The present disclosure generally relates to additively manufactured nodes, and more specifically to multi-circuit single port designs for fluid interface in additively manufactured nodes.
Nodes perform important connection functions between various components in transport structures. The nodes may be bonded to other components including tubes, extrusions, panels, and other nodes. For example, nodes can be used to perform connections for panels. A transport structure such as an automobile, truck or aircraft employs a large number of interior and exterior panels. Most panels must be coupled to, or interface securely with, other panels or other structures in secure, well-designed ways. These connection types may be accomplished by using nodes. The nodes, or joint members, may serve not only to attach to, interface with, and secure the panel, but they also may be used to form connections to other components of the automobile (e.g., another panel, an extrusion, tubes, other nodes, etc.).
The design and manufacture of the nodes has been problematic in part because the nodes are often specialized structures requiring intricate sub-substructures for realizing secure, durable and long-lasting connections with various components. It is often extremely difficult to manufacture these types of complex structures efficiently or cheaply using traditional manufacturing processes. Machining, for example, may produce high-precision parts incorporating this level of detail, but at a significant cost. Casting and other methods may not produce the same levels of precision needed for such applications. In addition, conventional joints are often unnecessarily bulkier and made out of heavier materials than necessary in view of the manufacturing limitations above. Bulkier and heavier structures in vehicles produce geometrical design limitations and are inefficient.
Further, transport structures use a wide range of materials and components. The use of multiple materials allows manufacturers to build highly optimized and lightweight vehicles. However, multi-material connections are often complicated. The resulting connected components may be subject to corrosion and other problems over time. Using additive manufacturing to fabricate nodes would allow for the multi-material connections to be realized in an efficient manner. Further, the non-design specific nature of the additive manufacturing enables great flexibility of manufacturing nodes with complex geometries.
Two-port design of nodes has been proposed for producing components in transport structures. Adhesive may be introduced to the bond regions between the components through an adhesive inlet port. Channels to transport the adhesive may extend from the adhesive inlet port, travel through the node to apply adhesive to the bond regions, and then flow out through an adhesive outlet port. However, the two-port design of the nodes may involve significant time in the design of assembly systems and operations.
In short, more efficient, lighter-weight, node designs with greater efficiency, increased sophistication and superior capabilities are needed for transport structures to implement potentially high-performance applications at manageable price points.
Nodes for transport structures and the additive manufacture thereof will be described more fully hereinafter with reference to various illustrative aspects of the present disclosure.
In one aspect of the disclosure, a node is configured to form a bond with various components and includes a single port. For example, the port may extend inwardly from a surface to form a recess. The node further includes an inlet aperture disposed inside the port. The inlet aperture is configured to receive a fluid injected into at least one region to be filled by the fluid. The port is configured to receive a nozzle to enable injection of the fluid. For example, the fluid can be an adhesive configured to bond various components together.
In another aspect of the disclosure, a nozzle is configured to be interfaced with a node. The nozzle includes a first channel. The first channel includes a first inlet of nozzle and a first outlet of nozzle. The first outlet of nozzle is configured to be coupled to an inlet aperture disposed inside a port of the node. The nozzle may further include a second channel and a third channel. For example, the nozzle may be an additively manufactured nozzle.
In another aspect of the disclosure, a method of using a single port node is provided. The method includes inserting a port end of a nozzle into a port of the node. The method may include applying vacuum to an outlet aperture disposed inside the port through a second channel of the nozzle. The method includes injecting an adhesive to an inlet aperture disposed inside the port through a first channel of the nozzle. The method includes enabling the adhesive to fill at least one region of the node. The method may further include dispensing another fluid to encapsulate the injected adhesive inside the port through a third channel of the nozzle.
It will be understood that other aspects of nodes for bonding with various components in transport structures and the manufacture thereof will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several embodiments by way of illustration. As will be realized by those skilled in the art, the disclosed subject matter is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Various aspects of nodes in transport structures and the manufacture thereof will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:
The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments and is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure. In addition, the figures may not be drawn to scale and instead may be drawn in a way that attempts to most effectively highlight various features relevant to the subject matter described.
This disclosure is generally directed to a node for connecting various components in a variety of structures. The node can include a port extending inwardly from a surface to form a recess. The node can further include an inlet aperture and an outlet aperture. The inlet aperture is disposed inside the port and configured to receive a fluid injected into at least one region to be filled by the fluid. The outlet aperture is disposed inside the port and configured to enable the fluid to flow out of the at least one region. The port is configured to receive a nozzle to enable injection of the fluid and removal of the fluid. For example, the fluid can be an adhesive configured to bond various components together.
In many cases, the nodes, and other structures described in this disclosure may be formed using additive manufacturing (AM) techniques, due in part to AM's innumerable advantages as articulated below. Accordingly, certain exemplary AM techniques that may be relevant to the formation of the nodes described herein will initially be discussed. It should be understood, however, that numerous alternative manufacturing techniques, both additive and conventional, may instead be used in forming the nodes (in part or in whole) disclosed herein, and that the identified nodes need not be limited to the specific AM techniques below.
Those that stand to benefit from the structures and techniques in this disclosure include, among others, manufacturers of virtually any mechanized form of transport, which often rely heavily on complex and labor-intensive tooling, and whose products often require the development of nodes, panels, and interconnects to be integrated with intricate machinery such as combustion engines, transmissions and increasingly sophisticated electronics. Examples of such transport structures include, among others, trucks, trains, tractors, boats, aircraft, motorcycles, busses, and the like.
Additive Manufacturing (3-D Printing).
Additive manufacturing (AM) is advantageously a non-design specific manufacturing technique. AM presents various opportunities to realize structural and non-structural connections between various components. AM provides the ability to create complex structures within a part. For example, nodes can be produced using AM. A node is a structural member that may include one or more interfaces used to connect to other spanning components such as tubes, extrusions, panels, other nodes, and the like. Using AM, a node may be constructed to include additional features and functions, depending on the objectives. For example, a node may be printed with one or more ports that enable the node to secure two parts by injecting an adhesive rather than welding multiple parts together, as is traditionally done in manufacturing complex products. Alternatively, some components may be connected using a brazing slurry, a thermoplastic, a thermoset, or another connection feature, any of which can be used interchangeably in place of an adhesive. Thus, while welding techniques may be suitable with respect to certain embodiments, AM provides significant flexibility in enabling the use of alternative or additional connection techniques. AM provides the platform to print components with complex internal channels and geometries, some of which are impossible to manufacture using conventional manufacturing techniques.
