Multi-conduit balloon catheter

Abstract
A suctioning and irrigating sinus balloon catheter is provided for treating a patient's paranasal sinus system, including dilating prepared openings, and natural ostia and ducts and excising sinus cavities and choana. The catheter has a number of fluid carrying conduits to provide irrigation, suction and inflation/deflation to the distally mounted balloon. The catheters have sufficient stiffness and column strength that the balloon carrying distal segment of the catheter can be pushed into the prepared opening, natural ostium or duct, choana or sinus to be excised. Some catheters can be hand bendable by the surgeon. Some catheters provide the capability of threading an endoscope through one of the conduits. The methods use the balloon catheters to dilate prepared openings to selected parts of the sinus system, to dilate natural ostia and ducts of the sinus system, choana, and/or to dilate sinus cavities to remove them.
Description
FIELD OF THE INVENTION

This invention relates to balloon catheters and methods using such catheters for treating paranasal sinuses.


BACKGROUND

To fully understand the invention, it is necessary to consider the anatomy and physiology of the nasal and sinus system. FIGS. 4-17, which show various method steps described later, also show important features of sinus anatomy. The maxillary sinus 21 lies lateral to the nasal cavity 38, inferior to the eye orbit 23 and superior to the palate or roof of the mouth. The medial wall of the maxillary sinus forms the lateral nasal wall 44 inferiorly. The frontal sinus 35 (FIG. 16) lies above the orbit and its floor is formed by the frontal bone and is contiguous with part of the orbital roof. The right and left frontal sinuses are divided by the interfrontal septum. The frontal sinus drains into the nasal cavity and its outflow tract is in the inferomedial sinus, which connects to the frontonasal duct 36. Frontonasal duct 36 empties into the nasal cavity through lateral nasal wall 44 under the middle turbinate 20.


The ethmoid sinus is divided into anterior and posterior ethmoid air cells 29 and 31. The ethmoid sinus consists of multiple spaces or cells divided by thin bony septae. The ethmoid sinus is contained in the ethmoid bone. The lateral wall of the ethmoid sinus composes the medial wall of the orbit. The medial wall of the ethmoid sinus composes the lateral wall 44 of the nasal cavity superiorly. Anterior ethmoid air cells 29 drain through lateral nasal wall 44 into the middle meatus 22 beneath middle turbinate 20.


The sphenoid sinus 39 (FIG. 15) is posterior to the ethmoid sinus 29 and 31. Sphenoid sinus 39 has a lateral wall that is adjacent to the optic nerve, carotid artery, and cavernous sinus. The floor of sphenoid sinus 39 lies above maxillary sinus 21 and pterygopalatine fossa. Lateral nasal wall 44 is partially covered by inferior 46, middle 20, and superior 17 turbinates.


The choanae (FIG. 17) are the posterior openings of the nose. Each choana 299 is separated by the vomer bone. The lateral border of the choana is formed by the posterior end of the turbinates.


Sinus physiology will now be considered. The mucosa of nasal cavity 38 contains secretory elements (mucosal glands and goblet cells) and a dense ciliary layer. The paranasal sinuses are covered by a similar mucosa, although the secretory cells and cilia may be sparser in the more remote areas of the sinuses. The secretory cells produce a large volume of mucus that is normally actively transported by the cilia (mucociliary transport) in a specific pattern (not a gravity dependant pattern) from the sinus through the opening between the sinus and the nasal cavity (sinus ostium). Cellular debris and bacteria are transported in the mucus from the sinus cavity through the ostium into the nose.


Inflammation of the sinus and nasal mucosa causes hyperemia, lymphatic swelling, stasis in the blood and lymphatic pathways and leads to increased secretion of mucus and reduced mucociliary transport. The inflammation may be caused by allergies, noxious agents, nasal polyps, and other factors. Over time, there is a pathologic increase in inflammatory cells, ground substance, and fibers with a permanent disruption of mucociliary transport and lymphatic drainage. An obstruction of the narrow ducts and ostia between the paranasal sinuses and nasal cavity develops, resulting in a vicious cycle of increased secretions, edema, and ultimately organized connective tissue and mucosal hyperplasia. Bacteria are not cleared from the sinuses and multiply in the fertile inflammatory environment worsening the chronic sinus inflammation (sinusitis).


Treatment with antibiotics, corticosteroids in nasal sprays or systemically, and antihistamines may result in resolution of sinusitis. However some patients become resistant to medical treatment and surgery becomes necessary.


Modern sinus surgery is usually performed endoscopically and is based on the principle of restoring patency of the sinus ducts and ostia by enlarging the opening and allowing mucociliay clearance of mucus from the sinus into the nose to resume. If mucociliary clearance is re-established, then the inflammatory changes in the sinus mucosa described above will resolve. In classic sinus surgery, an incision was made along the side of the nose in the medial canthus to access the ethmoid or sphenoid sinuses. This incision could be extended to beneath the medial half of the brow to also access the frontal sinus. An incision through the gums above the upper teeth and creation of a large bony opening in the maxilla with excision of large areas of sinus mucosa was used to perform maxillary sinus surgery. A large opening was created through the medial wall of the maxillary sinus into the nose in the inferior meatus (maxillary antrostomy) to allow postoperative drainage of the sinus.


The development of endoscopic sinus surgery allowed sinus surgery to be performed from an intranasal approach, thus eliminating the need for external incisions, the creation of very large bony openings, and reducing morbidity. However, endoscopic sinus surgery requires the excision of large areas of bone and nasal mucosa and has reported complications of blindness from damage to the optic nerve, double vision from damage to the orbit and medial rectus muscle, damage to the nasolacrimal duct resulting in tearing and dacryocstitis, leakage of cerebrospinal fluid and infection of the brain and meninges, loss of the sense of taste, infection of the skull base, hemorrhage from the carotid artery or other blood vessels, and pain and neuralgia of the face and scalp.


As shown in U.S. Pat. Nos. 5,021,043 and 5,169,043, I have previously co-invented balloon catheters for use in the lacrimal system. As shown in my U.S. patent application Ser. No. 10/259,630 and published under U.S. Pat. Pub. No. 20040064083 know U.S. Pat. No. 7,169,163), I teach that a balloon catheter can be introduced transnasally to treat the lacrimal system.


As shown in my U.S. patent application Ser. No. 10/259,300 and published under U.S. Pat. Pub. No. 20040064150 (now U.S. Pat. No. 8,317,816), incorporated herein by this reference, I teach that various balloon catheters can be used to treat paranasal sinuses in a number of ways. The catheters are used to dilate an existing ostium or duct, to create a new opening from a sinus to the nose, or to excise a sinus. However, blood, mucus or other material may obscure visualization when using a sinus balloon catheter. Also, other procedures such as excision of nasal or sinus tissue, polyps, mucoceles, or removal of pus, manipulation of the nasal or sinus structures would not be attempted using a balloon catheter because visualization and/or delivery of medication would be problematic.


Endoscopes have long been commercially available to provide the surgeon greater visualization of internal patient tissues. Endoscopes typically have a narrow, elongated body carrying fiber optic structures which allow viewing from a proximal eyepiece to a distal viewing lens and carry an illuminating; light from a proximal source to a distal emitter. Endoscopes can have bodies which are rigid such as the KARL STORZ SINUSCOPE brand endoscope, or flexible such as the MACHIDA ENT SCOPE brand endoscope commercially available from Karl Storz, of Culver City, Calif. and Jedmed Instrument Company, of St. Louis, Mo. respectively. Endoscopes are typically not intended to bend sharper than a minimum radius. Some endoscopes can attach to a camera which can be joined to the endoscope at its proximal end. Some endoscopes have a viewing lens at the distal end which aims at an angle from the major axis of the endoscope body. This angle can range from 0 to 70 degrees. Many commonly used rigid endoscopes have an angle of about 25 or 30 degrees.


It has been found that the use of endoscopes simultaneously with irrigation and suction systems can be overly bulky in the small confines of some anatomical regions such as the nasal cavity or sinus. Further, using so many systems at once can leave the surgeon short handed.


Hand bending the balloon catheter body, though conveniently providing the surgeon with greater flexibility during surgery to adapt the catheter shape to the unique anatomy of the individual patient, can lead to additional problems. First, the catheter should remain sufficiently stiff to withstand the lateral or torsional forces required to push the deflated balloon section through the small opening in the tissue. Second, the surgeon may accidentally bend the catheter body beyond a maximum allowable angle, or at such a sharp radius that a flow constricting kink is created.


A review of the prior art shows a number of patents (Katz U.S. Pat. No. 6,027,478; Brennan U.S. Pat. No. 4,883,465; Akiyama U.S. Pat. No. 4,102,342; Payton U.S. Pat. No. 4,338,941; Katz U.S. Pat. No. 5,454,817; Stangerup U.S. Pat. No. 5,546,964 and Shippert U.S. Pat. No. 5,827,224) which teach the use of expandable devices (usually a balloon) into the nasal cavity or sinuses. Most of these are for the treatment of nose bleeds or the control of bleeding.


A number of articles disclose the use of a balloon catheter in sinuses to hold fractured bones in place, stop bleeding by tamponade, prevent fluid from flowing out of the nose into the pharynx, or to maintain a low intranasal air pressure. In one case, a catheter was used to stent a duct after surgery; and the balloon was inflated in the sinus to keep the stent in position.


However, apart from my prior application, there appear to be no teachings in the prior art to use a balloon catheter to create a new opening from a sinus into the nose, to dilate an ostium or duct, dilate the choana or excise a sinus. It appears a balloon has never been used to directly treat sinus disease.


SUMMARY

The present embodiments teach the use of sinus balloon catheters to treat sinus disease by creating a new opening from a sinus into the nose, to dilate a sinus ostium or duct, to dilate the choana or to excise a sinus. A balloon is mounted over the distal segment of the catheter to which runs a conduit permitting a pressurized fluid to inflate the balloon. The catheter is formed to have sufficient stiffness and column strength to be pushed through a surgically prepared small, tight opening from a sinus into the nose, through a sinus ostium or duct, or the choana or into a sinus cavity. The small opening may be created surgically or may be the natural ostium or duct of the sinus.


Some embodiments provide a catheter having integrated suction and/or irrigation systems that enable the surgeon to irrigate and/or suction away blood, mucus, pus, a mucocele and other material. The proximal end of the catheter has connectors to the various fluid supplies, suction sources, and wings or other prominences to allow the surgeon easier manipulation. The presence of suction and/or irrigation allows for the less obstructed use of an endoscope which greatly facilitates the surgeon visualizing the balloon catheter and the patient tissues in performance of the procedure.


Some embodiments provide a catheter having a conduit through which an endoscope can be inserted further reducing the bulkiness of the systems. Other embodiments provide an integrated endoscope in addition to the integrated suction and/or irrigation systems.


Balloon catheters having integrated suction, irrigation and endoscopic capability can be utilized to more efficiently and safely perform a number of procedures in the nasal cavity and sinus.


Other embodiments provide a set of catheters having different configurations and dimensions suitable for the treatment of different parts of the paranasal sinus system.


In other embodiments the balloon catheter has a proximal segment and a circular bend placing a distal segment at an angle of about 60 degrees to 130 degrees. The angled distal segment allows the surgeon to rotate or shift the position of the long proximal catheter shaft, thus positioning the distal segment to enter from the nasal cavity into the sinus at various angles appropriate to each individual patient. A catheter having an angle of approximately 90 degrees can be used to treat maxillary and frontal sinus disease.


Another embodiment provides a balloon catheter which is straight or has a minimal angle of about 0 to 60 degrees at the junction of the distal segment and the proximal segment. This catheter is useful for ethmoidectomy and sphenoid sinusotomy which uses a balloon with an inflated diameter of about 7 mm, or dilation of the choana and uses a balloon with an inflated diameter of about 9 mm.


Other embodiments provide balloon catheters having a sufficiently small deflated profile to fit through the sinus ostium, duct, or opening in the nasal wall or scar tissue into the sinus.


Other embodiments provide methods to open or enlarge an obstructed or narrowed ostium or duct of a sinus using a balloon and allow the sinus to drain into the nose. The methods also allow dilation and suction of a stenotic or atretic choana. The methods enable irrigation and suction as part of the sinus balloon catheters, and allow the use of an endoscope with the balloon catheter. The irrigation, suction, and endoscope provide better visualization by the surgeon in spite of bleeding or the presence of mucus or other debris. Such debris including pus or a mucocele can be suctioned from the sinus. Medication can also be introduced through the irrigation port. These procedures are accomplished without causing damage to the surrounding structures such as the optic nerve, extraocular muscles that move the eye, the orbit, brain, meninges, or nasolacrimal duct.


Other embodiments provide a method which removes a sinus and cures sinus disease without damage to the surrounding structures such as the optic nerve, extraocular muscles, orbit, brain, meninges, and nasolacrimal duct. These methods are useful for opening a sinus ostium or duct which has been narrowed or obstructed by scar tissue from previous surgery or trauma, for creating a new opening in the wall of a sinus which has scar tissue to allow proper drainage of the sinus into the nose, and for removing a sinus which has scar tissue.


Other embodiments provide methods including a balloon catheter antrostomy of the maxillary ostium, a balloon catheter middle meatal maxillary antrostomy, a balloon catheter inferior meatal antrostomy, a balloon catheter ethmoidectomy of the anterior ethmoid sinus, a balloon catheter ethmoidectomy of the posterior ethmoid sinus, a balloon catheter sinusotomy of the sphenoid sinus, a balloon catheter frontal sinusotomy, and balloon catheter dilation of the choana. These methods are improved by the greater visualization provided by an endoscope unobstructed by irrigatably suctionable debris.


In some embodiment there is provided a catheter for dilating a space in a patient, said catheter comprises: an oblong body having a proximal segment and a distal segment; a balloon member secured to said distal segment; a first conduit in fluid communication with said balloon, whereby fluid under a given pressure in said first conduit inflates said balloon; and, a second conduit having a distal port outside said balloon.


In some embodiments, said conduit is adapted to provide suction at said port. In some embodiments, said conduit is adapted to provide irrigation at said port. In some embodiments, said first and second conduits are formed into a multi-channel fluid buss extending between said proximal and distal segments. In some embodiments said first conduit terminates at a first conduit opening inside said balloon. In some embodiments said balloon has a substantially barbell shape when inflated. In some embodiments said second conduit has a distal terminus at said port and wherein said port is located a first distance from a distal neck of said balloon. In some embodiments said balloon annularly surrounds a portion of said second conduit. In some embodiments the catheter further comprises a third conduit having a distal port outside said balloon. In some embodiments said second conduit and said third conduit are coaxial. In some embodiments said second conduit and said third conduit are non-coaxial. In some embodiments the catheter has a stiffness which renders it hand bendable. In some embodiments the catheter has a stiffness which renders it non-hand bendable. In some embodiments said catheter has a bend. In some embodiments said balloon has a proximal neck extending over said bend. In some embodiments said body further comprises axial gradation markings. In some embodiments said second conduit has an inner diameter selected to allow passage of an endoscope therethrough. In some embodiments the catheter further comprises means for angularly securing said endoscope to said catheter. In some embodiments said means comprise at least one projection extending radially from a section of said endoscope. In some embodiments said catheter further comprises an angular orientation indicator. In some embodiments said second conduit is shaped to have an angular cutaway forming said port. In some embodiments said second conduit is formed of a stainless steel hypotube with a wall thickness of at least 0.010″. In some embodiments said distal segment is at an angle of between about 0 degrees and about 130 degrees to said proximal segment. In some embodiments said distal segment is at an angle of between about 0 degrees and about 90 degrees to said proximal segment. In some embodiments said distal segment is at an angle of about 0 degrees to said proximal segment, whereby said catheter body is straight.


In some embodiments, there is provided a kit for use in the treatment of a patient's nasal sinuses, said kit comprises: a first balloon catheter having an oblong body; and, a catheter bending tool having a given bend radius and a first surface shaped and dimensioned to intimately contact and bear against a portion of said body. In some embodiments said given bend radius is at least 0.5 centimeter. In some embodiments said kit further comprises an endoscope having a minimum bend radius which is greater than said given bend radius of said tool.


In some embodiments, it is provided that in a sinus balloon catheter device comprising proximal and distal sections, a balloon mounted to said distal section, and a first conduit for inflating said balloon, an improvement which comprises a second conduit having a distal port outside said balloon.


In some embodiments, there is provided a balloon catheter for dilating a space in a patient's nasal sinus system, which is one of a prepared opening, an ostium or duct, or a sinus cavity to be excised, or choana, comprising: a tubular catheter body having a proximal end, a proximal segment, a distal end, and a distal segment; a balloon member disposed about said distal segment, said distal segment having a slot; said catheter body being closed at a point distally of said slot; means for applying fluid under pressure to said proximal end of said catheter body, said fluid under pressure flowing through said slot to inflate said balloon for dilating said space; and said catheter body being formed of a hypotube of sufficient stiffness and column strength to enable said catheter, when said inflatable member is deflated, to be pushed into said space of said nasal sinus system.


