The disclosure relates generally to a wireless charging method and system, particularly, to a system with multiple power transmitter coils and a method for multi-coil placement for a power transmitter in a wireless charging system.
Wireless charging is an evolving technology that may bring a new level of convenience of charging electronic devices. In a wireless charging system, particularly an inductive wireless charging system, energy is transferred from one or more power transmitter (TX) coils to one or more power receiver (RX) coils through magnetic coupling.
A wireless charging system that contains only one TX coil is a single-coil system. The system's charging area only covers a limited area near the TX coil's center. To expand the charging area, one possible approach is to use multiple TX coils in a wireless charging system, which is called a multi-coil system.
There may be several disadvantages in a current multi-coil system. First, using more TX coils will increase overall cost. Second, stacking TX coils on multiple layers may introduce uniformity problems and increase the thickness of the system. In addition, a multi-coil design may result in charging dead zones. A placement pattern of a multi-coil system may be designed to minimize or even overcome these disadvantages. In addition, the placement design may be flexible and adaptive to different TX coil designs and different charging area requirements.
Therefore, a multi-coil placement method and design patterns that overcome the above shortcomings are desired for a multi-coil wireless charging system.
One aspect of this disclosure is directed to a method for placing power transmitter coils in a wireless charging system. The method may include obtaining a width parameter of an effective charging area a and a width parameter of a power transmitter coil b, calculating a ratio of the width parameters a/b, determining a shape, size and number of layers of mesh cells based on the ratio of a/b, determining a layout of the mesh cells, covering a required charging area using the mesh cells based on the determined shape, size, number of layers, and layout, and replacing the mesh cells with the power transmitter coils.
Another aspect of this disclosure is directed to a wireless charging system. The system may include a charging area and a plurality of power transmitter coils placed to cover the charging area. Each power transmitter coil may have an effective charging area. A radius of the effective charging area may be denoted as a, and a half of a width of the power transmitter coil may be denoted as b. In one embodiment, the ratio of a/b is no less than √{square root over (2)}, and the plurality of power transmitter coils may be placed on one layer and centers of adjacent power transmitter coils may be spaced with a length parameter w, where, w≤√{square root over (2)}a. Centers of adjacent four power transmitter coils may form a square. In another embodiment,
the plurality of power transmitter coils may be placed on one layer and centers of adjacent power transmitter coils may be spaced with a length parameter w, where, w≤√{square root over (3)}a. Centers of adjacent three power transmitter coils may form an equilateral triangle. In another embodiment,
the plurality of power transmitter coils may be placed on two layers and on each layer and centers of adjacent power transmitter coils may be spaced with a length parameter w, where, w≤2a. On each layer, centers of adjacent four power transmitter coils may form a square, and each of the power transmitter coils on the second layer may be placed in a central area of the square formed by the centers of adjacent four power transmitter coils on the first layer. In another embodiment,
the plurality of power transmitter coils may be placed on three layers and, on each layer, centers of adjacent power transmitter coils may be spaced with a length parameter w, where, w≤3a, on each layer, centers of adjacent three power transmitter coils may form an equilateral triangle, each of the power transmitter coils on the third layer may be placed in a central area of the equilateral triangle formed by the centers of the power transmitter coils on the second layer, and each of the power transmitter coils on the second layer may be placed in a central area of the equilateral triangle formed by the centers of the power transmitter coils on the first layer.
Another aspect of this disclosure is directed to a wireless charging system. The system may include a charging area, a plurality of power transmitter coils placed to cover the charging area and each power transmitter coil having an effective charging area. A radius of the effective charging area may be denoted as a, and a half of a width of the power transmitter coil may be denoted as b. Centers of power transmitter coils may be spaced with a distance w. In one embodiment, the ratio of a/b is no less than √{square root over (2)}, and w is not larger than √{square root over (2)}a. In another embodiment, the ratio of a/b is
and w≤√{square root over (3)}a. In another embodiment, the ratio of a/b is
and w≤2a. In another embodiment, the ratio of a/b is
and w≤3a.
Another aspect of this disclosure is directed to a wireless charging system. The system may include a charging area, and a plurality of power transmitter coils placed on one layer to cover the charging area. Centers of every three adjacent power transmitter coils may form an equilateral triangle.
Another aspect of this disclosure is directed to a wireless charging system. The system may include a charging area and a plurality of power transmitter coils placed on one layer to cover the charging area. Centers of every four adjacent power transmitter coils may form a square.
It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention, as claimed.
The accompanying drawings, which constitute a part of this disclosure, illustrate several non-limiting embodiments and, together with the description, serve to explain the disclosed principles.
Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. The following description refers to the accompanying drawings in which the same numbers in different drawings represent the same or similar elements unless otherwise represented. The implementations set forth in the following description of exemplary embodiments consistent with the present invention do not represent all implementations consistent with the invention. Instead, they are merely examples of systems and methods consistent with aspects related to the invention.