A variety of different AM techniques have been used to 3-D print components composed of various types of materials. Numerous available techniques exist, and more are being developed. For example, Directed Energy Deposition (DED) AM systems use directed energy sourced from laser or electron beams to melt metal. These systems utilize both powder and wire feeds. The wire feed systems advantageously have higher deposition rates than other prominent AM techniques. Single Pass Jetting (SPJ) combines two powder spreaders and a single print unit to spread metal powder and to print a structure in a single pass with apparently no wasted motion. As another illustration, electron beam additive manufacturing processes use an electron beam to deposit metal via wire feedstock or sintering on a powder bed in a vacuum chamber. Single Pass Jetting is another exemplary technology claimed by its developers to be much quicker than conventional laser-based systems. Atomic Diffusion Additive Manufacturing (ADAM) is still another recently developed technology in which components are printed, layer-by-layer, using a metal powder in a plastic binder. After printing, plastic binders are removed and the entire part is sintered at once into a desired metal.
One of several such AM techniques, as noted, is DMD.
The powdered metal is then fused by the laser 106 in a melt pool region 108, which may then bond to the workpiece 112 as a region of deposited material 110. The dilution area 114 may include a region of the workpiece where the deposited powder is integrated with the local material of the workpiece. The feed nozzle 102 may be supported by a computer numerical controlled (CNC) robot or a gantry, or other computer-controlled mechanism. The feed nozzle 102 may be moved under computer control multiple times along a predetermined direction of the substrate until an initial layer of the deposited material 110 is formed over a desired area of the workpiece 112. The feed nozzle 102 can then scan the region immediately above the prior layer to deposit successive layers until the desired structure is formed. In general, the feed nozzle 102 may be configured to move with respect to all three axes, and in some instances to rotate on its own axis by a predetermined amount.
3-D modeling software, in turn, may include one of numerous commercially available 3-D modeling software applications. Data models may be rendered using a suitable computer-aided design (CAD) package, for example in an STL format. STL is one example of a file format associated with commercially available stereolithography-based CAD software. A CAD program may be used to create the data model of the 3-D object as an STL file. Thereupon, the STL file may undergo a process whereby errors in the file are identified and resolved.
Following error resolution, the data model can be “sliced” by a software application known as a slicer to thereby produce a set of instructions for 3-D printing the object, with the instructions being compatible and associated with the particular 3-D printing technology to be utilized (step 220). Numerous slicer programs are commercially available. Generally, the slicer program converts the data model into a series of individual layers representing thin slices (e.g., 100 microns thick) of the object be printed, along with a file containing the printer-specific instructions for 3-D printing these successive individual layers to produce an actual 3-D printed representation of the data model.
The layers associated with 3-D printers and related print instructions need not be planar or identical in thickness. For example, in some embodiments depending on factors like the technical sophistication of the 3-D printing equipment and the specific manufacturing objectives, etc., the layers in a 3-D printed structure may be non-planar and/or may vary in one or more instances with respect to their individual thicknesses.
A common type of file used for slicing data models into layers is a G-code file, which is a numerical control programming language that includes instructions for 3-D printing the object. The G-code file, or other file constituting the instructions, is uploaded to the 3-D printer (step 230). Because the file containing these instructions is typically configured to be operable with a specific 3-D printing process, it will be appreciated that many formats of the instruction file are possible depending on the 3-D printing technology used.
In addition to the printing instructions that dictate what and how an object is to be rendered, the appropriate physical materials necessary for use by the 3-D printer in rendering the object are loaded into the 3-D printer using any of several conventional and often printer-specific methods (step 240). In DMD techniques, for example, one or more metal powders may be selected for layering structures with such metals or metal alloys. In selective laser melting (SLM), selective laser sintering (SLS), and other PBF-based AM methods (see below), the materials may be loaded as powders into chambers that feed the powders to a build platform. Depending on the 3-D printer, other techniques for loading printing materials may be used.
The respective data slices of the 3-D object are then printed based on the provided instructions using the material(s) (step 250). In 3-D printers that use laser sintering, a laser scans a powder bed and melts the powder together where structure is desired, and avoids scanning areas where the sliced data indicates that nothing is to be printed. This process may be repeated thousands of times until the desired structure is formed, after which the printed part is removed from a fabricator. In fused deposition modelling, as described above, parts are printed by applying successive layers of model and support materials to a substrate. In general, any suitable 3-D printing technology may be employed for purposes of this disclosure.
Another AM technique includes powder-bed fusion (“PBF”). Like DMD, PBF creates ‘build pieces’ layer-by-layer. Each layer or ‘slice’ is formed by depositing a layer of powder and exposing portions of the powder to an energy beam. The energy beam is applied to melt areas of the powder layer that coincide with the cross-section of the build piece in the layer. The melted powder cools and fuses to form a slice of the build piece. The process can be repeated to form the next slice of the build piece, and so on. Each layer is deposited on top of the previous layer. The resulting structure is a build piece assembled slice-by-slice from the ground up.
Referring specifically to
In various embodiments, the deflector 305 can include one or more gimbals and actuators that can rotate and/or translate the energy beam source to position the energy beam. In various embodiments, energy beam source 303 and/or deflector 305 can modulate the energy beam, e.g., turn the energy beam on and off as the deflector scans so that the energy beam is applied only in the appropriate areas of the powder layer. For example, in various embodiments, the energy beam can be modulated by a digital signal processor (DSP).
One aspect of this disclosure presents a node for enabling connection of various components of transport structures. The node may include a port extending inwardly from a surface to form a recess. The node may further include an inlet aperture disposed inside the port and an outlet aperture disposed inside the port. The inlet aperture is configured to receive a fluid injected into at least one region to be filled by the fluid. The outlet aperture is configured to enable the fluid to flow out of the at least one region. The port is configured to receive a nozzle to enable injection of the fluid and removal of the fluid. For example, the fluid can be an adhesive configured to bond various components together. In an embodiment, at least one connection of the node may be a part of a vehicle chassis. This type of node connection may incorporate adhesive bonding between the node and the component to realize the connection. Sealants may be used to provide adhesive regions for adhesive injection. In an exemplary embodiment, a seal may act as an isolator to inhibit potential galvanic corrosion caused, e.g., by the chronic contact between dissimilar materials.
The port 402 may additionally be a vacuum port for applying negative pressure to draw the adhesive towards the outlet aperture 406 to which the port is coupled. The outlet aperture 406 is configured to be coupled to a negative pressure source, and the port 402 is configured to be both an injection port and a vacuum port. While the adhesive application process in this disclosure may include a combination of vacuum and adhesive applications, the disclosure is not limited as such, and adhesive may in some exemplary embodiments be injected without use of negative pressure. In these cases, the positive pressure causing the adhesive flow may be sufficient to fill the adhesive regions.
As shown in
As shown in
There are many variations and configurations of the location and arrangement of the inlet aperture 404 and the outlet aperture 406. The above example is for illustration only and is not intended to limit the scope of the disclosure. In some embodiments, the inlet and outlet apertures 404 and 406 may have a diameter of 1 mm or greater, although smaller values are possible and may be equally suitable in some embodiments. For example, the inlet and outlet apertures 404 and 406 may have a diameter between 1 mm and 30 mm in an embodiment. The inlet and outlet apertures may have the same or different diameters. The inlet and outlet apertures 404 and 406 need not have the same shape, and may be shaped in geometries other than elliptical geometries. For example, the apertures 404 and 406 may be rectangular or otherwise arbitrarily shaped. In some cases, the shape of the apertures 404 and 406 coincides with the shape of one or more portions of the channels that join them. The port 402 may have a cylindrical shape or any other shape. The inlet aperture and the outlet aperture may have any suitable shape as noted. The port may also include any other shape, such as a cubic shape, a conical shape, a conical shape, or any arbitrary shape.