In yet other embodiments there is provided a method of treating a patient's nasal sinuses, comprising: providing a balloon catheter having an oblong body having a proximal segment, a distal segment, and a first inflation/deflation supply conduit in fluid communication with a balloon mounted on said distal segment; pushing said distal segment with said balloon deflated into a space associated with a nasal sinus of said patient; and introducing fluid under pressure into said supply conduit to inflate said balloon and dilate said space.


In some embodiments said balloon catheter further comprises a second conduit. In some embodiments the method further comprises suctioning debris from said nasal sinus through said second conduit. In some embodiments the method further comprises irrigating said nasal sinus through said second conduit. In some embodiments the method further comprises irrigating said nasal sinus through said second conduit at a time when said suctioning is not occurring. In some embodiments the method further comprises bending said body to an angle of between about 0 degrees and 130 degrees prior to said pushing. In some embodiments the method further comprises inserting an endoscope through said second conduit. In some embodiments said balloon catheter further comprises a third conduit, and wherein said method further comprises: suctioning debris from said nasal sinus through said second conduit; and, irrigating said nasal sinus through said third conduit. In some embodiments said body is flexible, and said method further comprises threading said body onto a rigidizing member having sufficient stiffness and column strength to enable said catheter, when said balloon is deflated, to be pushed into said space of said nasal sinus system. In some embodiments said tubular catheter body has a bend placing said distal segment at an angle of between about 60 degrees and about 130 degrees to said proximal segment. In some embodiments said angle is about 90 degrees.


In some embodiments of the method said space is the maxillary ostium of the patient's maxillary sinus, said distal segment with said balloon deflated being pushed through said maxillary ostium into said maxillary sinus, said maxillary ostium being dilated when said inflatable member is inflated to complete antrostomy of said maxillary ostium. In some embodiments, prior to said step of pushing said distal segment through said maxillary ostium, said method further comprises: medially retracting the patient's middle turbinate to gain access to the patient's middle meatus; and, exposing the patient's ethmoid infundibulum by removing part of the patient's uncinate process.


In some embodiments, said space is a prepared opening formed through the patient's fontanelle, said opening is formed by bringing a 45 degree upbiting Blakesely punch into the patient's nasal cavity along the patient's lateral nasal wall just superior to the patient's inferior turbinate, pushing said punch through said fontanelle to create said opening through said fontanelle and wherein said distal segment with said balloon deflated is pushed into said prepared opening and said balloon is inflated to dilate said prepared opening.


In some embodiments, said space is a prepared opening formed through the patient's lateral nasal wall in the patient's inferior meatus. In some embodiments, prior to said step of pushing, said prepared opening is formed by displacing the patient's inferior turbinate medially, introducing a sharp dissector into the patient's nasal cavity, and using said dissector to perforate the patient's lateral nasal wall in said inferior meatus to form said opening and wherein said distal segment with said balloon deflated is pushed into said prepared opening and said balloon is inflated to dilate said prepared opening. In some embodiments, said distal segment is positioned at an angle of between about 0 degrees and about 60 degrees to said proximal segment. In some embodiments, said distal segment is at an angle of about 0 degrees to said proximal segment, whereby said catheter body is substantially straight.


In some embodiments, said space is formed in the patient's ethmoid bulla. In some embodiments, the method further comprises: medially retracting the patient's middle turbinate to gain access to the patient's middle meatus; exposing the patient's ethmoid infundibulum by removing part of the patient's uncinate process; and, using a fine cutting forceps to remove the anterior wall of said ethmoid bulla. In some embodiments, after said inflatable member is deflated and withdrawn from said ethmoid bulla, providing said opening in said ethmoid bulla to receive said distal segment, which when inflated, dilates and thereby removes said ethmoid bulla. In some embodiments, said inflated balloon is then deflated and said distal segment is then withdrawn from the space formerly occupied by said ethmoid bulla, said distal segment with said balloon deflated is then pushed into the patient's anterior ethmoid air cells, forming the patient's ethmoid sinus, lying posterior to said space formerly occupied by said ethmoid bulla, said balloon is then inflated dilating said anterior ethmoid air cells and thereby removing said anterior ethmoid air cells, and said balloon is then deflated, and said distal segment is then removed from the space formerly occupied by said anterior ethmoid air cells, completing an ethmoidectomy of the anterior ethmoid sinus. In some embodiments, the patient's basal lamella of the patient's middle turbinate is perforated with a punch to form an opening, said distal segment is then pushed through said opening into said posterior ethmoid air cells and said balloon is inflated to dilate and remove said posterior ethmoid cells completing an ethmoidectomy of said posterior ethmoid sinus. In some embodiments, after said anterior and posterior ethmoidectomies are completed, inserting said distal segment through the patient's anterior wall of the patient's sphenoid sinus, the balloon is then inflated for dilation and opening of said sphenoid sinus, the deflating said balloon and removing said distal segment to complete sinusotomy of said sphenoid sinus.


In some embodiments, said space is an opening through the patient's anterior wall of the patient's sphenoid sinus; and wherein said method further comprises deflating said balloon and removing said distal segment to complete sinusotomy of said sphenoid sinus.


In some embodiments, said space is the patient's nasofrontal duct to the patient's frontal sinus; and wherein said method further comprises deflating said balloon and removing said distal segment to complete sinusotomy of said frontal sinus.


In some embodiments, after said ethmoidectomy of said anterior ethmoid sinus is completed and the patient's nasofrontal duct is exposed, providing a second balloon catheter having a tubular catheter body with a proximal segment, a distal segment, a balloon member mounted around said distal segment, a slot through the wall of said distal segment, said tubular body being closed at a point distally of said slot, and means providing fluid under pressure at the proximal end of said tubular catheter body to inflate said balloon, said tubular catheter body having a bend placing said distal segment at an angle of between about 60 degrees and about 130 degrees to said proximal segment, pushing said distal segment of said second balloon catheter with said balloon of said second balloon catheter deflated into said frontonasal duct, inflating second balloon catheter to dilate said frontonasal duct and frontal sinus, deflating said balloon of said second balloon catheter, and removing said distal segment of said second balloon catheter to complete a frontal sinusotomy.


In some embodiments, said space is a choana, said distal segment with said balloon deflated being pushed into the choana, said choana being dilated when said inflatable member is inflated.


In some embodiments, there is provided an apparatus for treating prepared openings and natural ostia or ducts providing flow paths from natural sinus cavities, and excising sinus cavities, comprising: a set of balloon catheters including catheters which are angled and catheters which are substantially straight, said catheters having appropriate inflated working diameters, and which have appropriate outer diameters with the balloon deflated that will enable the catheter in question to be pushed into the respective prepared opening, natural ostium or duct or sinus cavity to be excised.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1A is a diagrammatic perspective view of a suctioning and irrigating balloon catheter.



FIG. 1B is a closeup diagrammatic cross-section view of the tip of the distal segment of the suctioning and irrigating balloon catheter of FIG. 1A.



FIG. 1C is a closeup diagrammatic cross-section view of the proximal end segment of the suctioning and irrigating balloon catheter of FIG. 1A.



FIG. 2A is a closeup partial side elevational view and partial cross-sectional side view of the proximal and distal end segments of the suctioning and irrigating balloon catheter according to an alternate embodiment.



FIG. 2B is a closeup diagrammatic partial perspective view of the proximal end of a suctioning and irrigating balloon catheter according to another alternate embodiment.



FIG. 2C is a closeup diagrammatic cross-sectional side view of the proximal end of a multi-conduit balloon catheter according to another alternate embodiment providing either suctioning or irrigating at one time.



FIG. 2D is a closeup diagrammatic cross-sectional side view of the proximal and distal ends of a multi-conduit balloon catheter having an internal inflation/deflation conduit according to another alternate embodiment.



FIG. 2E is a diagrammatic cross-sectional end view of the a multi-conduit balloon catheter body having a flattened internal inflation/deflation conduit according to another alternate embodiment.



FIG. 3A is a diagrammatic elevational view of a suctioning and irrigating catheter having a distal bend.



FIG. 3B is a diagrammatic partial side elevational view of the suctioning and irrigating balloon catheter being bent with a given radius.



FIG. 3C is a diagrammatic perspective view of a tool for bending a catheter according to a given radius.



FIG. 3D is a closeup diagrammatic cross-section view of the distal end segment of the suctioning and irrigating balloon catheter according to another alternate embodiment having a pinched center balloon.



FIG. 3E is a diagrammatic perspective view of a flexible body multi-conduit balloon catheter according to another alternate embodiment.



FIG. 3F-FIG. 3I are diagrammatic side elevational view of differently angled rigidizing members for providing rigidity to the catheter of FIG. 3E.



FIG. 4 is a schematic drawing of a step of a method, showing the uncinate process being removed with a punch to expose the ethmoid infundibulum and semilunar hiatus.



FIG. 5 is a schematic drawing of another step of the method of FIG. 4 showing the sinus balloon catheter dilating and thereby enlarging the ostium of the maxillary sinus and performing suction and irrigation functions.



FIG. 6 is a schematic drawing of a step of a second method showing the Blakesely punch creating a small opening in the fontanelle of the lateral nasal wall in the middle meatus thus creating a communication between the maxillary sinus and nasal cavity.



FIG. 7 is a schematic drawing of another step of the method of FIG. 6 showing the sinus balloon catheter dilating the opening in the fontanelle of the lateral nasal wall in the middle meatus thus creating a large communication opening (antrostomy) for drainage from the maxillary sinus into the nasal cavity and performing suction and irrigation functions.



FIG. 8 is a schematic drawing of a step of a third method showing the dissector perforating the lateral nasal wall in the inferior meatus into the maxillary sinus.



FIG. 9 is a schematic drawing of another step of the method of FIG. 8 showing the sinus balloon catheter dilating the opening in the lateral nasal wall in the inferior meatus thus creating a large antrostomy for drainage from the maxillary sinus into the nasal cavity and performing suction and irrigation functions.



FIG. 10 is a schematic view of a fourth method showing the cutting forceps making a new opening in the anterior wall of the ethmoid bulla.



FIG. 11 is a schematic view of another step of the method of FIG. 10 showing the straight sinus balloon catheter dilating the ethmoid bulla and performing suction and irrigation functions.



FIG. 12 is a schematic view of yet another step of the method of FIG. 10 showing the straight sinus balloon catheter dilating the ethmoid air cells and thus completing the anterior ethmoidectomy and performing suction and irrigation functions.



FIG. 13 is a schematic view of yet another step of the method of FIG. 10 showing a punch perforating the basal lamella of the middle turbinate.



FIG. 14 is a schematic view of still another step of the method of FIG. 10 showing the straight sinus balloon catheter dilating the posterior ethmoid air cells and thus completing the posterior ethmoidectomy and performing suction and irrigation functions.



FIG. 15 is a schematic view of an additional step of the method of FIG. 10 showing the sinus balloon catheter dilating the anterior wall of the sphenoid sinus and performing suction and irrigation functions.



FIG. 16 is a schematic view of a further step of the method of FIG. 10 showing the angled sinus balloon catheter dilating the frontonasal duct and performing suction and irrigation functions.



FIG. 17 is a schematic drawing of a step of a method showing the suctioning and irrigating balloon catheter dilating the choana and performing suction and irrigation functions.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawing there is shown in FIGS. 1A-1C, a first embodiment of a suctioning and irrigating sinus balloon catheter 301 having a generally oblong body 302 having a proximal segment 303, a proximal end 304, a distal segment 305 and a distal end 306. An inflatable balloon 307 is located on the distal segment of the body near the distal end.


The catheter body 302 has a given axial length as measured from proximal end to distal end or tip which is selected according the anatomy of the patient. For most human patients the length is preferably between about 1 inch and about 20 inches, and most typically between about 5.5 inches and about 6.5 inches. A number of specific length catheters can be made available as part of a kit so that the surgeon has a choice for a given situation. For example, a kit can contain six differently sized catheters ranging from 5 inches to 10 inches at 1 inch increments.


The balloon 307 is preferably formed from a highly resilient durable biocompatible material such as polyethylene terephthalate. It has a generally ellipsoidal shape when inflated and a generally cylindrical shape closely corresponding with the outer surface 308 of the distal segment 305 of the body 302 when deflated. The inflated diameter is selectable by the surgeon to be between the deflated diameter and a working inflated diameter of between about 2 mm to about 15 mm, typically about 7 mm, for use in the sinus system, except for use in the nasofrontal duct where the inflated working diameter is typically about 5 mm. The balloon has an axial length selected according the anatomy of the patient and the procedure being performed. For most uses a range of between about 2 mm and about 40 mm is preferred. Most typically the length can be about 14 mm.


A number of specific length balloons can be made available as part of a kit so that the surgeon has a choice for a given situation. For example, a kit can contain six differently sized balloons ranging from 3 mm to 15.5 mm at 2.5 mm increments. Alternately, a kit may contain balloons having different diameters from about 3 to 13 mm at 2.5 mm increments.



FIG. 1B shows that the balloon 307 has a distal neck 310, a distal tapered region 311, a center region 312, a proximal tapered region 313, and a proximal neck 314 and defines an internal chamber or inside 316 of the balloon. A layer of adhesive 315, such as cyanoacrylate, is used to bond the necks to the outer surface 308 of the body of the catheter.


The body comprises a plurality of conduits 320, 321, 322 to carry fluids to and from more distally located portions of the catheter. A plurality of conduits running through or bundled to form the body can be said to provide a multi-channel fluid buss through the catheter.


In most embodiments, the catheter should have sufficient stiffness and column strength with marked resistance to lateral bending that its distal segment carrying the deflated balloon can be used in the surgical methods described below, such as being pushed through a prepared small, tight opening from a sinus into the nose, pushed through a sinus ostium or duct, or pushed into a sinus cavity which may require considerable pressure in some cases. This required stiffness can be supplied by one or more of the conduits being formed from a rigid durable material such as stainless steel.


In the present embodiment the body has a pair of coaxial tubes 325,326, each having an opening or port 330,331 at the distal end 306 which is outside of the balloon and is located an axial distance D1, D2 from the distal neck 310 of the balloon 307. That distance is preferably between about 0 mm and about 5 mm, and is typically about 1 mm. The first external tube 325, is made from a rigid or semi-rigid durable material such as stainless steel, titanium and preferably supplies an irrigating fluid. The external irrigation tube preferably has an outer diameter which measures between about 0.05 inch and about 0.7 inch, and most typically about 0.095 inch. The inner diameter is preferably between about 0.020 inch and about 0.6 inch, and most typically about 0.071 inch.


The second, internal tube 326 runs through the central lumen of the external tube 325, thereby forming an annular conduit 322 between the tubes. The internal tube has its own central lumen which defines a second conduit 321 of the catheter which preferably provides suction. The internal tube can be made from thinner stainless steel or a more flexible material such as silicone or polyethylene. Care should be taken to select a material which has sufficient rigidity to prevent its collapse under the vacuum forces acting on the suctioned fluid. The internal suction conduit terminates at a nozzle 331 at the distal end 306 of the catheter. The irrigation conduit similarly terminates at the distal end forming an annular nozzle 330. The suction tube 326 has an outer diameter smaller than the inner diameter of the irrigation tube 325. The suction tube preferably has an outer diameter which measures between about 0.019 inch and about 0.59 inch, and most typically about 0.065 inch. The inner diameter is preferably between about 0.010 inch and about 0.58 inch, and most typically about 0.056 inch.


Referring now to FIGS. 1A and 1C, the proximal end 334 of the suction tube 326 extends a distance from the proximal end 335 of the irrigation tube 325 and terminates at a connector 336 allowing unobstructed connection to the suction source. The distance is preferably between about 0.5 centimeter (“cm”) and about 5 cm, and most typically about 1 cm.


A third tube 340 is provided as a balloon inflation/deflation supply conduit, and extends substantially along the length of the body 302 and tangentially contacts the outer surface 337 of the first tube 325. It is made from thin stainless steel, flexible silicone, polyethylene or other durable, biocompatible material and has a central lumen defining a third conduit 320 of the catheter which terminates at an opening 339 inside the balloon. The third tube is preferably bonded to the first external tube by welding or an adhesive. This balloon supply conduit supplies fluid for filling and evacuating the balloon and is therefore in fluid communication with the inside 316 of the balloon. The inner diameter is preferably between about 0.005 inch and about 0.13 inch, and most typically about 0.020 inch. The outer diameter is preferably between about 0.015 inch and about 0.15 inch, and most typically about 0.028 inch. The proximal end 341 of the inflation/deflation supply tube 340 extends at an angle from the external irrigation tube and terminates at a connector allowing unobstructed connection to the balloon inflation/deflation fluid supply source. Alternately, the supply tube can remain straight and terminate at its proximal end luer lock connector a distance from the proximal end of the irrigation tube. The distance is preferably between about 1 millimeter (“mm”) and about 10 cm, and most typically about 2 cm. The third inflation/deflation supply tube also extends at an angle away from the outer surface of the external tube which allows unobstructed connection to the balloon inflation/deflation supply.