This disclosure proposes a systematical method of the placement of multiple coils for a power transmitter of a multi-coil wireless charging system. The goal is to use fewer TX coils to form a larger continuous wireless charging area without charging dead zones. A virtual mesh cell placement pattern is used as a visual guide to illustrate the placement pattern of the TX coils. The placement pattern of the mesh cells refers to the shape, size, number of layers and the layout of mesh cells. In real placement, each mesh cell will be replaced by one TX coil. The location, shape and size of the mesh cells may determine the location of the TX coils and the distance between any two adjacent TX coils on the same layer.
At step 101, (1) a width parameter of an effective charging area a, and (2) a width parameter of a physical TX coil b, are obtained. For example, if an area has a circular shape, the width parameter is the radius of the circular shape; and if the area has a square shape, the width parameter is the half length of the side of the square. At step 102, the ratio of a/b is calculated. Based on this ratio, the shape, size and number of layers of the mesh cells can be determined by physical equations and calculations as will be described below. At step 103, a layout of the mesh cells is determined. Till this step, the overall placement pattern of the mesh cells is determined. At step 104, a required charging area is covered by the mesh cells based on the determined placement pattern. At step 105, physical TX coils are placed on the locations illustrated by the mesh cells to complete the multi-coil placement for TXs in the wireless charging system.
In some embodiments, the effective charging area may be defined by a charging efficiency of the wireless charging system. The charging efficiency of the system refers to the ratio of a receiver side output power over a transmitter side input power. A typical threshold for the charging efficiency of the system may be 60%. If the center of a RX coil is placed inside the effective charging area, the charging efficiency of the system may be no less than 60%.
For a circular-shaped effective charging area, a is the radius of the area, as shown in
The effective charging areas and the TX coils are not limited to a circular shape. The width parameters a and b can be easily adapted to different shapes. For example, if the shape of a TX coil is a square, the width parameter b can be presented as half of the TX coil's side length, as shown in
The shape of the mesh cells, the range of the length parameter w, and the number of layers are correlated and determined by the ratio of a/b. Therefore, the mesh cell placement pattern is determined by the ratio of a/b. The correlation among a/b, mesh cell shape, w, and the number of layers are presented in the Table 1 below.
A larger w means a larger distance between two adjacent TX coils, resulting in a lower density of TX coils on one layer. Therefore, a larger w may reduce the total number of TX coils in a required charging area.
In one embodiment, the ratio of a/b may be no less than √{square root over (2)}, corresponding to Scenario No. 1 in Table 1. The TX coils may be placed on one layer and centers of adjacent TX coils may be spaced with the length parameter w, where, w≤√{square root over (2)}a. Centers of adjacent four TX coils may form a square, as shown in
In another embodiment, the ratio of a/b may follow
corresponding to Scenario No. 2 in Table 1. The TX coils may be placed on one layer and centers of adjacent TX coils may be spaced with the length parameter w, where, w≤√{square root over (3)}a. Centers of adjacent three TX coils may form an equilateral triangle, as shown in
In another embodiment, the ratio of a/b may follow
corresponding to Scenario No. 3 in Table 1. The TX coils may be placed on two layers and on each layer, centers of adjacent TX coils may be spaced with the length parameter w, where, w≤2a. As shown in
In another embodiment, the ratio of a/b may follow
corresponding to Scenario No. 4 in Table 1. The TX coils may be placed on three layers and, on each layer, centers of adjacent TX coils may be spaced with the length parameter w, where, w≤3a. As shown in
In another embodiment, a wireless charging system may include a charging area and a plurality of TX coils placed to cover the charging area. Each TX coil may have an effective charging area. A radius of the effective charging area may be denoted as a, and a half of a width of the TX coil may be denoted as b. The centers of the TX coils may be spaced with a distance w. The parameters a, b and w may have the following relations:
In some embodiments, the TX coils may be placed into one or multiple layers in the wireless charging system. The centers of adjacent TX coils may form into geometric shapes, for example, equilateral triangles, squares, etc. The number of layers and the shapes are not limited in scope by the embodiments disclosed herein.
The invention described and claimed herein is not to be limited in scope by the specific preferred embodiments disclosed herein, as these embodiments are intended as illustrations of several aspects of the invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/460,615, filed Feb. 17, 2017, and entitled “MULTI-COIL PLACEMENT METHOD FOR POWER TRANSMITTER IN WIRELESS CHARGING SYSTEM”. The entirety of the aforementioned application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20120313577 | Moes | Dec 2012 | A1 |
20140125140 | Widmer | May 2014 | A1 |
20150236513 | Covic | Aug 2015 | A1 |
20160285317 | Maniktala | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
103280848 | Sep 2013 | CN |
103532255 | Jan 2014 | CN |
203632526 | Jun 2014 | CN |
Entry |
---|
Search Report and Written Opinion for International Application PCT/CN2018/076389, dated May 3, 2018 (8 Pages). |
Number | Date | Country | |
---|---|---|---|
20190052103 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62460615 | Feb 2017 | US |