The node 400 may further include at least one channel 407 extending from the adhesive inlet aperture 404 to the at least one adhesive region (not shown) and further to the adhesive outlet aperture 406. The port 402 is coupled to the channel 407 through both the adhesive inlet aperture 404 and the adhesive outlet aperture disposed inside the port 402. Instead of having two ports for injection and removal of the adhesive, the adhesive inlet aperture 404 inside the port 402 receives injection of the adhesive, and the adhesive outlet aperture inside the same port 402 performs removal of the adhesive (or, in other embodiments, a visual, tactile or other indication that the adhesive is full so that the injection operation can be ended e.g., when the adhesive begins to exit aperture 406). In this way, the single port 402 performs the functions of both injection and removal of the adhesive. The channel(s) 407 may extend from the adhesive inlet aperture 404, may travel through the node 400 to apply adhesive to the bond region(s), and may be coupled to the adhesive outlet aperture 406. For example, the channel may be an elliptical channel that traverses the node in a desired location and may connect to a wider or bigger bond region, and then may be routed from the bond region as a similarly-shaped elliptical channel to the adhesive outlet aperture 406. In some embodiments, multiple parallel channels may be employed as an alternative to a single, segmented channel. Moreover, the diameter of the channels can be varied along its length. These structures can advantageously be manufactured using AM techniques without any/significant post-processing operations.
In other embodiments, adhesive inlet aperture 404 may comprise more than one aperture and may receive injected adhesive 408 in parallel. With reference to the single-port embodiment of
The channel 407 may be a part of the node 400 and may be additively manufactured using any suitable AM technique. The channel 407 may comprise multiple channel portions after it enters and then exits an adhesive region. Depending on the embodiment and whether adhesive is injected serially or in parallel, the node may be considered to have one or more channels as described above. In general, the design of the channels may enable sequential flow of the adhesive into specific adhesive regions between an inner surface of the node and an outer surface of a component intended to be connected to the node.
The node may also be extended, elongated, or shaped in any way to enable multiple sets of interface regions (i.e., sets of one or more adhesive regions with sealants and channels as described above to realize a connection) to exist on a single node. For example, in one embodiment, the node is rectangular, with separate interfaces on two or more sides of the rectangular node connecting to different panels via the adhesive process and techniques described above. In other embodiments, nodes may be constructed to have interface regions in close proximity so that two respective panels may be spaced very closely, or so that the panels may make contact. Numerous embodiments of the node may be contemplated.
To better facilitate assembly, the node may be printed in two or more parts, with the two or more parts being connected together prior to adhesive injection. The node may constitute additional features, such as connection features to other structures or other structural or functional features that are not explicitly shown in the illustrations herein to avoid unduly obscuring the concepts of the disclosure. These additional features of the node may cause portions of the node to take a different shape or may add structures and geometrical features that are not present in the illustrations herein. These additional features and structures may be additively manufactured along with the remainder of the node, although this may not necessarily be the case, as in some applications, traditional manufacturing techniques such as casting or machining may be used.
Advantageously, the single port design of the node 400 is efficient, as the port 402 is configure to perform multiple functions, such as adhesive inlet port and an adhesive outlet port. The port 402 of the node 400 enables the adhesive injection process and removal process through a single port. The port 402 is both an entry point and an exit point for the adhesive 408 or other fluids. In some embodiments, the port 402 is further a vacuum port where the adhesive outlet port is connected to a negative pressure source. In other embodiments, the port 402 need not be a vacuum port but may, for example, be an exit point for excess adhesive.
The single port node 400 is further advantageous to reduce the complexity of the adhesive applicator system, which may in some embodiments includes a nozzle for performing the adhesive injection/vacuum procedure. Only one nozzle would be required to draw a vacuum (where desired), inject the adhesive and remove the excessive adhesive. This procedure is in contrast to conventional multi-port designs. The nozzle can further have the ability to allow for the transfer of two or more fluids through the port 402. This would make the single port design conducive to embodiments wherein other fluids, for example, sealants, may be used to cap off the port after adhesive injection.
The single port node 400 is further advantageous in that it reduces the complexity of designing an automated system for applying adhesives. As an example, the nozzle for applying adhesive may be carried or used by a robot. Since the robots would have to interface with just one port, the robots can be leaner and more compact than may otherwise be required in a conventional assembly system requiring multiple ports. Furthermore, because assembly systems often involve a large number of nodes, the single port node can greatly increase the efficiency of the assembly process.
A plurality of nozzles, or interface nozzles, may be utilized with the nodes having a single port for adhesive as described above. The terms “nozzle” and “interface nozzle” are used interchangeably in this disclosure. The nozzles may include a plurality of channels, depending on the number of materials used in the adhesive injection process or other factors. O-Rings or other seals may be utilized to obtain a sealed interface between the surface of the port on the node, and the nozzle. This sealed interface would ensure that the adhesive injection process occurs in a sealed manner. This sealed interface is particularly advantageous in embodiments utilizing a vacuum connection during the adhesive injection process. The nozzles may be additively manufactured.
The nozzle 500 includes a first end 500a and a second end 500b. The first end 500a is also referred to as a port end, which is configured to be inserted into the port 402. The port end 500a of the nozzle may have a size compatible with a diameter of the port 402. The second end 500b is also referred to as an effector end, which is configured to be coupled to an effector of a robot, or to be coupled to a handheld tool to be operated by a human being.
The nozzle 500 may work with one fluid, which is referenced herein as a single circuit embodiment. The nozzle 500 may be used to inject the adhesive and remove the adhesive without applying vacuum. The single circuit embodiment may be utilized to simplify the number of variants in a manufacturing system. For example, the first outlet of nozzle 516 is disposed on a side wall of the port end 500a, in order to enable the adhesive to be injected into the inlet aperture 404 with a positive pressure perpendicular to an axial direction 401 of the port 402. The second outlet of nozzle 526 may be disposed on a bottom of the port end of 500a. The single circuit embodiment can have a great flow capability, but the single circuit embodiment only works with a single fluid, such as an adhesive, or a sealant, that would not be vacuumed and would be injected with positive pressure only.
The nozzle 500 may further work with two fluids, which is referenced herein as a two circuit embodiment. The nozzle 500 may be used to apply vacuum to the adhesive outlet aperture 406 of the node 400 through the second channel 527, and inject the adhesive into the adhesive inlet aperture 404 of the node 400 through the first channel 517.