Optionally, as shown in FIG. 1A, the catheter body may have axial gradations or other markings 309 which allow it to act as an axial measuring device to help ascertain or verify patient anatomy and location of the balloon.


Referring now to FIG. 1C, the proximal end 304 of the catheter 301 is formed to have connectors for each of the conduits. A first connector 336 on the suction conduit 321 can have wings 343 or other enlargement or expansion which are graspable by the surgeon to manipulate the catheter. The inner diameter of the connector 336 matches the external diameter of the suction hypotube 326 forming the suction conduit 321.


To supply the irrigation conduit 322, a small tube 344 extends at an angle through the sidewall of the irrigation conduit tube 325 and terminates in a connector 345 which connects to the irrigation sources. The length is preferably between about 1 millimeter (“mm”) and about 50 mm, and most typically about 12 mm. The angle is preferably between about 1 degree and about 175 degree, and most typically about 45 degree. The inner diameter of the supply tube is preferably between about 0.010 inch and about 0.4 inch, and most typically about 0.070 inch. The outer diameter is preferably between about 0.020 inch and about 0.5 inch, and most typically about 0.083 inch.


A stopper 347 made from a resilient fluid impermeable material such as rubber seals the proximal end 335 of the external tube 325. The stopper has a central channel which allows passage of the suction tube 326 therethrough. The stopper may be sealed permanently using glue or other adhesive means or can be pressure fitted.


Because it is generally more important for the surgeon to more precisely control the location of the suction nozzle, the internal tube is used for suction. However, it is possible for the function of the first two conduits to be swapped.


Referring now to FIG. 2A, there is shown an alternate embodiment of the suctioning and irrigating balloon catheter 350 having a first conduit 351 for carrying irrigation fluid, a second conduit 352 running along side the first conduit which provides suction and a third conduit 353 running along side the first conduit which inflates/deflates the balloon.


The irrigation conduit is fitted with hand manipulable wings 354 at it proximal end 355. The suction conduit is preferrably made from a durable rigid or semi-rigid material such as stainless steel or polyethylene. The inner diameter is preferably between about 0.012 inch and about 0.35 inch, and most typically about 0.05 inch. The outer diameter is preferably between about 0.025 inch and about 0.5 inch, and most typically about 0.065 inch.


The irrigation conduit can be utilized to carry an oblong endoscope 360 therethrough. The endoscope enables the surgeon to visualize the sinus cavity and associated structures.


Since many endoscopes have an angled view head 361 which can typically be at an angle of 30 degrees off the major axis of the endoscope, this embodiment provides a nozzle 362 at the distal end opening of the first irrigating conduit which has a cutaway 363 so as to not obscure the view from the distal tip of the endoscope. Further, in order to maintain the proper angular orientation of the endoscope head 366 with respect to the cutaway, an angularly keyed engagement 367 is provided at the proximal end of the catheter. In this way an endoscope having a correspondingly keyed haft in the form of a radial projection 368 will engage the engagement on a unique and appropriate angular orientation, thereby angularly securing the endoscope to the catheter. The radial projection also acts as an indicator of the angular orientation of the endoscope and catheter.



FIG. 2B shows that the above embodiment can be adapted to provide an integrated endoscope 370 which is carried inside the first conduit 371. An external hypotube is selected to have an inner diameter which allows passage of an endoscope and provide enough space to form an annular conduit for carrying irrigation fluid. The inner diameter is preferably between about 0.02 inch and about 0.5 inch, and most typically about 0.1 inch. The outer diameter is preferably between about 0.03 inch and about 0.6 inch, and most typically about 0.134 inch.


A supply port 375 is provided to supply irrigating fluid which flows through the annular channel formed between the cylindrical outer surface of the endoscope 370 and the cylindrical inner surface of the first conduit 371. A stopper 376 prevents fluid from exiting the proximal end of the first conduit. A suction conduit 377 and balloon supply conduit 378 are formed onto the catheter body along side of the first conduit. Alternately, an additional suction port 380 is provided on the catheter body proximal to the balloon 381. The additional port is formed by a hole through the side wall of the suction conduit 377. In addition, irrigation proximal to the emplaced balloon can be provided by additional irrigation nozzles formed by one or more holes 385 through the outer hypotube wall of the irrigation conduit 371. Care should be taken to size the holes so that adequate suction and irrigation is provided at the distal terminus of the suction and irrigation conduits. Removable plugs 386 can be provided to seal off the additional holes when their use is not desired.


As shown in FIG. 2C a multi-conduit balloon catheter 387 is provided having a first conduit 388 and a side-mounted inflation/deflation conduit 389. The first conduit can be used either for suctioning or irrigating, and can even be switched between suctioning and irrigating in-situ. Further, an endoscope can be inserted through the conduit.


As shown in FIG. 2D, a multi-conduit balloon catheter 390 can have a first conduit 391 and a second, balloon inflation/deflation conduit 392 mounted internally within the first conduit. One way to allow the internal inflation/deflation conduit to be in fluid communication with the inside 393 of the balloon 394 is to provide a slot 395 extending through the side walls of the first an second conduit on a portion 396 of the catheter covered by the balloon. It should be noted that an engagement tube 397 is used for fluid communication with the inside of the first conduit. The first conduit can either be used for suction or irrigation and can be switched between the two in-situ.


As shown in FIG. 2E, the internal balloon inflation/deflation conduit 398 can be made to have a cross-section which is not circular, but rather is flattened in a generally rounded sickle shape in order to accommodate an endoscope 399 having a larger diameter D than would be available if the inflation/deflation conduit had a circular cross-section. In this way, the first conduit 399b can be kept small while still accommodating a larger diameter endoscope.


As shown in FIG. 3A the catheter can be formed to have a bend 400 to allow more convenient and proper placement of the balloon during surgical procedures. The angle A formed by the bend is selected according the anatomy of the patient and the procedure being performed. Typically, the angle will be between 0 degrees (completely straight) and 130 degrees. There is a bend having a given radius which is preferably between about 0.05 inch and about 3 inches, and typically about 0.13 inch, and can be formed such that distal segment 137 is oriented 60 degrees to 130 degrees, preferably 90 degrees, to proximal segment 139. The axial distance DB from the distal tip 184 of distal segment 137 to the outer wall of proximal segment 139 of outer tube of the catheter 136 is 4 mm to 30 mm, preferably 14 mm. The proximal neck 178 may be bonded on distal segment 137 of tube 136 or extend over bend 138 onto the distal end portion of proximal segment 139 of tube 136. Extension of the proximal neck 178 onto bend 138 and proximal segment 139 allows a greater length of the working diameter, i.e., center region 174, to be on distal segment 137 of tube 136.


The length of the distal segment is short enough to allow it to be rotated within the nasal cavity and thus enter from the nasal cavity into the sinus at the desired angle. The distal segment is long enough to allow a balloon of sufficient length and diameter to be attached for dilation of an opening through the lateral nasal and sinus wall, duct, ostium or choana. The balloon material is attached with adhesive to the very distal portion of the distal segment and to the proximal portion of the distal segment, the bend, and the very distal portion of the proximal segment. A longer working segment of balloon can be used because the area of adhesion of the balloon includes the bend and the distal portion of the proximal segment. A 7 mm inflated diameter angled balloon is used to treat the maxillary sinus and a 5 mm inflated diameter angled balloon is to treat the frontal sinus. The balloon diameter can vary from about 2 to 20 mm in diameter.


The catheter is formed to have sufficient stiffness and column strength to be pushed through a surgically prepared small, tight opening from the sinus into the nose, through a sinus or osteum or duct, or into a sinus cavity, or into the choana. Therefore, at least one of the tubes, and preferably the largest outer tube is formed from a hypotube of stainless steel or other rigid or semi-rigid, durable, biocompatible material. However, it can also be advantageous to form the catheter such that it has a stiffness which allows it to be hand bent by the surgeon prior to or even during surgery. This stiffness tradeoff can lead to a catheter which is difficult to bend properly so as not to create kinks in one or more of the conduits, and which is essentially hand unbendable. A type of steel having a higher malleability can be used which can allow sharper bending without kinking. In addition, most commercially available flexible endoscopes are not intended to be bent further than a minimum radius. In other words, bends in the flexible body of the endoscope should not be sharper than a minimum radius. Therefore, as shown in FIG. 3B, the surgeon should take care not to bend the bendable catheter to have a curve sharper than a given radius R.


As shown in FIG. 3C, as part of the kit, the surgeon is provided with a manual bending tool 500 similar to a pipe bending tool used by plumbers. The tool has a rigid, arcuate contact plate 501 in a generally half-pipe shape having a lateral diameter D which is commensurate with the outer surface diameter of the catheter body. This provides the tool with a first surface which can intimately contact and bear against a portion of the catheter body proximate to the axial location of the intended bend. The plate is also curved longitudinally to have a given radius R. A releasably adjustable strap 502 is provided for temporarily fastening a portion of the catheter body to the tool. The strap has a number of button holes 503 for engaging a button 504 on the tool to accommodate a range of catheter body outer diameters. A handle 505 provides for manual control of the tool by the surgeon. In this way the surgeon can precisely shape the catheter, even during surgery if necessary, to have one or more bends of a given bend radius R. If a flexible endoscope is to be treaded through the catheter, the given bend radius should be greater than or equal to the minimum bend radius of the endoscope. For many applications the preferred bend radius is at least 0.5 centimeter. Further, tools having different radiuses can be supplied in the kit. Further the surgeon can form bends outside the plane of prior bends, thereby making a custom three dimensional rigid catheter for a given patient and procedure.


Referring now to FIG. 3D, there is shown an alternate embodiment of the suctioning and irrigating catheter 430 having a balloon 431 which, when inflated, has a diameter in a medial section DM which is smaller than the diameter on adjacent proximal DP and distal sections DD. This allows the tissue/balloon interface to have greater axial stability during inflation. The substantially barbell shaped balloon can be formed a number of ways. The preferred approach provides an axially medial section of the balloon having a relatively greater thickness TM than the thickness of adjacent proximal TP and distal TD sections. The thickness of the proximal and distal sections is preferably between about 0.0001 inch and about 0.1 inch, and most typically about 0.002 inch. The thickness of the medial section is preferably between about 0.0001 inch and about 0.1 inch, and most typically about 0.004 inch.


Referring now to FIGS. 3E and 3F, there is shown an alternate embodiment of the suctioning and irrigating catheter 530 having a balloon 531 mounted upon the distal end segment 532 of a body 533 made from a durable, biocompatible, flexible material such as polyethylene or high malleability steel. The catheter has a first, inflation/deflation supply tube 534 for operating the balloon, and a second, suctioning tube 535 terminating at a distal suctioning port 536 located distally from the balloon. The flexible body catheter also has a third tube 537 shaped and dimension to be fitted as a sheath over an oblong, rigid, rod-like, rigidizing member 538 having a blunted distal end 539. The sheath has an open proximal end 540 and a constricted, small diameter opening or nozzle 541 at a distal end 543 and a central lumen having an inner diameter slightly larger than the outer diameter 542 of the rigidizing member. Once the body is fitted over the rigidizing member, the catheter has sufficient stiffness and column strength to allow it to be pushed into the intended space in the patient. Once emplaced and the rigidizing member can be withdrawn leaving the flexible body to more comfortably conform to the patients internal anatomy.


It should be noted that the nozzle 541 is sized to prevent passage of the rigidizing member therethrough but does allow the sheath to also act as a fluid conduit for irrigation and/or suctioning purposes once the rigidizing member is removed. Alternately, the distal end 543 of the sheath can be completely sealed off. Alternately, the rigidizing member can be hollow such as in the form of a hypotube, or otherwise shaped to allow for passage of fluid through the open distal ended sheath while the rigidizing member is inserted.


Referring now to FIGS. 3G-3I, there are shown differently shaped rigidizing members. In FIG. 3G the rigidizing member 550 is shaped to have a bend 551 which orients a distal portion 552 at an angle AR to a proximal portion 553 of the member proximal to the bend. The member in FIG. 3F shows an angle AR of about 0 degrees. The member in FIG. 3G shows an angle AR of about 60 degrees. The member in FIG. 3H shows an angle AR of about 90 degrees. The member in FIG. 3I shows an angle AR of about 130 degrees.


As will be described below, an angled suctioning and irrigating catheter 130 and a “straight” suctioning and irrigating catheter 230 can be used in different method steps for treating various prepared openings, naturally occurring ostia and ducts, choana, and sinus cavities. Depending on the size of the anatomical structures and the procedure being performed, the surgeon may also decide whether to utilize a suctioning and irrigating balloon catheter having an integrated endoscope. It is also to be noted that dimensions of the catheters are selected to accommodate different conditions in the paranasal sinus system. For example, the outer diameters of the distal segments with the balloon deflated are selected so that the respective distal segments with the balloon deflated will fit snugly with the prepared openings, natural ostia or ducts, choana and sinus cavities into which these distal segments are to be pushed. As already mentioned, the working inflated diameters of the balloons differ depending on the size required to treat different parts of the paranasal sinus system. Accordingly, the surgeon can, at the time surgery is begun, have available a set of sinus balloon catheters which are angled or straight, the balloons of which have appropriate inflated working diameters, and which have appropriate outer diameters with the balloon deflated that will enable the catheter in question to be pushed into the respective prepared opening, natural ostium or duct or sinus cavity to be excised.


It is also useful to apply a lubricious coating to the balloon material to facilitate pushing it through the lateral nasal wall and sinus wall into the sinus.


Turning to FIGS. 4 and 5, in a method of performing balloon catheter antrostomy of the maxillary ostium, the middle turbinate 20 is retracted medially to gain access to the middle meatus 22. In some cases the middle turbinate is resected. The ethmoid infundibulum 24 is exposed by using cutting forceps 67 to remove part of the uncinate process 26 (FIG. 4). Distal segment 137 of balloon catheter 130 is then pushed through the maxillary ostium 41 (which is in ethmoid infundibulum 24) into the maxillary sinus 21. In some cases however, the maxillary ostium can be entered by the balloon catheter without removal of the uncinate process. As seen in FIG. 5, balloon 134 is inflated to between about 1 and 17 bars, and most typically about 9 bars (atmospheres) for between about 1 second and 20 minutes, and most typically about 20 seconds then deflated. Distal segment 137 of balloon catheter 130 is slightly repositioned to insure full dilation and inflated again to 9 bars for 20 seconds. Balloon 134 is then deflated, and catheter 130 is removed from the now enlarged ostium 41. The irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus and other debris from the surrounding tissues, while the endoscope function provides good visualization for the surgeon. In this way, the surgeon does not need to hold a separate suction catheter and an irrigating cannula in addition to the endoscope.


Turning to FIGS. 6 and 7, in a method of performing a middle meatal maxillary antrostomy, an initial opening is made in the fontanelle 40 (section of thin membranous tissue without bone of the medial maxillary sinus wall 42 which is also a portion of the lateral nasal wall 44). This is performed by bringing a 45 degree upbiting Blakesely punch 60 into nasal cavity 38 along the lateral nasal wall 44 just superior to the inferior turbinate 46 at the midpoint of its horizontal axis to perforate fontanelle 40 to create a new 3 mm opening 50 (FIG. 6). The punch 60 is removed, and sinus balloon catheter 130 is brought into nasal cavity 38 and pushed into the new opening 50 in fontanelle 40 of lateral nasal wall 44 (FIG. 7). Balloon 134 is inflated to 9 bars for 20 seconds then deflated. Balloon catheter 130 is slightly repositioned in the enlarged opening 50 to insure thorough dilation and inflated again to 9 bars for 20 seconds. Balloon catheter 130 is then deflated and withdrawn from opening 50 and nasal cavity 38. The irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus and other debris from the surrounding tissues, while the endoscope function provides good visualization for the surgeon.


