. |
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005. |
Int'l Search Report EP 05019429.9 dated May 6, 2008. |
U.S. Appl. No. 13/212,329, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,343, filed Aug. 18, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/223,521, filed Sep. 1, 2011, John R. Twomey. |
U.S. Appl. No. 13/227,220, filed Sep. 7, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/228,742, filed Sep. 9, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/231,643, filed Sep. 13, 2011, Keir Hart. |
U.S. Appl. No. 13/234,357, filed Sep. 16, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/236,168, filed Sep. 19, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/236,271, filed Sep. 19, 2011, Monte S. Fry. |
U.S. Appl. No. 13/243,628, filed Sep. 23, 2011, William Ross Whitney. |
U.S. Appl. No. 13/247,778, filed Sep. 28, 2011, John R. Twomey. |
U.S. Appl. No. 13/247,795, filed Sep. 28, 2011, John R. Twomey. |
U.S. Appl. No. 13/248,976, filed Sep. 29, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/249,013, filed Sep. 29, 2011, Jeffrey R. Unger. |
U.S. Appl. No. 13/249,024, filed Sep. 29, 2011, John R. Twomey. |
U.S. Appl. No. 13/251,380, filed Oct. 3, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/277,373, filed Oct. 20, 2011, Glenn A. Homer. |
U.S. Appl. No. 13/277,926, filed Oct. 20, 2011, David M. Garrison. |
U.S. Appl. No. 13/277,962, filed Oct. 20, 2011, David M. Garrison. |
U.S. Appl. No. 13/293,754, filed Nov. 10, 2011, Jeffrey M. Roy. |
U.S. Appl. No. 13/306,523, filed Nov. 29, 2011, David M. Garrison. |
U.S. Appl. No. 13/306,553, filed Nov. 29, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/308,104, filed Nov. 30, 2011, John R. Twomey. |
U.S. Appl. No. 13/312,172, filed Dec. 6, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/324,863, filed Dec. 13, 2011, William H. Nau, Jr. |
U.S. Appl. No. 13/344,729, filed Jan. 6, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/355,829, filed Jan. 23, 2012, John R. Twomey. |
U.S. Appl. No. 13/357,979, filed Jan. 25, 2012, David M. Garrison. |
U.S. Appl. No. 13/358,136, filed Jan. 25, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/358,657, filed Jan. 26, 2012, Kim V. Brandt. |
U.S. Appl. No. 13/360,925, filed Jan. 30, 2012, James H. Orszulak. |
U.S. Appl. No. 13/369,152, filed Feb. 8, 2012, William H. Nau, Jr. |
U.S. Appl. No. 13/400,290, filed Feb. 20, 2012, Eric R. Larson. |
U.S. Appl. No. 13/401,964, filed Feb. 22, 2012, John R. Twomey. |
U.S. Appl. No. 13/404,435, filed Feb. 24, 2012, Kim V. Brandt. |
U.S. Appl. No. 13/404,476, filed Feb. 24, 2012, Kim V. Brandt. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,9509, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,8839, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich. |
U.S. Appl. No. 12/915,809, filed Oct. 29, 2010, Thomas J. Gerhardt, Jr. |
U.S. Appl. No. 12/947,352, filed Nov. 16, 2010, Jason L. Craig. |
U.S. Appl. No. 12/947,420, filed Nov. 16, 2010, Jason L. Craig. |
U.S. Appl. No. 12/948,081, filed Nov. 17, 2010, Boris Chernov. |
U.S. Appl. No. 12/948,144, filed Nov. 17, 2010, Boris Chernov. |
U.S. Appl. No. 12/950,505, filed Nov. 19, 2010, David M. Garrison. |
U.S. Appl. No. 12/955,010, filed Nov. 29, 2010, Paul R. Romero. |
U.S. Appl. No. 12/955,042, filed Nov. 29, 2010, Steven C. Rupp. |
U.S. Appl. No. 12/981,771, filed Dec. 30, 2010, James D. Allen, IV. |
U.S. Appl. No. 12/981,787, filed Dec. 30, 2010, John R. Twomey. |
U.S. Appl. No. 13/006,538, filed Jan. 14, 2011, John W. Twomey. |
U.S. Appl. No. 13/028,810, filed Feb. 16, 2011, Robert M. Sharp. |
U.S. Appl. No. 13/030,231, filed Feb. 18, 2011, Jeffrey M. Roy. |
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011, Glenn A. Homer. |
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld. |
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison. |
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart. |
U.S. Appl. No. 13/089,779, filed Apr. 19, 2011, Yevgeniy Fedotov. |
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend. |
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey. |
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada. |
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/111,642, filed May 19, 2011, John R. Twomey. |
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin. |
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison. |
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey. |
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell. |
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/179,919, filed Jul. 11, 2011, Russell D. Hempstead. |
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov. |
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims. |
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings. |
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey. |
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/204,841, filed Aug. 8, 2011, Edward J. Chojin. |
U.S. Appl. No. 13/205,999, filed Aug. 9, 2011, Jeffrey R. Unger. |
U.S. Appl. No. 13/212,297, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,308, filed Aug. 18, 2011, Allan J. Evans. |
Number | Date | Country | |
---|---|---|---|
20150230857 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13277373 | Oct 2011 | US |
Child | 14636800 | US |