Ventilation systems are used to supply environmentally controlled air to the interior of a structure, such as a residential habitation (e.g., a house). A particularly useful type of ventilation system is sometimes referred to as a Whole House Fan (“WHF”) system.
A typical WHF system operates to draw cooler outside air through a conditioned space of the structure, such as an interior residential area, and into an unconditioned space, such as an attic or garage. The air is then vented from the unconditioned space to the exterior environment. This allows the structure to be convectively cooled at times when the outside temperature is lower than the inside temperature, such as during overnight and early morning hours. WHF systems can often maintain a desired cool interior temperature with little or no need to operate traditional HVAC equipment, producing significant energy cost savings for a user.
While WHF systems have been found operable in reducing cooling costs and enhancing indoor comfort, there remains a continual need for improved efficiencies with such systems. It is to these and other advancements that the present disclosure is directed.
Various embodiments of the present disclosure are generally directed to an apparatus and method for ventilating the interior of a building structure, such as but not limited to a residence.
As explained below, some embodiments include a ventilation system with a damper assembly and an exhaust assembly coupled via a control circuit. The damper assembly extends through an interior substrate (e.g., an interior wall) of the structure and the exhaust assembly extends through an exterior substrate (e.g., an exterior wall of the structure. The interior wall separates a conditioned space and an unconditioned space within the structure. The exhaust assembly is initially activated to vent exhaust air from the unconditioned space while a door of the damper assembly remains closed. The door is subsequently opened responsive to a measured environmental parameter, such as a differential pressure between the conditioned and unconditioned spaces, to generate a combined airflow that passes from the conditioned space to the unconditioned space and then to the exterior of the structure.
Further embodiments provide a method with general steps including activating an exhaust assembly that extends through an exterior substrate of a building structure to actively direct, via an impeller, an initial flow of exhaust air from an unconditioned space of the building structure to an exterior environment. The unconditioned space is separated from a conditioned space of the building structure via an interior substrate through which a damper assembly extends having a moveable door in a closed position. An environmental parameter associated with the unconditioned space is monitored using an environmental sensor. A control signal from a control circuit coupled to the environmental sensor is issued to transition the moveable door of the damper assembly from the closed position to an open position responsive to the environmental parameter reaching a predetermined threshold. This generates a combined flow of exhaust air from the conditioned space, through the damper assembly, through the unconditioned space, and through the exhaust assembly to the exterior of the building structure.
Other features, details and advantages of various embodiments can be understood from a review of the following detailed description in conjunction with the accompanying drawings.
Various embodiments are generally directed to improvements to ventilation systems for various types of structures. As explained below, the system may be characterized as a multi-component whole house fan (WHF) system. The system as variously embodied includes two main components, or parts: a damper assembly and an exhaust assembly. These two components are mounted in separate locations and may be placed in electronic communication with each other via an intervening control circuit.
The damper assembly is configured to mount in a boundary substrate (e.g., a wall or a ceiling) that separates a conditioned space and an unconditioned space within a building structure. The conditioned space could be, for example, the interior of a residential home, the interior of an inhabited work space such as an office building, warehouse, etc. For reference, a “conditioned” space as used herein does not necessarily require the space to be serviced by an actual HVAC system, but it can be adequately described as a space that is conditioned for the long term presence of a human. Contrawise, an “unconditioned” space is generally not. Hence, the terms “conditioned” and “unconditioned” spaces can also sometimes be referred to as normally “inhabited” and “uninhabited” spaces, respectively, and provide different respective isolation levels with respect to an exterior environment to the building structure.
The damper assembly has one or more normally closed doors that are configured to thermally isolate the conditioned and unconditioned spaces. The door(s) can be activated in any number of ways including laterally out, swinging out, retracting or extending vertically or horizontally, and so on. The door(s) form both a fire seal and a fluidic seal. The fire seal retards fire passing from the unconditioned to the conditioned space in accordance with applicable building codes. The fluidic seal retards the passage of vapors or other noxious fumes that may normally be present in the unconditioned space (e.g., gasoline fumes emitted from within an attached garage, etc.) or otherwise substantially prevents airflow between the respective spaces.
A biasing mechanism is incorporated into the damper assembly so that under normal conditions, including a loss of power, the door(s) will automatically transition to the closed, sealed position. A spring or other biasing member may be used. A latch can be used to mechanically retain the door(s) to effect an adequate fluidic seal in the closed position. The fluidic seal thus does not necessarily need to be a “gas tight” seal as long as the seal effectively restricts fluidic flow below some upper acceptable limit.
An actuator mechanism may also incorporated into the damper assembly. The actuator mechanism operates to transition the door(s) between the closed and open positions. Any number of actuators can be used such as solenoids or other mechanical or electro-mechanical devices. Aspects of the damper may be automated, semi-automated, electronic, fusible, mechanical, and/or manually activated as required.