As seen in FIGS. 8 and 9, in a method of inferior meatal antrostomy, the inferior turbinate 46 has been displaced medially. A sharp dissector 64 is introduced into nasal cavity 38 and used to perforate lateral nasal wall 44 in the inferior meatus 52 to create an opening 56 in lateral nasal wall 44 (FIG. 8). Dissector 64 is withdrawn from nasal cavity 38. The deflated balloon catheter 130 is introduced into the nasal cavity 38, and distal segment 137 of balloon catheter 130 is pushed through opening 56 in lateral nasal wall 44. The balloon 134 is inflated to 9 bars for 20 seconds then deflated. Deflated balloon 134 is slightly repositioned to assure total dilation of the opening 56. A second dilation of the balloon 134 to a pressure of 9 bars for 20 seconds is performed. The balloon catheter 130 is then deflated and withdrawn from opening 56 and nasal cavity 38. The irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus and other debris from the surrounding tissues, while the endoscope function provides good visualization for the surgeon.


A balloon catheter ethmoidectomy of the anterior ethmoid sinus is shown in FIGS. 10-12. The middle turbinate 20 (FIG. 5) has been retracted medially to gain access to the middle meatus 22 (FIG. 5). In some cases, the middle turbinate may be partially or totally removed. The ethmoid infundibulum 24 is exposed by removing part of the uncinate process 26 (FIG. 4). A fine cutting forceps 66 is used to remove the anterior wall 30 of the ethmoid bulla 28 (FIG. 10). After anterior wall 30 of ethmoid bulla 28 is removed, the straight balloon catheter 230 is brought into nasal cavity 38, and distal segment 237 is pushed into bulla 28 (FIG. 11). In some cases, the catheter can be pushed directly into the sinus without removing the anterior wall or the uncinate process. The irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus, a mucocele, if present, and other debris from the surrounding tissues and endoscope, while the endoscope function provides good visualization for the surgeon. The balloon 234 is inflated to 9 bars for 20 seconds then deflated. The catheter 230 is then withdrawn from bulla 28. The distal segment 237 of balloon catheter 230 is then pushed into the anterior ethmoid air cells 29 which lie posterior to the previously removed ethmoid bulla 28 (FIG. 12). The balloon 234 is inflated to 9 bars for 20 seconds then deflated. Balloon catheter 230 is then slightly repositioned to insure thorough dilation and inflated again to 9 bars for 20 seconds, deflated, and removed from the area of anterior ethmoid cells 29. Again the irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus, a mucocele, if present, and other debris from the relevant structures, while the endoscope function provides good visualization for the surgeon.



FIGS. 13 and 14 illustrate an ethmoidectomy of the posterior ethmoid sinus. When the posterior ethmoid sinus cells 31 must be removed, the basal lamella 32 of the middle turbinate 20 is perforated with a punch 68 (FIG. 13). Distal segment 237 of balloon catheter 230 is then pushed through the new opening 34 in the basal lamella 32 of the middle turbinate 20 into the posterior ethmoid air cells 31 and inflated 9 bars for 20 seconds (FIG. 14). In some cases the catheter may be pushed directly into the posterior ethmoid sinus without first perforating with a punch. The balloon catheter 230 is then deflated, slightly repositioned, and again inflated 9 bars for 20 seconds. The balloon catheter 230 is then deflated and withdrawn. The irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus, a mucocele, if present, and other debris from the surrounding tissues, while the endoscope function provides good visualization for the surgeon.



FIG. 15 shows sinusotomy of the sphenoid sinus. After anterior and posterior ethmoidectomy, distal segment 237 of balloon catheter 230 is inserted through the anterior wall 37 of sphenoid sinus 39 (FIG. 15). In some cases the catheter can be placed in the sphenoid sinus without first performing an ethmoidectomy. The balloon 234 is then inflated to 9 bars for 20 seconds then deflated. The balloon catheter 230 is slightly repositioned to insure thorough dilation and inflated again to 9 bars for 20 seconds, then deflated, and withdrawn. The irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus, a mucocele, if present, and other debris from the relevant structures, while the endoscope function provides good visualization for the surgeon.



FIG. 16 illustrates sinusotomy of the frontal sinus. After an anterior ethmoidectomy the nasofrontal duct 36 is exposed and in the surgeon's view. The distal segment 137 of an angled catheter 130 with a 5 mm inflated working diameter is brought into the frontonasal duct 36 and inflated to 9 bars, then deflated. In some cases the catheter can be placed into the frontonasal duct and sinus without first performing an ethmoidectomy. The distal segment 137 of the balloon catheter 130 is slightly repositioned to insure complete dilation of the nasofrontal duct 36 and inflated to 9 bars for 20 seconds then deflated and withdrawn. The irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus, a mucocele, if present, and other debris from the surrounding tissues, while the endoscope function provides good visualization for the surgeon.



FIG. 17 illustrates balloon catheter dilation of the choana, the posterior opening to the nasal cavity. This procedure can be useful for treating choanal stenosis (narrowing of the choana), and choanal atresia. The distal segment 137 of the balloon catheter 130 is positioned in the choana 299 and inflated to 8 bars for 30 seconds then deflated and withdrawn. The irrigation and suction functions of the catheter are used to irrigate off and suction away blood, pus and other debris from the surrounding tissues, while the endoscope function provides good visualization for the surgeon.


All of the above procedures may be performed in a similar fashion in patients who have had previous sinus surgery and the sinus openings have been obstructed by scar tissue or granulation tissue.


While the preferred embodiment of the invention has been described, modifications can be made and other embodiments may be devised without departing from the spirit of the invention and the scope of the appended claims.

Claims
  • 1. A method of treating a paranasal sinus of a patient using an elongate member, wherein the elongate member comprises a shaft and a treatment feature disposed on the shaft, wherein at least a distal portion of the elongate member is configured to be laterally bendable and inserted into a nostril of the patient, the method comprising: (a) identifying an anatomical structure associated with the paranasal sinus of the patient;(b) laterally bending at least the distal portion of the elongate member relative to a proximal portion of the elongate member during a medical procedure, with the bending being performed according to the identified anatomical structure such that the distal portion is disposed relative to the proximal portion of the elongate member at a bend angle;(c) inserting the distal portion of the elongate member into a nostril of the patient, wherein the distal portion maintains the formed bend angle during the act of inserting;(d) directing the distal portion of the elongate member via the bend angle such that at least the distal portion is within or adjacent to one of the paranasal sinuses, wherein the distal portion maintains the formed bend angle during the act of directing; and(e) treating the paranasal sinus using the treatment feature.
  • 2. The method of claim 1, wherein bending at least the distal portion further comprises: (i) placing at least the distal portion of the elongate member in contact with a bending tool having a bending surface with a predetermined curvature and/or bend angle, and(ii) manipulating the elongate member relative to the bending surface such that a curvature of at least the distal portion corresponds to the predetermined curvature and/or bend angle of the bending surface.
  • 3. The method of claim 2, wherein the bending tool further comprises an engagement feature, and the method further comprises engaging at least the distal portion of the elongate member with the engagement feature to maintain contact between the bending surface and at least the distal portion of the elongate member while manipulating the elongate member.
  • 4. The method of claim 3, wherein the distal portion comprises a tip, wherein the engagement feature further comprises a recess having a shape and size corresponding to at least a portion of the tip, wherein the engaging step further comprises directing at least a portion of the tip into the recess.
  • 5. The method of claim 3, wherein the engagement feature comprises a releasable strap, wherein the method further comprises engaging the elongate member with the strap to retain the elongate member relative to the engagement feature.
  • 6. The method of claim 1, wherein the elongate member comprises a balloon catheter, wherein the treatment feature comprises an expandable balloon disposed on the shaft, wherein the act of treating comprises expanding the balloon to dilate an anatomical feature associated with the paranasal sinus.
  • 7. The method of claim 6, wherein the anatomical feature associated with the paranasal sinus comprises a sinus ostium.
  • 8. The method of claim 6, further comprising adjusting a position of the expandable balloon relative to a distal end of the shaft.
  • 9. The method of claim 1, wherein the elongate member comprises a lumen, wherein the method further comprises inserting an illumination device having a light emitting feature into the lumen.
  • 10. The method of claim 9, further comprising confirming a position of the elongate member via transillumination provided by illumination from the light emitting feature.
  • 11. The method of claim 1, further comprising: (a) removing the elongate member from the patient;(b) manipulating at least the distal portion of the elongate member according to an anatomical characteristic of another one of the paranasal sinuses;(c) re-inserting the distal portion of the elongate member into a nostril of the patient;(d) directing the distal portion of the elongate member such that at least the distal portion is within or adjacent to the other one of the paranasal sinuses; and(e) treating the other one of the paranasal sinuses using the treatment feature.
  • 12. The method of claim 1, wherein the act of treating the paranasal sinus comprises irrigating the paranasal sinus with a liquid.
  • 13. The method of claim 12, further comprising the step of suctioning the liquid and other material in or adjacent to the paranasal sinus through a lumen in the shaft.
  • 14. The method of claim 13, wherein the lumen is in communication with a port at a proximal portion of the shaft, wherein the method further comprises: (a) fluidly coupling a source of liquid to the port to perform the act of irrigating the tissue;(b) decoupling the source of liquid from the port; and(c) coupling a suction device to the port to perform the act of suctioning the liquid and other material.
  • 15. A method of treating a paranasal sinus of a patient using a balloon catheter, wherein the balloon catheter comprises an elongate shaft including an expandable balloon disposed thereon, wherein at least a distal portion of the balloon catheter is configured to be inserted into a nostril of the patient, the method comprising: (a) identifying an anatomical structure associated with the paranasal sinus of the patient;(b) deforming at least the distal portion of the shaft manually, according to the identified anatomical structure;(c) inserting the distal portion of the shaft into a nostril of the patient, wherein the distal portion maintains the deformation during the act of inserting;(d) directing the distal portion of the shaft to the target treatment area, wherein the distal portion maintains the deformation during the act of directing; and(e) dilating the target treatment area with the expandable balloon.
  • 16. The method of claim 15, wherein the act of deforming at least the distal portion further comprises bending at least the distal portion to a predetermined radius of curvature or bend angle.
  • 17. The method of claim 15, wherein the act of deforming at least the distal portion further comprises: (i) placing at least the distal portion of the elongate member in contact with a bending tool having at least one bending surface, and(ii) manipulating the elongate member relative to the bending surface such that a curvature of at least the distal portion corresponds to a curvature of the bending surface.
  • 18. The method of claim 17, wherein the method further comprises selecting the bending tool from a plurality of bending tools having different radii of curvature and/or different bend angles.
  • 19. The method of claim 17, wherein the bending tool comprises a plurality of bending surfaces, wherein each of the bending surfaces includes a different radius of curvature and/or bend angle.
  • 20. A method of treating a paranasal sinus of a patient using an elongate member, wherein the elongate member comprises a shaft and a treatment feature disposed on the shaft, wherein at least a distal portion of the elongate member is configured to be inserted into a nostril of the patient, the method comprising: (a) identifying an anatomical structure associated with the paranasal sinus of the patient;(b) manipulating at least the distal portion of the elongate member according to the identified anatomical structure to form a bend in the elongate member according to the identified anatomical structure;(c) inserting the distal portion of the elongate member into a nostril of the patient, wherein the bend is retained along the distal portion during the act of inserting;(d) directing the distal portion of the elongate member such that at least the distal portion is within or adjacent to one of the paranasal sinuses, wherein the bend is retained along the distal portion during the act of directing;(e) irrigating the paranasal sinus with a liquid delivered through the shaft to the treatment feature; and(f) suctioning the liquid and other material in or adjacent to the paranasal sinus at the treatment feature through the shaft.
  • 21. The method of claim 20, further comprising a side lumen parallel and exterior to the shaft, wherein the method further comprises expanding the treatment feature to dilate an anatomical feature associated with the paranasal sinus by delivering fluid through the side lumen.
PRIOR APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 13/353,154, entitled “Multi-Conduit Balloon Conduit,” filed Jan. 18, 2012, published as U.S. Publication No. 2012/0172835, now U.S. Pat. No. 8,968,269, issued Mar. 3, 2015, which is a divisional of U.S. patent application Ser. No. 11/243,468, entitled “Multi-Conduit Balloon Catheter,” filed on Oct. 4, 2005, and issued as U.S. Pat. No. 8,114,113, which is a continuation-in-part of U.S. patent application Ser. No. 11/233,955, entitled “Irrigating and Suctioning Balloon Catheter,” filed on Sep. 23, 2005, now abandoned.