The port end 500a of the nozzle 500 may be inserted into the port 402 of the node 400. The vacuum may be applied to the port 402. The negative pressure from the vacuum may cause the nozzle 500 to be pulled more tightly into the port 402, which is an interface receptacle port. This tight connection helps ensure that the correct inlets and outlets of the nozzle meet snugly with the respective apertures of the node 400 and that the adhesive application procedure flows smoothly and efficiently. The adhesive can be applied to the inlet aperture 404 of the port 402. Here again, while the channel between inlet aperture 404 and outlet aperture is shown for simplicity as a simple loop, the channel in practice may extend to one or more bond regions of the node 400 as described above with reference to
In an exemplary embodiment, the adhesive is injected into the inlet aperture 404 with a positive pressure perpendicular to the axial direction 401 of the port 402. For example, the first outlet of nozzle 516 is disposed on a side wall of the port end 500a. The pressure from the injection of the adhesive acts radially in the nozzle 500 and port 402. That is, the injection of the adhesive causes a force applied on the nozzle along a radial direction. The force from the injection is perpendicular to the axial direction 401 of the port 402. Thus, the force neither pulls nor pushes the nozzle 500 in or out of the receptacle port 402 during the adhesive injection process. This configuration is advantageous to form a stable connection between the nozzle 500 and the node 400.
The first channel 517 and the second channel 527 of the nozzle 500 may have various relative orientations and configurations. For example, the first channel 517 and the second channel 527 may extend away from each other at the second end 500b (referred to herein also as the effector end 500b) as shown in
The nozzle 500 may further include one or more O-Rings, or sealants. O-Rings or sealants may be used at the nozzle-port interface as well as the nozzle-effector interface. A sealant region may include features such as a groove, dovetail groove, inset or other feature built into a surface of the nozzle. The sealant region may accept a sealant such as an O-Ring.
Referring to
In addition to the nozzle with two circuits described above, a third circuit can be added in another embodiment to introduce another fluid, for example, a sealant which can be used to encapsulate the injected adhesive. The sealant can be dispensed after the adhesive at the time of removal of the interface nozzle from the interface port. The sealant would be configured to cure or solidify well in advance of the adhesive curing. The nozzle with three circuits may include three channels, one channel for each respective fluid.
In addition to the first channel 617 and the second channel 627, a third channel 637 can be added to introduce a third fluid, for example, which can be a sealant to encapsulate the injected adhesive. The third channel 637 includes a third inlet of nozzle 634 and a third outlet of nozzle 636. For example, the third channel 637 is configured to dispense a sealant through the third outlet of nozzle 636. The third inlet of the nozzle 634 can be connected to the third outlet of nozzle 636 through the third channel 637. The sealant can travel from the third inlet of the nozzle 634 to the third outlet of nozzle 636, and can be injected into an appropriate inlet aperture in the port. The third channel 637 is isolated from the first channel 617 and the second channel 627. In an embodiment, the third fluid can be dispensed after the adhesive immediately before removal of the interface nozzle from the interface port. The nozzle 600 may be additively manufactured as well.
As is evident from the above description,
Referring to
Since the port end 600a is configured to be inserted into the port of the node, the port end 600a may have a size compatible to a size of the port. In some embodiments, the first channel 617, the second channel 627 and the third channel 637 are extending along an axial direction 601 at the port end 600a. For example, at the port end 600a, the first channel 617, the second channel 627 and the third channel 637 may be parallel to each other along the axial direction 601. However, at the effector end 600b, the first channel 617, the second channel 627 and the third channel 637 may have different orientations. For example, the first channel 617, the second channel 627 and the third channel 637 may extend away from each other.
Referring still to
In some embodiments, a step of applying vacuum 804 is used to draw the nozzle close to the port and lock the nozzle to the port. The negative pressure of vacuum may also help to speed up the process filling the node with adhesive, e.g., by a robot sensing the presence of an output adhesive flow from the port in the second channel. For example, the step of applying vacuum 804 may include applying vacuum to the outlet aperture along an axial direction of the port. The outlet aperture may be disposed on a bottom of the port. Thus, the negative pressure is applied along the axial direction of the port. In some other embodiments, the adhesive is removed without applying vacuum. The step of applying vacuum 804 may be omitted.
The method of using the single port node 800 includes a step of injecting the adhesive 806. An outlet of nozzle of an adhesive injection channel, which is a first channel of the nozzle, can be connected an inlet aperture disposed inside the port. The step of injecting the adhesive 806 includes injecting the adhesive to the inlet aperture disposed inside the port. For example, the inlet aperture may be disposed on a side wall of the port. Thus, the positive injection pressure is applied perpendicular to an axial direction of the port. In other words, the positive injection pressure is acting radially. Therefore, the positive pressure will not push the nozzle out of the port. In some embodiments, the step of injecting the adhesive 806 includes injecting the adhesive with the positive pressure perpendicular to the axial direction of the port.
The method 800 may further include enabling the adhesive to fill at least one region of the node 808. After the adhesive is injected, the adhesive can travel through a channel inside the node. The channel extends from the inlet aperture inside the port, to one or more one adhesive regions to be filled with the adhesive, and returns to the outlet aperture disposed inside the port. The method 800 can enable the adhesive to fill the one or more adhesive regions in the node to form bonds with various components. In some embodiments, the method 800 may further include removing the adhesive from the outlet aperture through the second channel of the nozzle. The process of removing the adhesive can be performed by applying the vacuum pressure, or can be performed without applying the vacuum.
The method 800 may further include dispensing another fluid, for example, a sealant or sealer, to encapsulate the injected adhesive inside the port through a third channel of the nozzle, which may be a sealant channel. For example, when the first traces of adhesive overflow are sensed in the second channel, the robot may be enabled to sense when to stop the adhesive flow in an embodiment. For example, after the injection and removal of the excessive adhesive, the sealant or sealer can be dispensed from one or more sealant outlets of the nozzle. The sealant or sealer may form a cap to encapsulate the injected adhesive. The sealant or sealer may be dispensed before the adhesive is cured. The sealant or sealer may be cured before the adhesive is cured. For example, the sealant or sealer sealant cures quicker than the adhesive. Thus, the sealant or sealer may protect the port and the process of curing the adhesive. The sealant or sealer may be dispensed from a plurality of third outlets such that the sealant or sealer may be evenly distributed and form a uniform layer of cap.
In some embodiments, the method 800 may further include separating the apertures of the nozzle by one or more O-rings of the nozzle. The nozzle may include one or more O-rings at a nozzle-port interface, and a nozzle-effector interface. The O-rings of the nozzle can separate the different channels, and prevent unwanted flow between channels. The O-rings may also help applying the vacuum. In the case that multiple circuits are actuated to apply the adhesive, vacuum and sealant, the O-rings may also help to prevent short circuit.