While not limiting, it is contemplated in at least some embodiments that the damper system will be arranged to ventilate air from an interior residential area into the unconditioned space of an attached garage. One suitable location for the damper assembly is over an access door that allows passage from the residential space to the garage, although other installation locations may be used.
The exhaust assembly is mounted at a second boundary that extends between the unconditioned space to the exterior environment outside the structure. In an attic or garage application, this might be through a wall or a roof.
The exhaust assembly has a fan (impeller) activated by a motor to vent exhaust air from the unconditioned space to the exterior environment. Because the exhaust assembly is not directly mechanically coupled to the damper assembly, there is no need for intervening ductwork between the exhaust assembly and the damper assembly as in many conventional WHF systems. Moreover, larger fan sizes can be used to direct the air to the exterior environment. Because the exhaust assembly is coupled to the outside environment, additional elements may be required as well such as normally closed doors, security bars/screens, ports, rain covers, etc.
The exhaust assembly may include a main controller circuit that communicates with a corresponding controller circuit of the damper assembly so that, when the fan is activated, the damper door(s) is/are opened. This allows the fan assembly to direct air through the conditioned space, through the damper assembly, through the unconditioned space, through the fan assembly, and to the exterior environment. A relatively large flow (such as 3,000 to 5,000 cfm or more) may be needed to establish the desired airflow through the structure.
In some embodiments, a differential pressure sensor is provided in the damper system. The differential pressure sensor monitors the relative pressure differential between the conditioned and unconditioned spaces. In this way, the exhaust assembly can be activated to push air from the unconditioned space into the exterior environment. The resulting drop in pressure within the unconditioned space will be sensed by the pressure sensor, resulting in the automatic opening of the door(s) of the damper assembly to draw air from the unconditioned space.
A sudden increase in pressure within the unconditioned space, such as due to an opening of a garage bay door, can operate to temporarily close the damper. In this way, undesired airflow from the garage (or other unconditioned space) can be kept from flowing back into the conditioned space. The exhaust assembly can continue to run and the damper assembly reopen once the pressure differential is reestablished.
While not necessarily required, it is contemplated that both the exhaust assembly and the damper assembly will operate on a low voltage DC system (such as, e.g., 24 VDC). A hard wired or wireless communication interlink can be established between the respective units. A third, main control unit can further be located within the conditioned space to allow user commands and data to be transferred to and from the exhaust assembly and/or the damper assembly.
The system as variously described herein provide a number of advantages, including ease of installation, noise abatement, and backflow control. These and other features and advantages can be understood beginning with a review of
A ventilation system for the structure 100 is generally denoted at 120. The ventilation system 120 is configured to establish an airflow (arrows 121) through the structure 100. To this end, the system 120 includes a damper assembly 122 and an exhaust assembly 124. The damper assembly 122 is installed through a first wall 125A that extends as an interior wall between the residence 102 and the garage 104. The exhaust assembly 124 extends through a second wall 125B that is an exterior wall of the garage.
As explained is greater detail below, the exhaust assembly 124 includes an impeller configured to draw the airflow 121 through the structure 100. The damper assembly 122 includes a door that is moveable between a closed position and an open position. The damper assembly 122 and the exhaust assembly 124 are operably coupled using suitable control circuitry (not separately shown in
In at least some embodiments, the ventilation system 120 is operative to initiate a first flow of exhaust air (e.g., airflow) using the exhaust assembly 124 while the damper assembly 122 remains in the closed position. This first airflow, denoted by arrow 121A, is substantially drawn only from the unconditioned space 104 and vented as exhaust air to the exterior of the structure. Generally, this operation will tend to lower the interior pressure within the unconditioned space and to remove heat from the unconditioned space.
Once a sensed environmental parameter reaches a desired level, such as a differential pressure between the conditioned and unconditioned spaces, the damper assembly is opened by the control circuitry. This establishes a combined flow of exhaust air (e.g., combined airflow) that includes additional air from the conditioned space, denoted by arrow 121B, that is drawn by the exhaust assembly. In this way, the combined airflow 121 is established into and through the residence 102, through the damper assembly 122, through the garage 104, through the exhaust assembly 124, and out to the exterior environment. This combined airflow serves to cool or otherwise improve the interior state of the conditioned space and the unconditioned space.
As described above, the door 128 may be formed of multiple doors (shutters, plates, etc.) normally biased in a closed position by the biasing mechanism 134 and transitioned to an open position by the actuator 136. The fluidic seal 130 may be a metal-to-metal seal or may use an elastomeric or other sealing gasket as desired. The fire seal 132 may comprise gypsum board or other suitable fire resistant materials that form a portion of the construction of the door. In this way, the door provides a fire and fluidic barrier when in the closed position. A suitable fusible mechanical link or other control mechanism can be incorporated to cause the door 128 to fail shut responsive to an anomalous event (e.g., detected fire condition, power loss, etc.).