US Referenced Citations (814)
Number Name Date Kind
446173 Hancock Feb 1891 A
504424 De Pezzer Sep 1893 A
513667 Buckingham Jan 1894 A
705346 Hamilton Jul 1902 A
798775 Forsyth Sep 1905 A
816792 Green et al. Apr 1906 A
1080934 Shackleford Dec 1913 A
1200267 Sunnergren Oct 1916 A
1650959 Pitman Nov 1927 A
1735519 Vance Nov 1929 A
1828986 Stevens Oct 1931 A
1878671 Cantor Sep 1932 A
2201749 Vandegrift May 1940 A
2525183 Robinson Mar 1947 A
2493326 Trinder Jan 1950 A
2847997 Tibone Aug 1958 A
2899227 Gschwend Aug 1959 A
2906179 Bower Sep 1959 A
2995832 Alderson Aug 1961 A
3009265 Bexark Nov 1961 A
3037286 Bower Jun 1962 A
3173418 Baran Mar 1965 A
3347061 Stuemky Oct 1967 A
3376659 Asin et al. Apr 1968 A
3384970 Avalear May 1968 A
3393073 Reutenauer et al. Jul 1968 A
3435826 Fogarty Apr 1969 A
3469578 Bierman Sep 1969 A
3481043 Esch Dec 1969 A
3486539 Jacuzzi Dec 1969 A
3506005 Gilio et al. Apr 1970 A
3509638 Macleod May 1970 A
3515888 Lewis Jun 1970 A
3527220 Summers Sep 1970 A
3531868 Stevenson Oct 1970 A
3552384 Pierie et al. Jan 1971 A
3624661 Shebanow et al. Nov 1971 A
3731963 Pond May 1973 A
3792391 Ewing Feb 1974 A
3800788 White Apr 1974 A
3802096 Matern Apr 1974 A
3804081 Kinoshita Apr 1974 A
3834394 Hunter et al. Sep 1974 A
3850176 Gottschalk Nov 1974 A
3856000 Chikama Dec 1974 A
3859993 Bitner Jan 1975 A
3871365 Chikama Mar 1975 A
3894538 Richter Jul 1975 A
3903893 Scheer Sep 1975 A
3910617 Scalza et al. Oct 1975 A
3921636 Zaffaroni Nov 1975 A
3948254 Zaffaroni Apr 1976 A
3948262 Zaffaroni Apr 1976 A
3967618 Zaffaroni Jul 1976 A
3993069 Buckles et al. Nov 1976 A
3993072 Zaffaroni Nov 1976 A
3993073 Zaffaroni Nov 1976 A
4016251 Higuchi et al. Apr 1977 A
4052505 Higuchi et al. Oct 1977 A
4053975 Olbrich et al. Oct 1977 A
4069307 Higuchi et al. Jan 1978 A
4102342 Akiyama et al. Jul 1978 A
4138151 Nakao Feb 1979 A
4184497 Kolff et al. Jan 1980 A
4198766 Camin Apr 1980 A
4207890 Mamajek et al. Jun 1980 A
4209919 Kirikae et al. Jul 1980 A
4213095 Falconer Jul 1980 A
4217898 Theeuwes Aug 1980 A
4268115 Slemon et al. May 1981 A
4299226 Banka Nov 1981 A
4299227 Lincoff Nov 1981 A
4312353 Shahbabian Jan 1982 A
4338941 Payton Jul 1982 A
D269204 Trepp May 1983 S
4388941 Riedhammer Jun 1983 A
RE31351 Falconer Aug 1983 E
4435716 Zandbergen Mar 1984 A
4437856 Valli Mar 1984 A
4450150 Sidman May 1984 A
4459977 Pizon et al. Jul 1984 A
4464175 Altman et al. Aug 1984 A
4471779 Antoshkiw et al. Sep 1984 A
4499899 Lyons, III Feb 1985 A
4554929 Samson et al. Nov 1985 A
4564364 Zaffaroni et al. Jan 1986 A
4571239 Heyman Feb 1986 A
4571240 Samson et al. Feb 1986 A
4581017 Sahota Apr 1986 A
4585000 Hershenson Apr 1986 A
D283921 Dyak May 1986 S
4589868 Dretler May 1986 A
4596528 Lewis et al. Jun 1986 A
D284892 Glassman Jul 1986 S
4603564 Kleinhany et al. Aug 1986 A
4606346 Berg et al. Aug 1986 A
4607622 Fritch et al. Aug 1986 A
4637389 Heyden Jan 1987 A
4639244 Rizk et al. Jan 1987 A
4645495 Vaillancourt Feb 1987 A
4669469 Gifford, III Jun 1987 A
4672961 Davies Jun 1987 A
4675613 Naegeli et al. Jun 1987 A
4691948 Austin, Jr. et al. Sep 1987 A
4708434 Tsuno Nov 1987 A
4708834 Cohen et al. Nov 1987 A
4726772 Amplatz Feb 1988 A
4736970 McGourty et al. Apr 1988 A
4737141 Spits Apr 1988 A
4748869 Ohtsuka Jun 1988 A
4748969 Wardle Jun 1988 A
4748986 Morrison et al. Jun 1988 A
4755171 Tennant Jul 1988 A
4771776 Powell et al. Sep 1988 A
4793359 Sharrow Dec 1988 A
4795439 Guest Jan 1989 A
4796629 Grayzel Jan 1989 A
4803076 Ranade Feb 1989 A
4811743 Stevens Mar 1989 A
4815478 Buchbinder et al. Mar 1989 A
4819619 Augustine et al. Apr 1989 A
4846186 Box et al. Jul 1989 A
4847258 Sturm et al. Jul 1989 A
4851228 Zenter et al. Jul 1989 A
4854330 Evans, III et al. Aug 1989 A
4862874 Kellner Sep 1989 A
4867138 Kubota et al. Sep 1989 A
4883465 Brennan Nov 1989 A
4897651 DeMonte Jan 1990 A
4898577 Badger et al. Feb 1990 A
4917419 Mora, Jr. et al. Apr 1990 A
4917667 Jackson Apr 1990 A
4919112 Siegmund Apr 1990 A
4920967 Cottonaro et al. May 1990 A
4925445 Sakamoto et al. May 1990 A
4940062 Hampton et al. Jul 1990 A
4943275 Stricker Jul 1990 A
4946466 Pinchuk et al. Aug 1990 A
4961433 Christian Oct 1990 A
4966163 Kraus et al. Oct 1990 A
4984581 Stice Jan 1991 A
4994033 Shockey et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
4998917 Gaiser et al. Mar 1991 A
5001825 Halpern Mar 1991 A
5002322 Fukumoto Mar 1991 A
5019075 Spears et al. May 1991 A
5019372 Folkman et al. May 1991 A
5020514 Heckele Jun 1991 A
5021043 Becker et al. Jun 1991 A
5024650 Hagiwara et al. Jun 1991 A
5024658 Kozlov et al. Jun 1991 A
5026384 Farr et al. Jun 1991 A
5030227 Rosenbluth et al. Jul 1991 A
5041089 Mueller et al. Aug 1991 A
5044678 Detweiler Sep 1991 A
5053007 Euteneuer Oct 1991 A
5055051 Duncan Oct 1991 A
5060660 Gamble et al. Oct 1991 A
5067489 Lind Nov 1991 A
5069226 Tamauchi et al. Dec 1991 A
5087244 Wolinsky et al. Feb 1992 A
5087246 Smith Feb 1992 A
5090595 Vandoninck Feb 1992 A
5090910 Narlo Feb 1992 A
5112228 Zouras May 1992 A
5116311 Lofstedt May 1992 A
5127393 McFarlin et al. Jul 1992 A
5137517 Loney et al. Aug 1992 A
5139510 Goldsmith, III et al. Aug 1992 A
5139832 Hayashi et al. Aug 1992 A
D329496 Wotton Sep 1992 S
5152747 Oliver Oct 1992 A
5156595 Adams Oct 1992 A
5163989 Campbell et al. Nov 1992 A
5167220 Brown Dec 1992 A
5168864 Shockey Dec 1992 A
5169043 Catania Dec 1992 A
5169386 Becker et al. Dec 1992 A
5171233 Amplatz et al. Dec 1992 A
5180368 Garrison Jan 1993 A
5183470 Wttermann Feb 1993 A
5189110 Ikematu et al. Feb 1993 A
5195168 Yong Mar 1993 A
5197457 Adair Mar 1993 A
5207695 Trout, III May 1993 A
5211952 Spicer et al. May 1993 A
5215105 Kizelshteyn et al. Jun 1993 A
5221260 Burns et al. Jun 1993 A
5226302 Anderson Jul 1993 A
5230348 Ishibe et al. Jul 1993 A
5236422 Eplett, Jr. Aug 1993 A
5243996 Hall Sep 1993 A
D340111 Yoshikawa Oct 1993 S
5250059 Andreas et al. Oct 1993 A
5251092 Brady et al. Oct 1993 A
5252183 Shaban et al. Oct 1993 A
5255679 Imran Oct 1993 A
5256144 Kraus et al. Oct 1993 A
5263926 Wilk Nov 1993 A
5264260 Saab Nov 1993 A
5267965 Deniega Dec 1993 A
5270086 Hamlin Dec 1993 A
5273052 Kraus et al. Dec 1993 A
5275593 Easley et al. Jan 1994 A
5286254 Shapland et al. Feb 1994 A
5290310 Makower et al. Mar 1994 A
5295694 Levin Mar 1994 A
5300085 Yock Apr 1994 A
5304123 Atala et al. Apr 1994 A
5308326 Zimmon May 1994 A
5313967 Lieber et al. May 1994 A
5314417 Stephens et al. May 1994 A
5315618 Yoshida May 1994 A
5324306 Makower et al. Jun 1994 A
5333620 Moutafis et al. Aug 1994 A
5334167 Cocanower Aug 1994 A
5336163 DeMane et al. Aug 1994 A
5341818 Abrams et al. Aug 1994 A
5342296 Persson et al. Aug 1994 A
5343865 Gardineer et al. Sep 1994 A
5345945 Hodgson et al. Sep 1994 A
5346075 Nichols et al. Sep 1994 A
5346508 Hastings Sep 1994 A
5348537 Wiesner et al. Sep 1994 A
5350396 Eliachar Sep 1994 A
5356418 Shturman Oct 1994 A
5368049 Raman et al. Nov 1994 A
5368558 Nita Nov 1994 A
5368566 Crocker Nov 1994 A
5372138 Crowley et al. Dec 1994 A
5372584 Zink et al. Dec 1994 A
D355031 Yoshikawa Jan 1995 S
5386817 Jones Feb 1995 A
5391147 Imran et al. Feb 1995 A
5391179 Mezzoli Feb 1995 A
5402799 Colon et al. Apr 1995 A
5409444 Kensey Apr 1995 A
5411475 Atala et al. May 1995 A
5411476 Abrams et al. May 1995 A
5411477 Saab May 1995 A
5415633 Lazarus May 1995 A
5425370 Vilkomerson Jun 1995 A
5439446 Barry Aug 1995 A
5441494 Ortiz Aug 1995 A
5441497 Narciso, Jr. Aug 1995 A
5450853 Hastings et al. Sep 1995 A
5451221 Cho et al. Sep 1995 A
5454817 Katz Oct 1995 A
5458572 Campbell et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5465733 Hinohara et al. Nov 1995 A
5478565 Geria Dec 1995 A
5486181 Cohen et al. Jan 1996 A
5496338 Miyagi et al. Mar 1996 A
5497783 Urick et al. Mar 1996 A
5507301 Wasicek et al. Apr 1996 A
5507725 Savage et al. Apr 1996 A
5507766 Kugo et al. Apr 1996 A
5512055 Domb et al. Apr 1996 A
5514128 Hillsman et al. May 1996 A
5519532 Broome May 1996 A
5531676 Edwards et al. Jul 1996 A
5533985 Wang Jul 1996 A
5538008 Crowe Jul 1996 A
5546964 Stangerup Aug 1996 A
5549542 Kovalcheck Aug 1996 A
5558073 Pomeranz et al. Sep 1996 A
5558652 Henke Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5568809 Ben-Haim Oct 1996 A
5571086 Kaplan et al. Nov 1996 A
5578007 Imran Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5584827 Korteweg et al. Dec 1996 A
5591194 Berthiaume Jan 1997 A
5599284 Shea Feb 1997 A
5599304 Shaari Feb 1997 A
5599576 Opolski Feb 1997 A
5601087 Gunderson et al. Feb 1997 A
5601594 Best Feb 1997 A
5607386 Flam Mar 1997 A
5617870 Hastings et al. Apr 1997 A
5626374 Kim May 1997 A
5633000 Grossman et al. May 1997 A
5634908 Loomas Jun 1997 A
5638819 Manwaring et al. Jun 1997 A
5643251 Hillsman et al. Jul 1997 A
5645789 Roucher, Jr. Jul 1997 A
5647361 Damadian Jul 1997 A
5656030 Hunjan et al. Aug 1997 A
5662674 Debbas Sep 1997 A
5664567 Linder Sep 1997 A
5664580 Erickson et al. Sep 1997 A
5665052 Bullard Sep 1997 A
5669388 Vilkomerson Sep 1997 A
5673707 Chandrasekaran Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5682199 Lankford Oct 1997 A
5685838 Peters et al. Nov 1997 A
5685847 Barry Nov 1997 A
5690373 Luker Nov 1997 A
5693065 Rains, III Dec 1997 A
5694945 Ben-Haim Dec 1997 A
5697159 Linden Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5707389 Louw et al. Jan 1998 A
5708175 Loyanagi et al. Jan 1998 A
5711315 Jerusalmy Jan 1998 A
5713839 Shea Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5718702 Edwards Feb 1998 A
5720300 Fagan et al. Feb 1998 A
5722401 Pietroski et al. Mar 1998 A
5722984 Fischell et al. Mar 1998 A
5729129 Acker Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5733248 Adams et al. Mar 1998 A
5752513 Acker et al. May 1998 A
5762604 Kieturakis Jun 1998 A
5766158 Opolski Jun 1998 A
5775327 Randolph et al. Jul 1998 A
5776158 Chou Jul 1998 A
5779699 Lipson Jul 1998 A
5789391 Jacobus et al. Aug 1998 A
5792100 Shantha Aug 1998 A
5797878 Bleam Aug 1998 A
5803089 Ferre et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5819723 Joseph Oct 1998 A
5820568 Willis Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5824048 Tuch Oct 1998 A
5824173 Fontirroche et al. Oct 1998 A
5827224 Shippert Oct 1998 A
5830188 Abouleish Nov 1998 A
5833608 Acker Nov 1998 A
5833645 Lieber et al. Nov 1998 A
5833650 Imran Nov 1998 A
5833682 Amplatz et al. Nov 1998 A
5836638 Slocum Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5843089 Sahatjian et al. Dec 1998 A
5843113 High Dec 1998 A
5846259 Berthiaume Dec 1998 A
5857998 Barry Jan 1999 A
5862693 Myers et al. Jan 1999 A
5865767 Frechette et al. Feb 1999 A
5872879 Hamm Feb 1999 A
5873835 Hastings Feb 1999 A
5887467 Butterweck et al. Mar 1999 A
5902247 Coe et al. May 1999 A
5902333 Roberts et al. May 1999 A
5904701 Daneshvar May 1999 A
5908407 Frazee et al. Jun 1999 A
5916193 Stevens et al. Jun 1999 A
5928192 Maahs Jul 1999 A
5931811 Haissaguerre et al. Aug 1999 A
5931818 Werp et al. Aug 1999 A
5932035 Koger et al. Aug 1999 A
5935061 Acker et al. Aug 1999 A
5941816 Barthel et al. Aug 1999 A
D413629 Wolff et al. Sep 1999 S
5947988 Smith Sep 1999 A
5949929 Hamm Sep 1999 A
5954693 Barry Sep 1999 A
5954694 Sunseri Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5968085 Morris et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5979290 Simeone Nov 1999 A
5980503 Chin Nov 1999 A
5980551 Summers et al. Nov 1999 A
5984945 Sirhan Nov 1999 A
5985307 Hanson et al. Nov 1999 A
5997562 Zadno-Azizi et al. Dec 1999 A
6006126 Cosman Dec 1999 A
6006130 Higo et al. Dec 1999 A
6007516 Burbank et al. Dec 1999 A
6007991 Sivaraman et al. Dec 1999 A
6010511 Murphy Jan 2000 A
6013019 Fischell et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6016429 Khafizov et al. Jan 2000 A
6016439 Acker Jan 2000 A
6019736 Avellanet et al. Feb 2000 A
6019777 Mackenzie Feb 2000 A
6021340 Randolph et al. Feb 2000 A
6022313 Ginn et al. Feb 2000 A
6027461 Walker et al. Feb 2000 A
6027478 Katz Feb 2000 A
6039699 Viera Mar 2000 A
6042561 Ash et al. Mar 2000 A
6048299 von Hoffmann Apr 2000 A
6048358 Barak Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056702 Lorenzo May 2000 A
6059752 Segal May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6079755 Chang Jun 2000 A
6080190 Schwartz Jun 2000 A
6083148 Williams Jul 2000 A
6083188 Becker et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6092846 Fuss et al. Jul 2000 A
6093150 Chandler et al. Jul 2000 A
6093195 Ouchi Jul 2000 A
6109268 Thapliyal et al. Aug 2000 A
6113567 Becker Sep 2000 A
6117105 Bresnaham et al. Sep 2000 A
6122541 Cosman et al. Sep 2000 A
6123697 Shippert Sep 2000 A
6136006 Johnson et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6142957 Diamond et al. Nov 2000 A
6148823 Hastings Nov 2000 A
6149213 Sokurenko et al. Nov 2000 A
6159170 Borodulin et al. Dec 2000 A
6171298 Matsuura et al. Jan 2001 B1
6171303 Ben-Haim Jan 2001 B1
6174280 Oneda et al. Jan 2001 B1
6176829 Vilkomerson Jan 2001 B1
6179788 Sullivan Jan 2001 B1
6179811 Fugoso et al. Jan 2001 B1
6183461 Matsuura et al. Feb 2001 B1
6183464 Sharp et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6193650 Ryan, Jr. Feb 2001 B1
6195225 Komatsu et al. Feb 2001 B1
6200257 Winkler Mar 2001 B1
6206870 Kanner Mar 2001 B1
6213975 Laksin Apr 2001 B1
6221042 Adams Apr 2001 B1
6231543 Hegde et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6238364 Becker May 2001 B1
6238391 Olsen et al. May 2001 B1
6241519 Sedleemayer Jun 2001 B1
6249180 Maalej et al. Jun 2001 B1
6254550 McNamara et al. Jul 2001 B1
6268574 Edens Jul 2001 B1
6293957 Peters et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6306105 Rooney et al. Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
D450382 Nestenborg Nov 2001 S
6322495 Snow et al. Nov 2001 B1
6328564 Thurow Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6332891 Himes Dec 2001 B1
6340360 Lyles et al. Jan 2002 B1
6348041 Klint Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6375629 Muni et al. Apr 2002 B1
6383146 Klint May 2002 B1
6386197 Miller May 2002 B1
6389313 Marchitto et al. May 2002 B1
6390993 Cornish et al. May 2002 B1