Advantageously, the method 800 disclosed herein can significantly increase the efficiency of the manufacturing process. The complexity of the adhesive injection system can be reduced because the robot only need to move to one location to inject the adhesive and sense a complete fill of the adhesive, with or without using negative pressure. Since the robots or other automated machines only have to interface with one port, these robots/machines can be made leaner or more compact than that in the conventional assembly system needed for applying adhesive to nodes requiring two (or more) ports. Because the assembly system involves a large number of nodes, the method 800 can greatly increase the efficiency and reduce the complexity of the assembly process.
In another aspect of this disclosure, a node for enabling connection of various components without an outlet aperture is disclosed. The node may include a port extending inwardly from a surface to form a recess. The node may further include an inlet aperture disposed inside the port disposed inside the port. The inlet aperture is configured to receive a fluid injected into at least one region to be filled by the fluid. The port is configured to receive a nozzle to enable injection of the fluid. For example, the fluid can be an adhesive configured to bond various components together. In an embodiment, at least one connection of the node may be a part of a vehicle chassis. In another embodiment, at least one connection of the node may be a part of other structures.
The single port 902 may be utilized for the adhesive inlet operations. The port 902 may be similar as the port 402, as shown in
The apertures 904 may be disposed inside the port 902. The adhesive inlet aperture 904 is configured for receiving adhesive injected into the channel 907 and toward the adhesive regions. The aperture 907 may be similar to the aperture 407, as shown in
The node 900 may further include at least one channel 907 extending from the adhesive inlet aperture 904 to the at least one adhesive region (not shown). The port 902 is coupled to the channel 907 through the adhesive inlet aperture 904. In other embodiments, adhesive inlet aperture 904 may comprise more than one aperture and may receive injected adhesive in parallel. The channel 907 may be similar to the Channel 407 as shown in
The channel 907 may be a part of the node 900 and may be additively manufactured using any suitable AM technique. The channel 907 may comprise multiple channel portions after it enters and then exits an adhesive region. Depending on the embodiment and whether adhesive is injected serially or in parallel, the node may be considered to have one or more channels as described above. In general, the design of the channels may enable sequential flow of the adhesive into specific adhesive regions between an inner surface of the node and an outer surface of a component whose edge has been inserted into a recess of the node.
A plurality of nozzles, or interface nozzles, may be utilized with the node 900 having a single port for adhesive as described above. For example, the nozzle may include a first channel comprising a first inlet of nozzle and a first outlet of nozzle. The first outlet of nozzle may be configured to be coupled to the inlet aperture 904 disposed inside the port 902 of the node 904. Similar to the nozzle 500, as shown in
In an exemplary embodiment, the adhesive is injected into the inlet aperture 904 with a positive pressure perpendicular to the axial direction 901 of the port 902. For example, the first outlet of nozzle is disposed on a side wall of the port end. The pressure from the injection of the adhesive acts radially in the nozzle and port 902. That is, the injection of the adhesive causes a force applied on the nozzle along a radial direction. The force from the injection is perpendicular to the axial direction 901 of the port 902. Thus, the force neither pulls nor pushes the nozzle in or out of the receptacle port 902 during the adhesive injection process. This configuration is advantageous to form a stable connection between the nozzle and the node 900, as discussed above.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for printing nodes and interconnects. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
Number | Name | Date | Kind |
---|---|---|---|
5203226 | Hongou et al. | Apr 1993 | A |
5742385 | Champa | Apr 1998 | A |
5990444 | Costin | Nov 1999 | A |
6010155 | Rinehart | Jan 2000 | A |
6096249 | Yamaguchi | Aug 2000 | A |
6140602 | Costin | Oct 2000 | A |
6250533 | Otterbein et al. | Jun 2001 | B1 |
6252196 | Costin et al. | Jun 2001 | B1 |
6318642 | Goenka et al. | Nov 2001 | B1 |
6365057 | Whitehurst et al. | Apr 2002 | B1 |
6391251 | Keicher et al. | May 2002 | B1 |
6409930 | Whitehurst et al. | Jun 2002 | B1 |
6468439 | Whitehurst et al. | Oct 2002 | B1 |
6554345 | Jonsson | Apr 2003 | B2 |
6585151 | Ghosh | Jul 2003 | B1 |
6644721 | Miskech et al. | Nov 2003 | B1 |
6811744 | Keicher et al. | Nov 2004 | B2 |
6866497 | Saiki | Mar 2005 | B2 |
6919035 | Clough | Jul 2005 | B1 |
6926970 | James et al. | Aug 2005 | B2 |
7152292 | Hohmann et al. | Dec 2006 | B2 |
7344186 | Hausler et al. | Mar 2008 | B1 |