The damper assembly 122 is further shown in
The control and I/F circuit 140 may include one or more programmable processors with associated programming (e.g., firmware) in suitable memory to carry out various communication and control functions for the damper. The circuit 140 may additionally or alternatively be formed of hardware circuits (e.g., gate logic, field programmable arrays, etc.) to perform these functions.
The differential pressure sensor 142 is configured to sense respective interior atmospheric pressures at the residence 102 and the garage 104 (e.g., on opposing sides of wall 125A,
As best shown in
Suitable openings can be cut in the existing sheetrock layers 154 to accommodate the damper frame. The door 128 is arranged as a single flat plate with articulating arms 156 that allow the door 128 to be advanced and retracted by the actuator 136 as required (best viewed in
In this example, the door 162 is arranged as three slatted shutters 162A (see
Continuing with
As with the damper assembly 122, the exhaust assembly 124 can take any suitable size to extend through the exterior wall 125B which, it will be noted, may be similarly fashioned to include spaced apart joints 152 and suitable facia 154. Because the exterior wall 125B is facing the exterior environment outside the structure 100, additional layers may make up the exterior facia (denoted at 154A), such as sheathing, brick, rock, stucco, siding, etc. These details have been omitted from the drawings for clarity, but it will be understood that the exhaust assembly is sized to accommodate these and other alternatives and nominally extend through/past these outer facia elements.
A central, circular cowling 178 can be arranged to surround and duct the impeller blades of the fan 164. As noted above, it is contemplated that the exhaust assembly will be configured to move a relatively large amount of air during operation (e.g., such as on the order of 3,000 to 5,000 cfm or more). This will tend to lower the interior pressure within the garage 104, enabling the damper assembly to safely open and establish the airflow depicted in
It is contemplated that the respective damper assembly 122 and exhaust assembly 124 can be placed at any suitable locations, including locations that are tens or even hundreds of feet apart, depending on the size and capabilities of the unit and the volume(s) of the conditioned and unconditioned spaces. Hence, unlike many conventional WHF systems, there is no intervening ductwork that mechanically couples the respective damper and exhaust assemblies. Rather, the unconditioned space operates as the fluidic “channel” between these respective elements.
It is contemplated in some embodiments that electrical interconnection will be provided between the exhaust assembly 124 and the damper assembly 122. As shown in
In one control sequence, the base unit 190 can be user selected to automatically or manually initiate operation of the exhaust assembly 124 based on a measured temperature differential between the exterior temperature and the internal temperature of the residence. The control circuitry (e.g., 140) in the damper assembly 122 can thereafter be used to transition the door 128 to the open position once sufficient negative relative pressure has been generated within the garage to permit a flow of air from the residence to the garage. As in the example of
Step 202 identifies an initial deactivated state for the system in which the damper doors are closed and the fan is turned off. The fan is initialized at step 204 such as by the receipt of a control signal from the base unit, the damper assembly and/or a local environmental sensor.
The differential pressure on opposing sides of the closed damper assembly is next measured at step 206. Initially it is contemplated that the interior pressure PI will be nominally the same as the exterior pressure PE. However, provided that the fan exhausts a sufficient amount of air from the garage, and other equalizing factors are not in play (e.g., the garage door is not open to any significant extent, a window in the garage is not open, etc.) then PE will drop to a point where the difference exceeds some threshold T (e.g., PI−PE>T).
The actual threshold pressure differential does not need to be a large amount, and may be a small percentage of PI (e.g., T=0.02 PI, 0.05 PI etc.). The threshold pressure may be adjustable and set by the user interfacing with the system (e.g., the base unit, the exhaust assembly, or the damper assembly).
The damper doors 128 are thereafter opened automatically once the differential pressure exceeds the selected threshold, as indicated by step 208. However, other mechanisms can be used; in other embodiments, the damper assembly opens at the same time that the fan is activated, or automatically opens after some predetermined elapsed time interval after activation of the fan (e.g., 30 seconds, one minute, etc.), and so on. Once step 208 is reached, the system is flowing as shown in
Step 210 contemplates subsequent steps that result in the closing of the damper doors in the damper assembly 122. These can include the following.
As shown by step 212, a sudden increase in garage pressure is sensed such as by the differential pressure sensor 142. This can occur, for example, by a user opening the door 108, opening the overhead garage door to allow a vehicle to enter or exit the garage 104, etc. The closing of the damper under these conditions seal off the garage from the residence, reducing the flow of vapors or other undesired fumes/odors from seeping into the residence.