6394093 Lethi May 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6409863 Williams et al. Jun 2002 B1
6423012 Kato et al. Jul 2002 B1
6425877 Edwards Jul 2002 B1
6432986 Levin Aug 2002 B2
6440061 Wenner et al. Aug 2002 B1
6443947 Marko et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6450975 Brennan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6464650 Jafari et al. Oct 2002 B2
6468202 Irion et al. Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6485475 Chelly Nov 2002 B1
6491940 Levin Dec 2002 B1
6494894 Mirarchi Dec 2002 B2
6500130 Kinsella et al. Dec 2002 B2
6500189 Lang et al. Dec 2002 B1
6503087 Eggert et al. Jan 2003 B1
6503185 Waksman et al. Jan 2003 B1
6503263 Adams Jan 2003 B2
6511418 Shahidi et al. Jan 2003 B2
6514249 Maguire et al. Feb 2003 B1
6517478 Khadem Feb 2003 B2
6524129 Cote et al. Feb 2003 B2
6524299 Tran et al. Feb 2003 B1
6526302 Hassett Feb 2003 B2
6527753 Sekine et al. Mar 2003 B2
6529756 Phan et al. Mar 2003 B1
6533754 Hisamatsu et al. Mar 2003 B1
6536437 Dragisic Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6543452 Lavigne Apr 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6551239 Renner et al. Apr 2003 B2
6569146 Werner et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6571131 Nguyen May 2003 B1
6572538 Takase Jun 2003 B2
6572590 Stevens et al. Jun 2003 B1
6579285 Sinofsky Jun 2003 B2
6585639 Kotmel et al. Jul 2003 B1
6585717 Wittenberger et al. Jul 2003 B1
6585794 Shimoda et al. Jul 2003 B2
6589237 Woloszko et al. Jul 2003 B2
6591130 Shahidi Jul 2003 B2
6596009 Jelic Jul 2003 B1
6607546 Murken Aug 2003 B1
6612999 Brennan et al. Sep 2003 B2
6613066 Fukaya et al. Sep 2003 B1
6616601 Hayakawa Sep 2003 B2
6616659 de la Torre et al. Sep 2003 B1
6616678 Nishtala et al. Sep 2003 B2
6616913 Mautone Sep 2003 B1
6619085 Hsieh Sep 2003 B1
6634684 Spiessl Sep 2003 B2
6638233 Corvi et al. Oct 2003 B2
6638268 Niazi Oct 2003 B2
6638291 Ferrera et al. Oct 2003 B1
6645193 Mangosong Nov 2003 B2
6652472 Jafari et al. Nov 2003 B2
6652480 Imran et al. Nov 2003 B1
6656166 Lurie et al. Dec 2003 B2
6663589 Halevy Dec 2003 B1
6669689 Lehmann et al. Dec 2003 B2
6669711 Noda Dec 2003 B1
6672773 Glenn et al. Jan 2004 B1
6673025 Richardson et al. Jan 2004 B1
6679871 Hahnen Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6689096 Loubens et al. Feb 2004 B1
6689146 Himes Feb 2004 B1
6702735 Kelly Mar 2004 B2
6712757 Becker et al. Mar 2004 B2
6714809 Lee et al. Mar 2004 B2
6716183 Clayman et al. Apr 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716813 Lim et al. Apr 2004 B2
6719749 Schweikert Apr 2004 B1
6719763 Chung et al. Apr 2004 B2
6726701 Gilson et al. Apr 2004 B2
6755812 Peterson et al. Jun 2004 B2
6776772 de Vrijer et al. Aug 2004 B1
6780168 Jellie Aug 2004 B2
6783522 Fischell Aug 2004 B2
6783536 Vilsmeier et al. Aug 2004 B2
6786864 Matsuura et al. Sep 2004 B2
6796960 Cioanta et al. Sep 2004 B2
6811544 Schaer Nov 2004 B2
6817364 Garibaldi et al. Nov 2004 B2
6817976 Rovengo Nov 2004 B2
6827683 Otawara Dec 2004 B2
6827701 MacMahon et al. Dec 2004 B2
6832715 Eungard et al. Dec 2004 B2
D501677 Becker Feb 2005 S
6851290 Meier et al. Feb 2005 B1
6860264 Christopher Mar 2005 B2
6860849 Matsushita et al. Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6890329 Carroll et al. May 2005 B2
6899672 Chin et al. May 2005 B2
6902556 Grimes et al. Jun 2005 B2
6913763 Lerner Jul 2005 B2
6923827 Campbell et al. Aug 2005 B2
6927478 Paek Aug 2005 B2
6939361 Kleshinski Sep 2005 B1
6939374 Banik et al. Sep 2005 B2
6955657 Webler Oct 2005 B1
6966906 Brown Nov 2005 B2
6971998 Rosenman et al. Dec 2005 B2
6979290 Mourlas et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6991597 Gellman et al. Jan 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997941 Sharkey et al. Feb 2006 B2
7004173 Sparks et al. Feb 2006 B2
7008412 Maginot Mar 2006 B2
7011654 Dubrul et al. Mar 2006 B2
7022105 Edwards Apr 2006 B1
7043961 Pandey May 2006 B2
7052474 Castell et al. May 2006 B2
7056284 Martone et al. Jun 2006 B2
7056303 Dennis et al. Jun 2006 B2
7074197 Reynolds et al. Jul 2006 B2
7074426 Kochinke Jul 2006 B2
7097612 Bertolero et al. Aug 2006 B2
7108677 Courtney et al. Sep 2006 B2
7108706 Hogle Sep 2006 B2
7128718 Hojeibane et al. Oct 2006 B2
7131969 Hovda et al. Nov 2006 B1
7140480 Drussel et al. Nov 2006 B2
D534216 Makower et al. Dec 2006 S
7160255 Saadat Jan 2007 B2
7169140 Kume Jan 2007 B1
7169163 Becker Jan 2007 B2
7172562 McKinley Feb 2007 B2
7174774 Pawar et al. Feb 2007 B2
7182735 Shireman et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7214201 Burmeister et al. May 2007 B2
7233820 Gilboa Jun 2007 B2
7235099 Duncavage et al. Jun 2007 B1
7237313 Skujins et al. Jul 2007 B2
7252677 Burwell et al. Aug 2007 B2
7282057 Surti et al. Oct 2007 B2
7294345 Haapakumpu et al. Nov 2007 B2
7294365 Hayakawa et al. Nov 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7316168 van der Knokke et al. Jan 2008 B2
7316656 Shireman et al. Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7326235 Edwards Feb 2008 B2
7338467 Lutter Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7359755 Jones et al. Apr 2008 B2
7361168 Makower et al. Apr 2008 B2
7366562 Dukesherer Apr 2008 B2
7371210 Brock et al. May 2008 B2
7381205 Thommen Jun 2008 B2
7410480 Muni et al. Aug 2008 B2
7419497 Muni et al. Sep 2008 B2
7438701 Theeuwes et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7452351 Miller et al. Nov 2008 B2
7454244 Kassab et al. Nov 2008 B2
7462175 Chang et al. Dec 2008 B2
7471994 Ford et al. Dec 2008 B2
7481218 Djupesland Jan 2009 B2
7481800 Jacques Jan 2009 B2
D586465 Faulkner et al. Feb 2009 S
D586916 Faulkner et al. Feb 2009 S
7488313 Segal et al. Feb 2009 B2
7488337 Saab et al. Feb 2009 B2
7493156 Manning et al. Feb 2009 B2
7500971 Chang et al. Mar 2009 B2
D590502 Geisser et al. Apr 2009 S
7520876 Ressemann et al. Apr 2009 B2
7532920 Ainsworth et al. May 2009 B1
7544192 Eaton et al. Jun 2009 B2
7559925 Goldfarb et al. Jul 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7615005 Stefanchik et al. Nov 2009 B2
7618450 Zarowski et al. Nov 2009 B2
7625335 Deichmann et al. Dec 2009 B2
7632291 Stephens et al. Dec 2009 B2
7634233 Deng et al. Dec 2009 B2
7641644 Chang et al. Jan 2010 B2
7641668 Perry et al. Jan 2010 B2
7645272 Chang et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7654997 Makower et al. Feb 2010 B2
7680244 Gertner et al. Mar 2010 B2
7686798 Eaton et al. Mar 2010 B2
7691120 Shluzas et al. Apr 2010 B2
7717933 Becker May 2010 B2
7720521 Chang et al. May 2010 B2
7727186 Makower et al. Jun 2010 B2
7727226 Chang et al. Jun 2010 B2
7736301 Webler et al. Jun 2010 B1
7740642 Becker Jun 2010 B2
7753929 Becker Jul 2010 B2
7753930 Becker Jul 2010 B2
7771409 Chang et al. Aug 2010 B2
7775968 Mathis Aug 2010 B2
7799048 Hudson et al. Sep 2010 B2
7803150 Chang et al. Sep 2010 B2
7833282 Mandpe Nov 2010 B2
7837672 Intoccia Nov 2010 B2
7840254 Glossop Nov 2010 B2
7854744 Becker Dec 2010 B2
D630321 Hamilton, Jr. Jan 2011 S
7875050 Samson et al. Jan 2011 B2
D632791 Murner Feb 2011 S
7883717 Varner et al. Feb 2011 B2
7896891 Catanese, III et al. Mar 2011 B2
7951132 Eaton et al. May 2011 B2
7988705 Galdonik et al. Aug 2011 B2
7993353 Rossner et al. Aug 2011 B2
8002740 Willink et al. Aug 2011 B2
8014849 Peckham Sep 2011 B2
8016752 Armstrong et al. Sep 2011 B2
8025635 Eaton et al. Sep 2011 B2
8080000 Makower et al. Dec 2011 B2
8088063 Fujikura et al. Jan 2012 B2
8088101 Chang et al. Jan 2012 B2
8090433 Makower et al. Jan 2012 B2
8100933 Becker Jan 2012 B2
8104483 Taylor Jan 2012 B2
8197552 Mandpe Jan 2012 B2
8114062 Muni et al. Feb 2012 B2
8114113 Becker Feb 2012 B2
8123722 Chang et al. Feb 2012 B2
8142422 Makower et al. Mar 2012 B2
8147545 Avior Apr 2012 B2
8167821 Sharrow May 2012 B2
8190389 Kim et al. May 2012 B2
8197433 Cohen Jun 2012 B2
8249700 Clifford et al. Aug 2012 B2
8277386 Ahmed et al. Oct 2012 B2
8317816 Becker Nov 2012 B2
8337454 Eaton et al. Dec 2012 B2
8388642 Muni et al. Mar 2013 B2
8403954 Santin et al. Mar 2013 B2
8439687 Morriss et al. May 2013 B1
8535707 Arensdorf et al. Sep 2013 B2
8968269 Becker Mar 2015 B2
9486614 Drontle Nov 2016 B2
20010004644 Levin Jun 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20020006961 Katz et al. Jan 2002 A1
20020055746 Burke et al. May 2002 A1
20020090388 Humes et al. Jul 2002 A1
20030013985 Saadat Jan 2003 A1
20030017111 Rabito Jan 2003 A1
20030018291 Hill et al. Jan 2003 A1
20030040697 Pass et al. Feb 2003 A1
20030083608 Evans et al. May 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030163154 Miyata et al. Aug 2003 A1
20040015150 Zadno-Azizi Jan 2004 A1
20040018980 Gurney et al. Jan 2004 A1
20040034311 Mihakcik Feb 2004 A1
20040043052 Hunter et al. Mar 2004 A1
20040058992 Marinello et al. Mar 2004 A1
20040064105 Capes et al. Apr 2004 A1
20040068242 McGuckin Apr 2004 A1
20040116958 Gopferich et al. Jun 2004 A1
20040127820 Clayman et al. Jul 2004 A1
20040158229 Quinn Aug 2004 A1
20040181175 Clayman et al. Sep 2004 A1
20040193073 DeMello et al. Sep 2004 A1
20040230156 Schreck et al. Nov 2004 A1
20040236231 Knighton et al. Nov 2004 A1
20040249243 Kleiner Dec 2004 A1
20040267347 Cervantes Dec 2004 A1
20050027249 Reifart et al. Feb 2005 A1
20050055077 Marco et al. Mar 2005 A1
20050059931 Garrison et al. Mar 2005 A1
20050089670 Large Apr 2005 A1
20050107738 Slater et al. May 2005 A1
20050113687 Herweck et al. May 2005 A1
20050113850 Tagge May 2005 A1
20050119590 Burmeister et al. Jun 2005 A1
20050131316 Flagle et al. Jun 2005 A1
20050143687 Rosenblatt et al. Jun 2005 A1
20050159645 Bertolero et al. Jul 2005 A1
20050182319 Glossop Aug 2005 A1
20050234507 Geske et al. Oct 2005 A1
20050244472 Hughes et al. Nov 2005 A1
20050283221 Mann et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060063973 Makower et al. Mar 2006 A1
20060165926 Weber Jul 2006 A1
20060173382 Schreiner Aug 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060211752 Kohn et al. Sep 2006 A1
20060271024 Gertner et al. Nov 2006 A1
20060284428 Beadle et al. Dec 2006 A1
20070020196 Pipkin et al. Jan 2007 A1
20070112358 Abbott May 2007 A1
20070129751 Muni et al. Jun 2007 A1
20070135789 Chang et al. Jun 2007 A1
20070167682 Goldfarb et al. Jul 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208252 Makower Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070249896 Goldfarb et al. Oct 2007 A1
20070269385 Yun et al. Nov 2007 A1
20070282305 Goldfarb et al. Dec 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070293946 Gonzales et al. Dec 2007 A1
20080015544 Keith et al. Jan 2008 A1
20080033519 Burwell et al. Feb 2008 A1
20080051804 Cottler et al. Feb 2008 A1
20080103521 Makower et al. May 2008 A1
20080119693 Makower et al. May 2008 A1
20080125626 Chang et al. May 2008 A1
20080132938 Chang et al. Jun 2008 A1
20080183128 Morriss et al. Jul 2008 A1
20080188870 Andre et al. Aug 2008 A1
20080195041 Goldfarb et al. Aug 2008 A1
20080228085 Jenkins et al. Sep 2008 A1
20080262508 Clifford et al. Oct 2008 A1
20080275483 Makower et al. Nov 2008 A1
20080281156 Makower et al. Nov 2008 A1
20080287908 Muni et al. Nov 2008 A1
20080319424 Muni et al. Dec 2008 A1
20090030274 Goldfarb et al. Jan 2009 A1
20090088728 Dollar et al. Apr 2009 A1
20090156980 Eaton et al. Jun 2009 A1
20090163890 Clifford et al. Jun 2009 A1
20090171301 Becker Jul 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187098 Makower et al. Jul 2009 A1
20090198216 Muni et al. Aug 2009 A1
20090240112 Goldfarb et al. Sep 2009 A1
20090240237 Goldfarb et al. Sep 2009 A1
20090312745 Goldfarb et al. Dec 2009 A1
20100030031 Goldfarb et al. Feb 2010 A1
20100087811 Herrin et al. Apr 2010 A1
20100114066 Makower et al. May 2010 A1
20100174308 Chang et al. Jul 2010 A1
20100198191 Clifford et al. Aug 2010 A1
20100198302 Shalev Aug 2010 A1
20100274188 Chang et al. Oct 2010 A1
20100290244 Nath Nov 2010 A1
20110166190 Anderson et al. Jul 2011 A1
20130030458 Drontle Jan 2013 A1
20170028112 Drontle Feb 2017 A1
Foreign Referenced Citations (98)
Number Date Country
668188 Dec 1988 CH
2151720 Jan 1994 CN
2352818 Dec 1999 CN
3202878 Aug 1983 DE
4032096 Apr 1992 DE
4406077 Sep 1994 DE
8810044 Nov 1998 DE
29923582 Dec 2000 DE
10104663 Aug 2002 DE
10105592 Aug 2002 DE
129634 Jan 1985 EP
257605 Mar 1988 EP
355996 Feb 1990 EP
418391 Mar 1991 EP
427852 May 1991 EP
623582 Nov 1994 EP
624349 Nov 1994 EP
744400 Nov 1996 EP
585757 Jun 1997 EP
893426 Jan 1999 EP
1042998 Oct 2000 EP
1166710 Jan 2002 EP
1413258 Apr 2004 EP
1944053 Jul 2008 EP
2859377 Mar 2005 FR
2916144 Nov 2008 FR
2125874 Mar 1984 GB
2305174 Apr 1997 GB
S 53-67935 Jun 1978 JP
H10-24098 Jan 1989 JP
H03-503011 Jul 1991 JP
H03-504935 Oct 1991 JP
H04-221313 Aug 1992 JP
H05-211985 Aug 1993 JP
H06-277296 Oct 1994 JP
H07-327916 Dec 1995 JP
H08-317989 Dec 1996 JP
H11-507251 Jun 1999 JP
2000-501634 Feb 2000 JP
2001-501846 Feb 2001 JP
2001-095815 Apr 2001 JP
2001-526077 Dec 2001 JP
2002-028166 Jan 2002 JP
2002-508214 Mar 2002 JP
2002-537908 Nov 2002 JP
2002-538850 Nov 2002 JP
2003-062080 Mar 2003 JP
2003-521327 Jul 2003 JP
2004-357728 Dec 2004 JP
2005-532869 Nov 2005 JP
2213530 Oct 2003 RU
1662571 Jul 1991 SU
WO 90011053 Oct 1990 WO
WO 90014865 Dec 1990 WO
WO 91017787 Nov 1991 WO
WO 92015286 Sep 1992 WO
WO 92022350 Dec 1992 WO
WO 94012095 Jun 1994 WO
WO 96029071 Sep 1996 WO
WO 97021461 Jun 1997 WO
WO 99024106 May 1999 WO
WO 99030655 Jun 1999 WO
WO 99032041 Jul 1999 WO
WO 00009192 Feb 2000 WO
WO 00023009 Apr 2000 WO
WO 00051672 Sep 2000 WO
WO 00053252 Sep 2000 WO
WO 01045572 Jun 2001 WO
WO 01054558 Aug 2001 WO
WO 01056481 Aug 2001 WO
WO 01070325 Sep 2001 WO
WO 01074266 Oct 2001 WO
WO 01097895 Dec 2001 WO
WO 02062269 Aug 2002 WO
WO 03049603 Jun 2003 WO
WO 03063703 Aug 2003 WO
WO 03105657 Dec 2003 WO
WO 04006788 Jan 2004 WO
WO 04018980 Mar 2004 WO
WO 04026391 Apr 2004 WO
WO 04082525 Sep 2004 WO
WO 04082525 Sep 2004 WO
WO 05018730 Mar 2005 WO
WO 05077450 Aug 2005 WO
WO 05089670 Sep 2005 WO
WO 05117755 Dec 2005 WO
WO 06034008 Mar 2006 WO
WO 06078884 Jul 2006 WO
WO 06107957 Oct 2006 WO
WO 06116597 Nov 2006 WO
WO 06118737 Nov 2006 WO
WO 06135853 Dec 2006 WO
WO 07111636 Oct 2007 WO