7500373 | Quell | Mar 2009 | B2 |
7586062 | Heberer | Sep 2009 | B2 |
7637134 | Burzlaff et al. | Dec 2009 | B2 |
7710347 | Gentilman et al. | May 2010 | B2 |
7716802 | Stern et al. | May 2010 | B2 |
7745293 | Yamazaki et al. | Jun 2010 | B2 |
7766123 | Sakurai et al. | Aug 2010 | B2 |
7852388 | Shimizu et al. | Dec 2010 | B2 |
7908922 | Zarabadi et al. | Mar 2011 | B2 |
7951324 | Naruse et al. | May 2011 | B2 |
8094036 | Heberer | Jan 2012 | B2 |
8163077 | Eron et al. | Apr 2012 | B2 |
8286236 | Jung et al. | Oct 2012 | B2 |
8289352 | Vartanian et al. | Oct 2012 | B2 |
8297096 | Mizumura et al. | Oct 2012 | B2 |
8354139 | Barton | Jan 2013 | B1 |
8354170 | Henry et al. | Jan 2013 | B1 |
8383028 | Lyons | Feb 2013 | B2 |
8408036 | Reith et al. | Apr 2013 | B2 |
8429754 | Jung et al. | Apr 2013 | B2 |
8437513 | Derakhshani et al. | May 2013 | B1 |
8444903 | Lyons et al. | May 2013 | B2 |
8452073 | Taminger et al. | May 2013 | B2 |
8599301 | Dowski, Jr. et al. | Dec 2013 | B2 |
8606540 | Haisty et al. | Dec 2013 | B2 |
8610761 | Haisty et al. | Dec 2013 | B2 |
8631996 | Quell et al. | Jan 2014 | B2 |
8675925 | Derakhshani et al. | Mar 2014 | B2 |
8678060 | Dietz et al. | Mar 2014 | B2 |
8686314 | Schneegans et al. | Apr 2014 | B2 |
8686997 | Radet et al. | Apr 2014 | B2 |
8694284 | Berard | Apr 2014 | B2 |
8720876 | Reith et al. | May 2014 | B2 |
8752166 | Jung et al. | Jun 2014 | B2 |
8755923 | Farahani et al. | Jun 2014 | B2 |
8787628 | Derakhshani et al. | Jul 2014 | B1 |
8818771 | Gielis et al. | Aug 2014 | B2 |
8873238 | Wilkins | Oct 2014 | B2 |
8978535 | Ortiz et al. | Mar 2015 | B2 |
9006605 | Schneegans et al. | Apr 2015 | B2 |
9071436 | Jung et al. | Jun 2015 | B2 |
9101979 | Hofmann et al. | Aug 2015 | B2 |
9104921 | Derakhshani et al. | Aug 2015 | B2 |
9126365 | Mark et al. | Sep 2015 | B1 |
9128476 | Jung et al. | Sep 2015 | B2 |
9138924 | Yen | Sep 2015 | B2 |
9149988 | Mark et al. | Oct 2015 | B2 |
9156205 | Mark et al. | Oct 2015 | B2 |
9186848 | Mark et al. | Nov 2015 | B2 |
9244986 | Karmarkar | Jan 2016 | B2 |
9248611 | Divine et al. | Feb 2016 | B2 |
9254535 | Buller et al. | Feb 2016 | B2 |
9266566 | Kim | Feb 2016 | B2 |
9269022 | Rhoads et al. | Feb 2016 | B2 |
9327452 | Mark et al. | May 2016 | B2 |
9329020 | Napoletano | May 2016 | B1 |
9332251 | Haisty et al. | May 2016 | B2 |
9346127 | Buller et al. | May 2016 | B2 |
9389315 | Bruder et al. | Jul 2016 | B2 |
9399256 | Buller et al. | Jul 2016 | B2 |
9403235 | Buller et al. | Aug 2016 | B2 |
9418193 | Dowski, Jr. et al. | Aug 2016 | B2 |
9457514 | Schwärzler | Oct 2016 | B2 |
9469057 | Johnson et al. | Oct 2016 | B2 |
9478063 | Rhoads et al. | Oct 2016 | B2 |
9481402 | Muto et al. | Nov 2016 | B1 |
9486878 | Buller et al. | Nov 2016 | B2 |
9486960 | Paschkewitz et al. | Nov 2016 | B2 |
9502993 | Deng | Nov 2016 | B2 |
9525262 | Stuart et al. | Dec 2016 | B2 |
9533526 | Nevins | Jan 2017 | B1 |
9555315 | Aders | Jan 2017 | B2 |
9555580 | Dykstra et al. | Jan 2017 | B1 |
9557856 | Send et al. | Jan 2017 | B2 |
9566742 | Keating et al. | Feb 2017 | B2 |
9566758 | Cheung et al. | Feb 2017 | B2 |
9573193 | Buller et al. | Feb 2017 | B2 |
9573225 | Buller et al. | Feb 2017 | B2 |
9586290 | Buller et al. | Mar 2017 | B2 |
9595795 | Lane et al. | Mar 2017 | B2 |
9597843 | Stauffer et al. | Mar 2017 | B2 |
9600929 | Young et al. | Mar 2017 | B1 |
9609755 | Coull et al. | Mar 2017 | B2 |
9610737 | Johnson et al. | Apr 2017 | B2 |
9611667 | GangaRao et al. | Apr 2017 | B2 |
9616623 | Johnson et al. | Apr 2017 | B2 |
9626487 | Jung et al. | Apr 2017 | B2 |
9626489 | Nilsson | Apr 2017 | B2 |
9643361 | Liu | May 2017 | B2 |
9662840 | Buller et al. | May 2017 | B1 |
9665182 | Send et al. | May 2017 | B2 |
9672389 | Mosterman et al. | Jun 2017 | B1 |
9672550 | Apsley et al. | Jun 2017 | B2 |
9676145 | Buller et al. | Jun 2017 | B2 |
9684919 | Apsley et al. | Jun 2017 | B2 |
9688032 | Kia et al. | Jun 2017 | B2 |
9690286 | Hovsepian et al. | Jun 2017 | B2 |
9700966 | Kraft et al. | Jul 2017 | B2 |
9703896 | Zhang et al. | Jul 2017 | B2 |
9713903 | Paschkewitz et al. | Jul 2017 | B2 |
9718302 | Young et al. | Aug 2017 | B2 |
9718434 | Hector, Jr. et al. | Aug 2017 | B2 |
9724877 | Flitsch et al. | Aug 2017 | B2 |
9724881 | Johnson et al. | Aug 2017 | B2 |
9725178 | Wang | Aug 2017 | B2 |
9731730 | Stiles | Aug 2017 | B2 |
9731773 | Gami et al. | Aug 2017 | B2 |
9741954 | Bruder et al. | Aug 2017 | B2 |
9747352 | Karmarkar | Aug 2017 | B2 |
9764415 | Seufzer et al. | Sep 2017 | B2 |
9764520 | Johnson et al. | Sep 2017 | B2 |
9765226 | Dain | Sep 2017 | B2 |
9770760 | Liu | Sep 2017 | B2 |
9773393 | Velez | Sep 2017 | B2 |
9776234 | Schaafhausen et al. | Oct 2017 | B2 |
9782936 | Glunz et al. | Oct 2017 | B2 |
9783324 | Embler et al. | Oct 2017 | B2 |
9783977 | Alqasimi et al. | Oct 2017 | B2 |
9789548 | Golshany et al. | Oct 2017 | B2 |
9789922 | Dosenbach et al. | Oct 2017 | B2 |
9796137 | Zhang et al. | Oct 2017 | B2 |
9802108 | Aders | Oct 2017 | B2 |
9809977 | Carney et al. | Nov 2017 | B2 |
9817922 | Glunz et al. | Nov 2017 | B2 |
9818071 | Jung et al. | Nov 2017 | B2 |
9821339 | Paschkewitz et al. | Nov 2017 | B2 |
9821411 | Buller et al. | Nov 2017 | B2 |
9823143 | Twelves, Jr. et al. | Nov 2017 | B2 |