As shown by step 214, the damper can instead be closed based on a sensed smoke or fire condition, thereby effecting the fire seal between the garage and the residence.
As shown by step 216, a temperature differential may be sensed such that, for example, the outside temperature is now warmer (or at least within a predetermined differential) than the temperature of the residence. In this case, the system shuts down automatically as there is no little or no benefit to continue attempting to cool the residence using the exterior air.
These different scenarios for damper closure can result in different operations of the damper assembly. For example, some conditions may result in an immediate fast closure of the damper doors, such as in the case of fire or smoke. Other conditions may involve a delay or a slow closure of the damper assembly, such as in the case of the garage door being opened or the temperature differential being reached.
As a result, it is contemplated albeit not necessarily required that the fan of the exhaust assembly will be deactivated upon the closing of the damper. In some cases, the fan may continue to operate until some predetermined time limit has been reached; for example, if the damper remains closed for more than two (2) minutes, the fan proceeds to shut down. It is noted that if the garage door is opened and the damper is closed, the continued operation of the fan for a short time will tend to exhaust any noxious fumes that may have otherwise accumulated in the garage, so that there is a benefit to operating the fan even with the damper in the closed position.
While
One advantage of utilizing differential pressure as an exemplary parameter to control the sequential operation of the exhaust and damper assemblies is that, generally, the airflow will naturally tend to flow from the conditioned space to the unconditioned space with little or no backflow in the opposite direction. However, other parameters can be used instead of, or in additional to, differential pressure. In an alternative embodiment, a temperature of the unconditioned space may be monitored and required to drop by some amount, or the differential temperature between the respective spaces will be required be within some acceptable range, before the damper assembly is activated (e.g., an operation to “cool” the unconditioned space by removing excess heat may be advantageous before opening the damper door, etc.).
In still further cases, a programmable timer can be used to activate the damper based on assessment of a suitable amount of time of prior operation of the exhaust assembly to generate the appropriate internal environmental state to warrant the opening of the damper assembly.
It will now be appreciated that the multi-component WHF ventilation system as embodied herein can provide a number of benefits over the existing art, including efficiencies that can be realized during manufacturing, shipment, installation and operation. The multi-part design provides the user with great latitude in the respective locations of the constituent components. The availability of conventional 120 VAC (or other standard) electrical power allows the unit to be easily installed without the need for a licensed electrician or other skilled labor efforts. Communication capabilities allow the system to be operated using suitable local or remotely located user interfaces (e.g., smart phone apps, IoT devices, smart home monitoring systems, security systems, etc.).
While the various embodiments have contemplated the environment of a whole house fan (WHF) system that vents air from a residential space to a garage, other applications may be used as well, including but not limited to commercial structures, industrial applications, residential attics, etc.
By way of illustration, in an alternative embodiment the conditioned space 102 in
In another example, the conditioned space can be a conditioned portion or zone of a commercial property, such as a set of offices or other type of work area, and the unconditioned space can be an unconditioned portion or zone of the commercial property such as a warehouse, loading dock, machine shop area, etc.
While the illustrated embodiments utilize a single damper assembly and a single exhaust assembly, further embodiments contemplate multiple sets of either or both. The windows 106 in
Various changes and improvements will readily occur to the skilled artisan in view of the present disclosure, and such are encompassed by the spirit and scope of the following claims.
The present application makes a claim of domestic priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 62/868,170 filed Jun. 28, 2019, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2191774 | Reed | Feb 1940 | A |
2278581 | Dexter | Apr 1942 | A |
2299833 | Mader | Oct 1942 | A |
3839839 | Tillisch et al. | Oct 1974 | A |
4152878 | Balinski | May 1979 | A |
4385550 | Steiner et al. | May 1983 | A |
4501389 | Kolt | Feb 1985 | A |
4811538 | Lehnert et al. | Mar 1989 | A |
5718785 | Randall | Feb 1998 | A |
5740644 | Menchetti | Apr 1998 | A |
5945209 | Richards et al. | Aug 1999 | A |
7410920 | Davis | Aug 2008 | B2 |
7775006 | Glannos | Aug 2010 | B2 |
7878301 | Gross et al. | Feb 2011 | B2 |
8590231 | Pilz | Nov 2013 | B2 |
8726586 | Stevens | May 2014 | B1 |
9045899 | Pilz et al. | Jun 2015 | B2 |
9188508 | Meyer | Nov 2015 | B1 |
9458628 | Pilz et al. | Oct 2016 | B2 |
10184246 | Pilz et al. | Jan 2019 | B2 |
11149432 | Gatland et al. | Oct 2021 | B2 |
20090084507 | Tescher | Apr 2009 | A1 |
20100332034 | Bergeson | Dec 2010 | A1 |
20140065939 | Dietz | Mar 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20200408428 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62868170 | Jun 2019 | US |