WO 07124260 Nov 2007 WO
WO 08036149 Mar 2008 WO
WO 08045242 Apr 2008 WO
WO 08051918 May 2008 WO
WO 08134382 Nov 2008 WO
Non-Patent Literature Citations (248)
Entry
U.S. Appl. No. 11/233,955, filed Sep. 23, 2005.
Argon Medical. Maxxim Medical. Ad for Sniper EliteTM Hydrophilic Ni—Ti Alloy Guidewire (2001).
Aust, R., et al. ‘The Functional Size of the Human Maxillary Ostium in Vivo’ Acta. Otolaryn. (9178) vol. 78 pp. 432-435.
Baim, D.S., MD ‘Grossman's Cardiac Catheterization, Angiography, and Intervention’ (2000) Lippincott Williams & Wilkins, pp. 76, 84 & 214.
Barrett, S. ‘Be Wary of Neurocranial Restructuring (NCR)’ Chirobase; Jul. 2003; www.chirobase.org/06DD/ner.html.
Bartal, N. ‘An Improved stent for Use in the Surgical Management of Congential Posterior Choanal Atresia’ J. Laryngol. Otol (1988) vol. 102 pp. 146-147.
Becker, A.E. ‘Restenosis After Angioplasty’ The Lancet (1988) vol. 331, No. 8584 p. 532.
Bellis, M. History of the Catheter-Balloon Catheter—Thomas Fogarty. Www.inventors.about.com/library/inventors/blcatheter.htm?p=1.
Benninger et al.; Adult Chronic Rhinosinusitis: Definitions, Diagnosis, Epidemiology, and Pathophysiology Arch Otolarygol Head and Neck Surg. vol. 129 (Sep. 2003) pp. A1-S32.
Bent et al. ‘The Frontal Cell as a Cause of Frontal Sinus Obstruction’ American Journal of Rhinology, vol. 8, No. 4 (1994) pp. 185-191.
Binner et al. ‘Fibre-Optic Transillunination of the Sinuses: A Comparison of the Value of Radiography and Transillumination in Antral Disease’ Clinical Otolaryngology. vol. 3 (1978) pp. 1-11.
Brown, C.L. et al., ‘Safety and Feasiblity of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation’ Annals of Otology, Rhinology & Laryngology (2006) vol. 115, No. 4 pp. 293-299.
Casiano et al. ‘Endoscopic Lothrop Procedure: the University of Miami Experience’ American Journal of Rhinology, vol. 12, No. 5 (1998) pp. 335-339.
Casserly, I.P. et al., Chapter 7. ‘Guides and Wires in Percutaneous Coronary Intervention’ Strategic Approaches in Coronary Intervention (2006) Lippincott Williams & Wilkins pp. 91-99.
Chien, Y.W. et al. ‘Nasal Systemic Drug Delivery’, Drugs and Pharmaceutical Sciences, vol. 39. pp. 60-63.
Cohen et al. ‘Endoscopic Sinus Surgery: Where we are and where we're going’ Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 13 (2005) pp. 32-38.
Colla, A. et al., ‘Trihaloacetylated Enol Ethers—General Synthetic Procedure and Heterocyclic Ring Closure Reactions with Hydroxylamine’ Synthesis, (Jun. 1991) pp. 483-486.
Costa, M.N. et al. ‘Endoscopic Study of the Intranasal Ostium in External Dacryocystorhinostomy Postoperative. Influence of Saline Solution and 5-Flurorouracil’ Clinics (2007) vol. 62, Issue 1, pp. 41-46.
Cussler, E.L. ‘Diffusion: Mass transfer in Fluid Systems’ Cambridge University Press (1996).
Davis, G.E. et al. ‘A Complication from Neurocranial Restructuring’ Arch Otolaryngol Head Neck Surg. vol. 129 (Apr. 2003) pp. 472-474.
Deutschmann, R. et al. ‘A Contribution to the Topical Treatment of [Maxilary] Sinusitis Preliminary Communication’ Stomat DDR 26, (1976) pp. 585-592.
Domb, A. et al. ‘Handbook of Biodegradable Polymers’ Harwood Academic Publishers (1997).
Doyle Nasal Splints, Jan. 25, 2007; www.doylemedical.com/nasalsplints.htm.
Draf, W. ‘Endonasal Micro-Endoscopic Frontal Sinus Surgery: the Fulda Concept’ Op Tech Otolaryngol Head Neck Surg. vol. 2 (1991) pp. 234-240.
Edmond, C. et al. ‘ENT Surgical Stimulator’ Nov. 1989.
ENT Checklist; Physical Examination Performance Checklist [date of publication unknown].
Eremychev, V.A. ‘Needles for Puncture and Drainage of the Maxillary Sinus’ Meditsinskaya Tekhnika, No. 5 (1974) pp. 54.55.
Feldman, R.L. et al., ‘New Steerable, Ultra-Low-Profile, Fixed Wire Angioplasty Catheter: Initial Experience With the Cordis OrionTM Steerable PTCA Balloon Catheter’ Cathet. Cardovasc. Diagn. (1990) vol. 19, No. 2 pp. 142-145.
Ford, C.N. ‘A Multipurpose Laryngeal Injector Device’ Otolaryngol. Head Neck Surg. (1990) vol. 103, No. 1 pp. 135-137.
Friedman, M., M.D., et al. ‘Frontal Sinus Surgery: Endoscopic Technique’ Operative Techniques in Otolarynology—Head and Neck Surgery, vol. 12, No. 2 (Jun. 2001) pp. 60-65.
Friedman, et al. ‘Intraoperative and Postoperative Assessment of Frontal Sinus Patency by Transillumination’ Laryngoscope. vol. 110 (Apr. 2000) pp. 683-684.
Friedman, et al ‘Middle Turbinate Medialization and Preservation in Endoscopic Surgery’ Otolaryngology—Head and Neck Surgery. (2000) vol. 123, No. 1, part 1, pp. 76-80.
Fung, M.K.T. ‘Template for Frontal Osteoplastic Flap’ Laryngoscope. vol. 96 (1986) pp. 578-579.
Gatot, A. et al. ‘Early treatment of Orbital Floor Fractures with Catheter Balloon in Children’ Int J. Pediatric Otorhinolaryngol (1991) vol. 21 pp. 97-101.
Gerus, I.I. et al. ‘β-Ethoxyvinyl Polyfluroroalkyl Ketones—Versatile Synthones in Fluoroorganic Chemistry’ Journal of Fluorine Chemistry. vol. 69 (1994) pp. 195-198. Elesvier Science S.A.
Good, R.H. ‘An Intranasal Method for Opening the Frontal Sinus Establishing the Largest Possible Drainage’ Laryngoscope. vol. 18 (1908) pp. 266-274.
Gopferich ‘Polymer Degradation and Erosion: Mechanisms and Application’ Eur. J. Parm. Biophar. vol. 42 (1996) pp. 1-11.
Gorlov, D.V. et al ‘Aeylation of 2-Methoxypropene with Anhydrides and Halides of Perflurocarboxylic Acids in the Presence ot Teriary Amines’ Russian Chemical Bulletin. vol. 48 No. 9 (Sep. 1999) pp. 1791-1792. Kluwer Academic/Plenum Publishers.
Gottmann, et al. ‘Balloon Dilatation in the Nasal Cavity and Paranasal Sinuses’ CIRSE. (Sep. 25, 2004) pp. 1-27.
Gottmann, et al. ‘Balloon Dilatation of Recurrent Ostial Occlusion of the Frontal Sinus’ CIRSE. (Mar. 2001).
Gottmann, et al. ‘Successful treatment of Recurrent Post-Operative Frontal Sinus Stenoses by Balloon Dilatation’ CIRSE. (Oct. 5, 2002).
Gupta, D. et al., ‘Dacrystitis Secondary to an Iatrogenic Foreign Body in the Lacrimal Apparatus’ Ear, Nose & Throat Journal (2009) www.findarticles.com/p/articles/mi_m0BUM/is_7_88/ai_n32428620/.
Hashim, et al. ‘Balloon Compression of the Intermaxillary Sinus for Intractable Post Traumatic Bleeding from the Maxillary Artery’ Scandinavian Journal of Plastic and reconstruction Sergery and Hand Surgery (1999) vol. 33 pp. 321-324.
Hojo, M. et al, ‘Electrophilic Substiutions of Olefinic Hydrogens II. Acylation of Vinyle Ethers and N Vinyl Amides Chemistry Letters’ (1976) pp. 499-502. Chemical Society of Japan.
Hopf, J.U.G. et al. ‘Minature Endoscopes in Otorhinolaryngologic Applications’ Min Invas Ther & Allied Technol. (1998) vol. 7, No. 3 pp. 209-218.
Hosemann, W. et al. A Dissection Course on Endoscopic Endonasal Sinus Surgery (2005) Endo-Press, Tuttlingen pp. 4-37.
Hosemann, W. et al. ‘Endonasal Frontal Sinusotomy in Surgical Management of Chronic Sinusitis: A Critical Evaluation’ American Journal of Rhinology. vol. 11, No. 1 (1997) pp. 1-9.
Hosemann, M.E. et al. ‘Experimental investigations on wound healing of the paranasal sinuses. II. Spontaneous wound closure and pharmacological effects in a standardized animal model.’ HNO 39 (1991) pp. 48-54.
Hosemann, W.G. et al. ‘Minimally Invasive Endonasal Sinus Surgery’ Thieme, Stuttgart, New York (2000).
Hosemann, M.E. et al. ‘Normal Wound Healing of the Paranasal Sinuses—Clinical and Experimental Investigations’ Eur Arch Otorhinolarygol. vol. 248, (1991) pp. 390-394.
Hosemann, W. et al. ‘Behandlung nach Nasennebenhohleneingriffen, part 2: Theapeutische Maβnahem’ HNO akutell 7 (1999) pp. 291-302.
Hospital Corpsman Sickcall Screener's Handbook. Naval Hospital Great Lakes (Apr. 1999) www.brooksidepress.org/Products/Operationa.Medicine/DATA. 2001 pp. 1-6.
Hybels, R.L. ‘Transillumination Durning Osteoplastic Frontal Sinusotomy’ The Laryngoscope. vol. 91 (Sep. 1981) pp. 1560.
Ijaduola, T.G.A. ‘Use of a Foley Catheter for Short-Term Drainage in Frontal Sinus Surgery’ Ther Journal of Laryngology and Otology. (1989) vol. 103. pp. 375-378.
Ingals, E.F. ‘New Operation and Instruments for Draining of the Frontal Sinus’ Ann. Otol. Rhinol. Layyngol. vol. 14 (1905) pp. 644-649.
Iro, H. et al., ‘A New Device for Frontal Sinus Endoscopy: First Clinical Report’ Otolaryngol. Head Neck Surg. (2001) vol. 125 No. 6 pp. 613-616.
Jacobs, J.B. ‘100 Years of Frontal Sinus Surgery’ Laryngoscope. vol. 107 (1997) pp. 1-36.
K-Splints Internal Nasal Splints; Jan. 25, 2007; www.invotec.net/rhinology/ksplint.html.
Kaiser, H. et al ‘Cortizontherapie, Corticoide in Klinik and Praxis’ Thieme, Stuggart (1992) pp. 390-401.
Kennedy, D.W., M.D. et al. ‘Diseases of the Sinuses: Diagnosis and Management’ (Copyright 2001) by B.C. Decker Inc.
Khomutov, S.M. et al. ‘Dissolution of a Mixture of Steroids in Cyclodextrin Solutions: a Model Deseription’ Pharmaceutical Chemistry Journal. vol. 35, No. 11 ( Nov. 2001) pp. 627-629.
Kingdom, T.T. et al. ‘Image-Guided Surgery of the Sinuses: Current Technology and Applications’ Otolaryngol. Clin. North Am. vol. 37, No. 2 (Apr. 2004) pp. 381-400.
Klossek, J.M. et al. ‘Local Safety of Intranasal Trimcinolone Acentonide: Clinical and Histological Aspects of Nasal Mucosa In the Long-Term Treatment of Perennial Allergic Rhinitis’ Rhinology. vol. 39, No.1 (2001) pp. 17-22.
Kozlov et al. ‘Diagnosis and Treatment of Sinusitis by YAMIK Sinus Catheters’ Rhinology (1996) vol. 34, pp. 123-124.
Kuhn, et al. ‘The Agger Nasi Cell in Frontal Recess Obstruction: An Anatomic, Radiology and Clinical Correlation’ Operative Techniques in Otolaryngology-Head and Neck Surgery. vol. 2, No. 4 (1991) pp. 226-231.
Laliberte, F. et al. ‘Clinical and Pathologic Methods to Assess the Long-Term Safety of Nasal Corticosteriods’ Allergy. vol. 55, No. 8 (2000) pp. 718-722.
Lang, E.V., et al., ‘Access Systems for Puncture at an Acute Angle’ J. Vasc. Interv. Radiol. (1995) vol. 6, No. 5 pp. 711-713.
Lanza, D.C. ‘Postoperative Care and Avoiding Frontal Recess Stenosis’ International Advanced Sinus Symposium Jul. 21-24, 1993.
Large, G.C. ‘Crystalline Tetracycline Hydrochloride in the Treatment of Acute and Chronic Maxillary Sinustitis’ Canad. M.A.J. (1958) vol. 79 pp. 15-16.
Lund, V.J. ‘Maximal Medical Therapy for Chronic Rhinosinusitis’ Otolaryngol Clin N. Am. vol. 38 (2005) pp. 1301-1310.
Maran, A.G.D. et al. ‘The Use of the Foley Balloon Catheter in the Tripod Fracture’ J. Laryngol. Otol. (1971) vol. 85, Issue 9, pp. 897-902.
May, M. et al. ‘Frontal Sinus Surgery: Endonasal Drainage Instead of an External Osteopolstic Approach’ Op Tech Otolaryngo Head Neck Surgery. 6 (1995) pp. 184-192.
Medtronic, xomed.com-MicroFrance Catalog Browser. Www.xomcat.com/xomfrance/index.php?zone=both&cat=18&sub=58&prodline=1272 (Dec. 31, 2003) pp. 1-2.
Mehan, V.K. et al., ‘Coronary Angioplasty through 4 French Diagnostic Catheters’ Cathet. Cardiovasc. Diagn. (1993) vol. 30, No. 1 pp. 22-26.
Mellor, J.M. et al ‘Synthesis of Trifluromethylnaphthalenes’ Tetrahedron. vol. 56 (2000) pp. 10067-10074. Elsevier Science Ltd.
Metson, R., et al. ‘Endoscopic Treatment of Sphenoid Sinusitis’ Otolaryngol. Head Neck Surg. (1996) vol. 114, No. 6 pp. 736-744.
Metson, R. ‘Holmium: YAG Laser Endoscopic Sinus Surgery: A Randomized Controlled Study’ Laryngoscope. vol. 106, Issue 1, Supplement 77 (Jan. 1996) pp. 1-18.
Miller, et al. ‘Management of Fractures of the Supraorbital Rim’ Journal of Trauma. vol. 18, No. 7 (Jul. 1978) pp. 507-512.
Min, Y-G et al. ‘Mucociliary Activity and Histopathology of Sinus Mucosa in Experimental Maxilary Sinusitis: A Comparison of Systemic Administration of Antibiotic and Antibiotic Delivery by Polylactic Acid Polymer’ Laryngoscope. vol. 105 (Aug. 1995) pp. 835-842.
Mols, B. ‘Movable Tool Tip for Keyhole Surgery’ Delft Outlook, vol. 3 (2005) pp. 13-17.
Mooney, M.R., et al., ‘Monorail™ Piccolino Catheter: A New Rapid Exchange/Ultralow Profile Coronary Angioplasty System’ Cathet. Cardiovasc. Diagn. (1990) vol. 20, No. 2 pp. 114-119.
Moriguchi, T. et al. ‘Additional-Elimination Reaction in the Trifluoroacetylation of Electron-Rich Olefins’ J. Org. Chem. vol. 60, No. 11 (1995) pp. 3523-3528. American Chemical Society.
Nasal Surgery and Accessories, Jan. 25, 2007; www.technologyforlife.com/au/ent/nasal.html.
Park, K. et al. ‘Biodegradable Hydrogels for Drug Delivery’ (1993) Technomic Publishing inc. Lancaster.
Peirs, et al. ‘A Flexible Distal Tip with Two Degrees of Freedon for Enhanced Dexterity in Endoscopic Robot Surgery’ Proceedings 13th Micromechanics Europe Workshop (2002) pp. 271-274.
Piccirillo, J.F. et al. ‘Physchometric and Clinimetric Validity of the 20-Item Sino-Nasal Outcome test (SNOT-20)’ Copyright 1996 Washington University, St. Louis, MO.
Podoshin, L et al. ‘Balloon Technique for Treatment of Frontal Sinus Fractures’ The journal of Laryngology & Otology (1967), vol. 81, pp. 1157-1161.
Pownell, P.H. et al., ‘Diagnostic Nasal Endoscopy’ plastic & Reconstructive Surgery (1997) vol. 99, Iss5 pp. 1451-1458.
Prince, et al. ‘Analysis of the Intranasal Distribution of Ointment’ J Otolaryngol. vol. 26 (1997) pp. 357-360.
Ramsdale, D.R., Illustrated Coronary Intervention: A case-oriented approach, (2001 )Martin Dunitz Ltd. pp. 1-5.
Ritter, F.N. et al., Atlas of Paranasal Sinus Surgery (1991) Igaku-Shoin Medical Pub. pp. 1-81.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Maxillary Sinusitis’ J.A.M.A. (May 31, 1952) pp. 436-440.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Purulent Maxillary Sinusitis’ Texas State Journal of Medicine (May 1952) pp. 281-288.
Sama, A., et al., ‘Current Opinions on the Surgical Management of Frontal Sinus Disease’ ENT News. Www.pinpointmedical.com/ent-news (2009) vol. 17, No. 6 pp. 60-63.
Sanborn , T.A. et al., ‘Percutaneous Endocardial Transfer and Expression of Genes to the Myocardium Utilizing Fluropscopic Guidance’ Catheter Cardiovasc. Interv. (2001) vol. 52, No. 2, pp. 260-266.
Sawbones Catalog 2001, Pacifc Research Laboratories, Inc., Vashon Washington 98070 USA.
Saxon, R.R. et al., ‘Technical Aspects of Accessing the Portal Vein During the TIPS Procedure’ J. Vasc. Interv. Radiol. (1997) vol. 8, No. 5 pp. 733-744.