9829564 | Bruder et al. | Nov 2017 | B2 |
9846933 | Yuksel | Dec 2017 | B2 |
9854828 | Langeland | Jan 2018 | B2 |
9858604 | Apsley et al. | Jan 2018 | B2 |
9862833 | Hasegawa et al. | Jan 2018 | B2 |
9862834 | Hasegawa et al. | Jan 2018 | B2 |
9863885 | Zaretski et al. | Jan 2018 | B2 |
9870629 | Cardno et al. | Jan 2018 | B2 |
9879981 | Dehghan Niri et al. | Jan 2018 | B1 |
9884663 | Czinger et al. | Feb 2018 | B2 |
9898776 | Apsley et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
9919360 | Buller et al. | Mar 2018 | B2 |
9931697 | Levin et al. | Apr 2018 | B2 |
9933031 | Bracamonte et al. | Apr 2018 | B2 |
9933092 | Sindelar | Apr 2018 | B2 |
9957031 | Golshany et al. | May 2018 | B2 |
9958535 | Send et al. | May 2018 | B2 |
9962767 | Buller et al. | May 2018 | B2 |
9963978 | Johnson et al. | May 2018 | B2 |
9971920 | Derakhshani et al. | May 2018 | B2 |
9976063 | Childers et al. | May 2018 | B2 |
9987792 | Flitsch et al. | Jun 2018 | B2 |
9988136 | Tiryaki et al. | Jun 2018 | B2 |
9989623 | Send et al. | Jun 2018 | B2 |
9990565 | Rhoads et al. | Jun 2018 | B2 |
9994339 | Colson et al. | Jun 2018 | B2 |
9996890 | Cinnamon et al. | Jun 2018 | B1 |
9996945 | Holzer et al. | Jun 2018 | B1 |
10002215 | Dowski et al. | Jun 2018 | B2 |
10006156 | Kirkpatrick | Jun 2018 | B2 |
10011089 | Lyons et al. | Jul 2018 | B2 |
10011685 | Childers et al. | Jul 2018 | B2 |
10012532 | Send et al. | Jul 2018 | B2 |
10013777 | Mariampillai et al. | Jul 2018 | B2 |
10015908 | Williams et al. | Jul 2018 | B2 |
10016852 | Broda | Jul 2018 | B2 |
10016942 | Mark et al. | Jul 2018 | B2 |
10017384 | Greer et al. | Jul 2018 | B1 |
10018576 | Herbsommer et al. | Jul 2018 | B2 |
10022792 | Srivas et al. | Jul 2018 | B2 |
10022912 | Kia et al. | Jul 2018 | B2 |
10027376 | Sankaran et al. | Jul 2018 | B2 |
10029415 | Swanson et al. | Jul 2018 | B2 |
10040239 | Brown, Jr. | Aug 2018 | B2 |
10046412 | Blackmore | Aug 2018 | B2 |
10048769 | Selker et al. | Aug 2018 | B2 |
10052712 | Blackmore | Aug 2018 | B2 |
10052820 | Kemmer et al. | Aug 2018 | B2 |
10055536 | Maes et al. | Aug 2018 | B2 |
10058764 | Aders | Aug 2018 | B2 |
10058920 | Buller et al. | Aug 2018 | B2 |
10061906 | Nilsson | Aug 2018 | B2 |
10065270 | Buller et al. | Sep 2018 | B2 |
10065361 | Susnjara et al. | Sep 2018 | B2 |
10065367 | Brown, Jr. | Sep 2018 | B2 |
10068316 | Holzer et al. | Sep 2018 | B1 |
10071422 | Buller et al. | Sep 2018 | B2 |
10071525 | Susnjara et al. | Sep 2018 | B2 |
10072179 | Drijfhout | Sep 2018 | B2 |
10074128 | Colson et al. | Sep 2018 | B2 |
10076875 | Mark et al. | Sep 2018 | B2 |
10076876 | Mark et al. | Sep 2018 | B2 |
10081140 | Paesano et al. | Sep 2018 | B2 |
10081431 | Seack et al. | Sep 2018 | B2 |
10086568 | Snyder et al. | Oct 2018 | B2 |
10087320 | Simmons et al. | Oct 2018 | B2 |
10087556 | Gallucci et al. | Oct 2018 | B2 |
10099427 | Mark et al. | Oct 2018 | B2 |
10100542 | GangaRao et al. | Oct 2018 | B2 |
10100890 | Bracamonte et al. | Oct 2018 | B2 |
10107344 | Bracamonte et al. | Oct 2018 | B2 |
10108766 | Druckman et al. | Oct 2018 | B2 |
10113600 | Bracamonte et al. | Oct 2018 | B2 |
10118347 | Stauffer et al. | Nov 2018 | B2 |
10118579 | Lakic | Nov 2018 | B2 |
10120078 | Bruder et al. | Nov 2018 | B2 |
10124546 | Johnson et al. | Nov 2018 | B2 |
10124570 | Evans et al. | Nov 2018 | B2 |
10137500 | Blackmore | Nov 2018 | B2 |
10138354 | Groos et al. | Nov 2018 | B2 |
10144126 | Krohne et al. | Dec 2018 | B2 |
10145110 | Carney et al. | Dec 2018 | B2 |
10151363 | Bracamonte et al. | Dec 2018 | B2 |
10152661 | Kieser | Dec 2018 | B2 |
10160278 | Coombs et al. | Dec 2018 | B2 |
10161021 | Lin et al. | Dec 2018 | B2 |
10166752 | Evans et al. | Jan 2019 | B2 |
10166753 | Evans et al. | Jan 2019 | B2 |
10171578 | Cook et al. | Jan 2019 | B1 |
10173255 | TenHouten et al. | Jan 2019 | B2 |
10173327 | Kraft et al. | Jan 2019 | B2 |
10178800 | Mahalingam et al. | Jan 2019 | B2 |
10179640 | Wilkerson | Jan 2019 | B2 |
10183330 | Buller et al. | Jan 2019 | B2 |
10183478 | Evans et al. | Jan 2019 | B2 |
10189187 | Keating et al. | Jan 2019 | B2 |
10189240 | Evans et al. | Jan 2019 | B2 |
10189241 | Evans et al. | Jan 2019 | B2 |
10189242 | Evans et al. | Jan 2019 | B2 |
10190424 | Johnson et al. | Jan 2019 | B2 |
10195693 | Buller et al. | Feb 2019 | B2 |
10196539 | Boonen et al. | Feb 2019 | B2 |
10197338 | Melsheimer | Feb 2019 | B2 |
10200677 | Trevor et al. | Feb 2019 | B2 |
10201932 | Flitsch et al. | Feb 2019 | B2 |
10201941 | Evans et al. | Feb 2019 | B2 |
10202673 | Lin et al. | Feb 2019 | B2 |
10204216 | Nejati et al. | Feb 2019 | B2 |
10207454 | Buller et al. | Feb 2019 | B2 |
10209065 | Estevo, Jr. et al. | Feb 2019 | B2 |
10210662 | Holzer et al. | Feb 2019 | B2 |
10213837 | Kondoh | Feb 2019 | B2 |
10214248 | Hall et al. | Feb 2019 | B2 |
10214252 | Schellekens et al. | Feb 2019 | B2 |
10214275 | Goehlich | Feb 2019 | B2 |
10220575 | Reznar | Mar 2019 | B2 |
10220881 | Tyan et al. | Mar 2019 | B2 |
10221530 | Driskell et al. | Mar 2019 | B2 |
10226900 | Nevins | Mar 2019 | B1 |
10232550 | Evans et al. | Mar 2019 | B2 |
10234342 | Moorlag et al. | Mar 2019 | B2 |
10237477 | Trevor et al. | Mar 2019 | B2 |
10252335 | Buller et al. | Apr 2019 | B2 |