Schaefer, S.D., M.D. ‘Rhinology and Sinus Disease: A Problem-Oriented Approach’ (Copyright 1988) by Mosby, Inc.
Schneider. Pfizer Ad for Softip [date of publication unkown].
Shah, N.J. et al., ‘Endoscopic Pituitary Surgery—A Beginner's Guide’ Indian Journal of Otolaryngology and Head and Neck Surgery (2004) vol. 56, No. 1 pp. 71-78.
Shah, N.J. ‘Functional Endoscopic Sinus Surgery’ (1999); found at bhj.org/journal/1999_4104_oct99/sp_htm.
Single-Pole and Multi-Pole Lightguides for UV Spot Light Curing Systems. Www.dymax.com/products/curing_equipment/lightguids/light. (2004) pp. 1-2.
Sobol, et al. ‘Sinusitis, Maxillary, Acute Surgical Treatment.’ eMedicine. Retrieved from the Internet: <<http://emedicine.medscape.com/article/862030-print>> (Nov. 16, 2010) pp. 1-11.
St. Croix, et al., ‘Genes Expressed in Human Tumor Endothelium’ Science (May 15, 2000) vol. 289 pp. 1197-1202.
Stammberger, H. ‘Komplikationen entzundlicher Nasennebenhohlenerkrankungen eischlieβ iatrogen bedingter Komplikationen’ Eur Arch Oti-Rhino-Laryngol Supple. (Jan. 1993) pp. 61-102.
Stammberger, et al. Chapter 3 ‘Special Endoscopic Anatomy of the Lateral Nasal Wall and Ethmoidal Sinuses’ Functional Endoscopic Sinus Surgery. (1991) Ch. 3, pp. 49-87.
Strohm, et al. Die Behandlung von Stenosen der oberen Luftwege mittels rontgenologisch gesteuerter Ballonddilation (Sep. 25, 1999) pp. 1-4.
Strohm, et al. ‘Treatment of Stenoses of the Upper Airways by Balloon Dilation’ Sudwestdeutscher Abstract 45 (Sep. 25, 1999) pp. 1-3.
SurgTrainer Product Information ‘Incisive Human Nasal Model for ESS Traning’ Surg Trainer, Ltd. Ibaraki, Japan (2004) www1.accsnet.net.jp/˜juliy/st/en/partslist.html.
Tabor, M.H. et al., ‘Symptomatic Bilateral Duct Cysts in a Newborn—Rhinoscopic Clinic’ Ear, Nose & Throat Journal (2003) www.findarticles.com/articles/mi_m0BUM/is_2_82/ai_98248244 pp. 1-3.
Tarasov, D.I. et al. ‘Application of Drugs Based on Polymers in the Treatment of Acute and Chronic Maxillary Sinusitis’ Vestn Otorinoloaringol. vol. 6 (1978) pp. 45-47.
Terumo. Medi-Tech. Boston Scientific. (1993) Ad of Glidewire.
The Operating Theatre Journal (www.otjonline.com) ‘Disposable Medical Device for Wound Disclosure/The Tristel Purple Promotion—A Collaboration between Tristel PLC and Karl Storz Endoscopy (UK) Ltd.’ p. 4.
Weber, R. et al. ‘Endonaale Stirnhohlenchirugie mit Langzeiteinlage eines Platzhalters’ Laryngol. Rhinol. Otol. vol. 76 (1997) pp. 728-734. (English Abstract).
Weber, R. et al., ‘Videoendoscopic Analysis of Nasal Steriod Distribution’ Rhinology. vol. 37 (1999) pp. 69-73.
Weiner, R.I., D.O., et al., ‘Development and Application of Transseptal Left Heart Catheterization’ Cathet. Cardiovasc. Diagn. (1988) vol. 15, No. 2, pp. 112-120.
Wiatrak, B.J., et al., ‘Unilateral Choanal Atresia: Initial Presentation and Endoscopic Repair’ International Journal of Pediatric Otorhinolaryngology (1998) vol. 46, pp. 27-35.
Woog, et al. ‘Paranasal Sinus Endoscopy and Orbital Fracture Repair’ Arch Ophthalmol. vol. 116 (May 1998) pp. 688-691.
Wormald, P.J., et al., ‘The ‘Swing-Door’ Technique for Uncinectomy in Endoscopic Sinus Surgery’ The Journal of Laryngology and Otology (1998) vol. 112, pp. 547-551.
Xomed-Treaee. Bristol-Myers Squibb. Ad for Laser Shield II. Setting the Standards for Tomorrow [date of publication unknown].
Yamauchi, Y. et al., ‘Development of a Silicone Model for Endoscopic Sinus Surgery’ Proc International Journal of Computer Assisted Radiology and Surgery vol. 99 (1999) p. 1039.
Yamauchi, Y., et al., ‘A Training System for Endoscopic Sinus Surgery with Skill Evaluation’ Computer Assisted Radiology and Surgery (2001) with accompanying poster presentation.
Yanagisawa et al. ‘Anterior and Posterior Fontanelles.’ Ear, Nose & Throat Journal (2001) vol. 80. pp. 10-12.
Zimarino, M., M.D., et al., ‘Initial Experience with the EuropassTM: A new Ultra-Low Profile monorail Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1994) vol. 33, No. 1, pp. 76-79.
Australian Office Action, Examiner's First Report, dated Apr. 8, 2010 for AU 2005274794.
European Communication dated Sep. 4, 2008 for Application No. EP 05773189.
European Communication dated Jun. 19, 2009 for Application No. EP 05773189.
European Communication dated Nov. 29, 2010 for Application No. EP 06815285.9.
European Communication dated Nov. 11, 2011 for Application No. EP 06815285.9.
European Exam Report dated Feb. 22, 2006 for Application No. 02716734.5.
European Exam Report dated Feb. 8, 2007 for Application No. 02716734.5.
European Search Report dated Mar. 16, 2010 for Application No. EP 06718986.
European Search Report dated Sep. 27, 2011 for Application No. EP 10182961.
European Search Report dated Sep. 29, 2011 for Application No. EP 10182893.
Partial European Search Report dated Sep. 20, 2007 for Application No. EP 07252018.
Partial European Search Report dated Mar. 25, 2008 for Application No. EP 07252018.
Supplemental European Search Report dated Jun. 2, 2008 for Application No. EP 05773189.
Supplemental Partial European Search Report dated Jul. 1, 2009 for Application No. EP 06815285.
Supplemental European Search Report and Written Opinion dated Sep. 11, 2009 for Application No. EP 06815174.
Supplemental European Search Report dated Jan. 29, 2010 for Application No. EP 07836108.
Supplemental European Search Report dated Feb. 2, 2010 for Application No. EP 07836109.
Supplemental European Search Report dated Feb. 17, 2010 for Application No. EP 07836110.
Supplemental European Search Report dated Mar. 1, 2010 for Application No. EP 05778834.
Supplemental European Search Report dated Mar. 16, 2010 for Application No. EP 06718986.
Supplemental European Search Report dated Jun. 22, 2010 for Application No. EP 06784759.
Supplemental European Search Report dated Sep. 23, 2010 for Application No. EP 08746715.
Supplemental Partial European Search Report dated Nov. 19, 2010 for Application No. EP 06751637.
Supplemental European Search Report dated Jan. 28, 2011 for Application No. EP 07777004.
Supplemental European Search Report dated Mar. 31, 2011 for Application No. EP 05798331.
Supplemental European Search Report dated Aug. 30, 2011 for Application No. EP 06800540.
Supplemental European Search Report dated Sep. 29, 2011 for Application No. EP 0775048.
International Preliminary Report on Patentability dated Aug. 7, 2006 for Application No. PCT/US05/25371.
International Preliminary Report on Patentability and Written Opinion dated Sep. 25, 2007 for Application No. PCT/US06/002004.
International Preliminary Report dated Dec. 6, 2007 for Application No. PCT/US05/13617.
International Preliminary Report on Patentability and Written Opinion dated Nov. 18, 2008 for Application No. PCT/US07/11449.
International Prelminary Report on Patentability and Written Opinion dated Apr. 7, 2009 for Application No. PCT/US07/021170.
International Preliminary Report on Patentability and Written Opinion dated May 5, 2009 for Application No. PCT/US06/36960.
International Preliminary Report on Patentability and Written Opinion dated Oct. 13, 2009 for Application No. PCT/US08/059786.
International Preliminary Report on Patentability and Written Opinion dated Oct. 27, 2009 for Application No. PCT/US08/061343.
International Search Report dated Jun. 3, 2002 for Application No. PCT/EP02/01228.
International Search Report and Written Opinion dated Apr. 10, 2006 for Application No. PCT/US05/25371.
International Search Report dated May 8, 2007 for Application No. PCT/US2006/16026.
International Search Report and Written Opinion dated Aug. 17, 2007 for Application No. PCT/US05/13617.
International Search Report dated Aug. 29, 2007 for Application No. PCT/US06/002004.
International Search Report dated Sep. 25, 2007 for Application No. PCT/US06/37167.
International Search Report dated Oct. 19, 2007 for Application No. PCT/US07/03394.
International Search Report and Written Opinion dated May 29, 2008 for Application No. PCT/US07/021170.
International Search Report dated May 29, 2008 for Application No. PCT/US07/21922.
International Search Report and Written Opinion dated Jul. 1, 2008 for Application No. PCT/US06/22745.
International Search Report dated Jul. 3, 2008 for Application No. PCT/US2006/029695.
International Search Report dated Jul. 7, 2008 for Application No. PCT/US07/16213.
International Search Report dated Jul. 8, 2008 for Application No. PCT/US07/11474.
International Search Report dated Jul. 17, 2008 for Application No. PCT/US06/36960.
International Search Report and Written Opinion dated Jul. 21, 2008 for Application No. PCT/US05/33090.
International Search Report dated Aug. 25, 2008 for Application No. PCT/US2008/000911.
International Search Report dated Sep. 10, 2008 for Application No. PCT/US07/16212.
International Search Report and Written Opinion dated Sep. 12, 2008 for Application No. PCT/US07/16214.
International Search Report and Written Opinion dated Sep. 17, 2008 for Application No. PCT/US08/059786.
International Search Report and Written Opinion dated Sep. 17, 2008 for Application No. PCT/US08/061343.
International Search Report and Written Opinion dated Oct. 1, 2008 for Application No. PCT/US07/11449.
International Search Report dated Oct. 15, 2008 for Application No. PCT/US2008/061048.
International Search Report dated Nov. 30, 2009 for Application No. PCT/US2009/057203.
International Search Report dated Dec. 10, 2009 for Application No. PCT/US2009/052236.
International Search Report dated Dec. 16, 2009 for Application No. PCT/US2009/050800.
International Search Report dated Mar. 31, 2010 for Application No. PCT/US2009/069143.
International Search Report dated Jul. 8, 2010 for Application No. PCT/US2010/027837.
International Search Report and Written Opinion dated Oct. 6, 2010 for Application No. PCT/US2010/040548.
International Search Report dated Mar. 25, 2011 for Application No. PCT/US2010/062161.
International Search Report dated Mar. 28, 2011 for Application No. PCT/US2010/061850.
International Search Report dated Mar. 31, 2011 for Application No. PCT/US2010/060898.
International Search Report dated Aug. 9, 2011 for Application No. PCT/US2011/038751.
International Search Report dated May 18, 2012 for Application No. PCT/US2011/052321.
English Machine Translation of Japanese Patent Publication No. JP H05-211985.
English Machine Translation of Japanese Patent Publication No. JP H06-277296.
English Machine Translation of Japanese Patent Publication No. JP H08-317989.
English Machine Translation of Japanese Patent Publication No. JP H10-024098.
English Machine Translation of Japanese Patent Publication No. JP H11-507251.
English Machine Translation of Japanese Patent Publication No. JP 2000-501634.
English Machine Translation of Japanese Patent Publication No. JP 2001-501846.
English Machine Translation of Japanese Patent Publication No. JP 2002-508214.
English Machine Translation of Japanese Patent Publication No. JP 2002-537908.
English Machine Translation of Japanese Patent Publication No. JP 2002-538850.
English Machine Translation of Japanese Patent Publication No. JP 2003-062080.
English Machine Translation of Japanese Patent Publication No. JP 2004-357728.
USPTO Office Action dated Sep. 16, 2005 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Jul. 7, 2006 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Feb. 13, 2007 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 9, 2007 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Jan. 24, 2008 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 6, 2008 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated May 29, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Nov. 14, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Dec. 10, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Oct. 18, 2007 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Dec. 6, 2007 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Apr. 9, 2008 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Nov. 28, 2007 for U.S. Appl. No. 11/234,395.
USPTO Office Action dated Sep. 12, 2008 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Mar. 18, 2009 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Nov. 9, 2009 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Oct. 29, 2008 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Feb. 4, 2009 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Nov. 7, 2008 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Jan. 28, 2009 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Apr. 21, 2009 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Mar. 3, 2009 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 12/118,931.
USPTO Office Action dated Mar. 4, 2009 for U.S. Appl. No. 12/118,931.
USPTO Office Action dated Jul. 30, 2009 for U.S. Appl. No. 12/118,931.
USPTO Office Action dated Nov. 25, 2008 for U.S. Appl. No. 12/117,961.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 12/117,961.
USPTO Office Action dated Dec. 5, 2008 for U.S. Appl. No. 12/120,902.
USPTO Office Action dated Oct. 21, 2009 for U.S. Appl. No. 12/120,902.
USPTO Office Action dated Mar. 17, 2009 for U.S. Appl. No. 11/690,127.
USPTO Office Action dated Mar. 23, 2009 for U.S. Appl. No. 11/804,309.
USPTO Office Action dated Mar. 23, 2009 for U.S. Appl. No. 11/926,326.
USPTO Office Action dated Aug. 28, 2009 for U.S. Appl. No. 11/150,847.
USPTO File History of U.S. Pat. No. 7,462,175.
U.S. Appl. No. 11/789,705, filed Apr. 24, 2007.
U.S. Appl. No. 60/844,874, filed Sep. 15, 2006.
U.S. Appl. No. 60/922,730, filed Apr. 9, 2007.
U.S. Appl. No. 61/052,413, filed May 12, 2008.
U.S. Appl. No. 61/084,949, filed Jul. 30, 2008.
U.S. Appl. No. 61/165,448, filed Mar. 31, 2009.
Related Publications (1)
Number Date Country
20150151038 A1 Jun 2015 US
Divisions (1)
Number Date Country
Parent 11243468 Oct 2005 US
Child 13353154 US
Continuations (1)
Number Date Country
Parent 13353154 Jan 2012 US
Child 14568509 US
Continuation in Parts (1)
Number Date Country
Parent 11233955 Sep 2005 US
Child 11243468 US