10252336 | Buller et al. | Apr 2019 | B2 |
10254499 | Cohen et al. | Apr 2019 | B1 |
10257499 | Hintz et al. | Apr 2019 | B2 |
10259044 | Buller et al. | Apr 2019 | B2 |
10268181 | Nevins | Apr 2019 | B1 |
10269225 | Velez | Apr 2019 | B2 |
10272860 | Mohapatra et al. | Apr 2019 | B2 |
10272862 | Whitehead | Apr 2019 | B2 |
10275564 | Ridgeway et al. | Apr 2019 | B2 |
10279580 | Evans et al. | May 2019 | B2 |
10285219 | Fetfatsidis et al. | May 2019 | B2 |
10286452 | Buller et al. | May 2019 | B2 |
10286603 | Buller et al. | May 2019 | B2 |
10286961 | Hillebrecht et al. | May 2019 | B2 |
10289263 | Troy et al. | May 2019 | B2 |
10289875 | Singh et al. | May 2019 | B2 |
10291193 | Dandu et al. | May 2019 | B2 |
10294552 | Liu et al. | May 2019 | B2 |
10294982 | Gabrys et al. | May 2019 | B2 |
10295989 | Nevins | May 2019 | B1 |
10303159 | Czinger et al. | May 2019 | B2 |
10307824 | Kondoh | Jun 2019 | B2 |
10310197 | Droz et al. | Jun 2019 | B1 |
10313651 | Trevor et al. | Jun 2019 | B2 |
10315252 | Mendelsberg et al. | Jun 2019 | B2 |
10336050 | Susnjara | Jul 2019 | B2 |
10337542 | Hesslewood et al. | Jul 2019 | B2 |
10337952 | Bosetti et al. | Jul 2019 | B2 |
10339266 | Urick et al. | Jul 2019 | B2 |
10343330 | Evans et al. | Jul 2019 | B2 |
10343331 | McCall et al. | Jul 2019 | B2 |
10343355 | Evans et al. | Jul 2019 | B2 |
10343724 | Polewarczyk et al. | Jul 2019 | B2 |
10343725 | Martin et al. | Jul 2019 | B2 |
10350823 | Rolland et al. | Jul 2019 | B2 |
10356341 | Holzer et al. | Jul 2019 | B2 |
10356395 | Holzer et al. | Jul 2019 | B2 |
10357829 | Spink et al. | Jul 2019 | B2 |
10357957 | Buller et al. | Jul 2019 | B2 |
10359756 | Newell et al. | Jul 2019 | B2 |
10369629 | Mendelsberg et al. | Aug 2019 | B2 |
10382739 | Rusu et al. | Aug 2019 | B1 |
10384393 | Xu et al. | Aug 2019 | B2 |
10384416 | Cheung et al. | Aug 2019 | B2 |
10389410 | Brooks et al. | Aug 2019 | B2 |
10391710 | Mondesir | Aug 2019 | B2 |
10392097 | Pham et al. | Aug 2019 | B2 |
10392131 | Deck et al. | Aug 2019 | B2 |
10393315 | Tyan | Aug 2019 | B2 |
10400080 | Ramakrishnan et al. | Sep 2019 | B2 |
10401832 | Snyder et al. | Sep 2019 | B2 |
10403009 | Mariampillai et al. | Sep 2019 | B2 |
10406750 | Barton et al. | Sep 2019 | B2 |
10412283 | Send et al. | Sep 2019 | B2 |
10416095 | Herbsommer et al. | Sep 2019 | B2 |
10421496 | Swayne et al. | Sep 2019 | B2 |
10421863 | Hasegawa et al. | Sep 2019 | B2 |
10422478 | Leachman et al. | Sep 2019 | B2 |
10425793 | Sankaran et al. | Sep 2019 | B2 |
10427364 | Alves | Oct 2019 | B2 |
10429006 | Tyan et al. | Oct 2019 | B2 |
10434573 | Buller et al. | Oct 2019 | B2 |
10435185 | Divine et al. | Oct 2019 | B2 |
10435773 | Liu et al. | Oct 2019 | B2 |
10436038 | Buhler et al. | Oct 2019 | B2 |
10438407 | Pavanaskar et al. | Oct 2019 | B2 |
10440351 | Holzer et al. | Oct 2019 | B2 |
10442002 | Benthien et al. | Oct 2019 | B2 |
10442003 | Symeonidis et al. | Oct 2019 | B2 |
10449696 | Elgar et al. | Oct 2019 | B2 |
10449737 | Johnson et al. | Oct 2019 | B2 |
10461810 | Cook et al. | Oct 2019 | B2 |
20040218990 | Stevenson | Nov 2004 | A1 |
20060108783 | Ni et al. | May 2006 | A1 |
20060243382 | Kilwin et al. | Nov 2006 | A1 |
20140241790 | Woleader | Aug 2014 | A1 |
20140277669 | Nardi et al. | Sep 2014 | A1 |
20150071701 | Raina et al. | Mar 2015 | A1 |
20170001368 | Czinger | Jan 2017 | A1 |
20170113344 | Schonberg | Apr 2017 | A1 |
20170341309 | Piepenbrock et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1996036455 | Nov 1996 | WO |
1996036525 | Nov 1996 | WO |
1996038260 | Dec 1996 | WO |
2003024641 | Mar 2003 | WO |
2004108343 | Dec 2004 | WO |
2005093773 | Oct 2005 | WO |
2007003375 | Jan 2007 | WO |
2007110235 | Oct 2007 | WO |
2007110236 | Oct 2007 | WO |
2008019847 | Feb 2008 | WO |
2007128586 | Jun 2008 | WO |
2008068314 | Jun 2008 | WO |
2008086994 | Jul 2008 | WO |
2008087024 | Jul 2008 | WO |
2008107130 | Sep 2008 | WO |
2008138503 | Nov 2008 | WO |
2008145396 | Dec 2008 | WO |
2009083609 | Jul 2009 | WO |
2009098285 | Aug 2009 | WO |
2009112520 | Sep 2009 | WO |
2009135938 | Nov 2009 | WO |
2009140977 | Nov 2009 | WO |
2010125057 | Nov 2010 | WO |
2010125058 | Nov 2010 | WO |
2010142703 | Dec 2010 | WO |
2011032533 | Mar 2011 | WO |
2014016437 | Jan 2014 | WO |
2014187720 | Nov 2014 | WO |
2014195340 | Dec 2014 | WO |
2015193331 | Dec 2015 | WO |
2016116414 | Jul 2016 | WO |
2017036461 | Mar 2017 | WO |
2019030248 | Feb 2019 | WO |
2019042504 | Mar 2019 | WO |
2019048010 | Mar 2019 | WO |
2019048498 | Mar 2019 | WO |
2019048680 | Mar 2019 | WO |
2019048682 | Mar 2019 | WO |
Entry |
---|
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn) |
US 9,809,265 B2, 11/2017, Kinjo (withdrawn) |
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn) |
Notification of the First Office Action received in Chinese Patent Application No. 201920658998.2, dated Dec. 2, 2019, with English Translation. |
International Search Report and Written Opinion received for corresponding PCT Application No. PCT/US19/30637, dated Sep. 5, 2019 (17 pages). |
PCT Invitation to Pay Additional Fees dated Jul. 5, 2019, regarding PCT/US2019/030637. |
Number | Date | Country | |
---|---|---|---|
20190344299 A1 | Nov 2019 | US |