The present invention relates to refrigeration system air-cooled condensers.
A typical refrigeration system condenser consists of multiple, serpentine heat transfer fluid paths (or circuits) such that the superheated heat transfer vapor entering each circuit (path) will be condensed completely prior to leaving the heat exchange device.
The overall heat transfer coefficient is primarily controlled by the external heat transfer coefficient and at other times by the internal film heat transfer coefficient. At each circuit entrance (or path), the entire volume exists in a gaseous (or vapor) state. The initial vapor velocity at each circuit entrance is significant resulting in a high internal pressure drop per incremental fluid circuit length which in turn provides a significant internal film heat transfer coefficient. The external heat transfer coefficient governs heat removal in this portion of each circuit. As heat transfer continues between the refrigerant and air along each circuit length and the heat transfer fluid (still in a vapor state) reaches saturation, the vapor begins to condense. As a result, and continuing along each circuit length, the vapor volume and velocity decrease. The vapor exit velocity for each circuit is virtually nil—the heat transfer fluid in liquid form exits the condenser. The continuous reduction in vapor velocity along each fixed cross sectional area circuit length decreases the internal film heat transfer coefficient. Moreover, the internal film heat transfer coefficient prior to approaching the exit region of each circuit limits the condenser's potential or overall heat transfer capability.
Applicant has observed certain deficiencies in the prior art, including that while the volume and velocity of vapor is a maximum at the entrance of the first pass, there is little or no vapor velocity in the last pass. The significant inlet vapor volume produces a high refrigerant pressure drop in the first pass due to the high vapor velocity. This in turn limits the refrigerant mass flow rate per tube (or circuit/path). Conversely, the very low vapor velocity in the last pass adversely affects the internal film heat transfer coefficient and thus reduces the condenser's total heat transfer capability.
The present invention ameliorates heat transfer deficiency of the prior art as well as high initial refrigerant pressure drop in the first pass by providing multi-cross sectional fluid paths (circuits) for condensation coupled with segmented headers in lieu of return bends. Thus at the entrance of each circuit when the vapor volume is significant, a larger cross-sectional area is provided for each circuit. The larger total initial cross sectional area reduces the internal pressure drop and the vapor velocity while maintaining the internal film heat transfer coefficient above the external heat transfer coefficient. As the vapor volume decreases along each circuit length as a result of condensation, the total cross sectional area is reduced to maintain a threshold internal film heat transfer coefficient that is equal to or greater than the external heat transfer coefficient. This decrease in total cross sectional area may be accomplished by incorporating a multiple pass circuit selection coupled with a greater total cross sectional area for the initial fluid path in comparison to later passes. This arrangement lowers the initial heat transfer fluid pressure drop per incremental circuit length with minimal heat transfer sacrifice in the first pass. Moreover, it significantly improves the condenser's heat transfer deficiency by increasing the internal film heat transfer coefficient in the later passes in comparison to the prior art single cross-sectional area circuit devices. Overall, the multi-cross sectional condenser of the invention provides greater heat rejection at a lower heat transfer fluid pressure drop. The multi-cross sectional fluid path condenser of the invention can be implemented using larger tubes in the first pass and smaller tubes in subsequent passes, or by using more tubes in the first pass and fewer tubes in subsequent passes, or by some combination of the two, that is reducing both the number of tubes and the cross-sectional area of the tubes in with each subsequent pass.
This invention relates particularly to condenser coil bundles used in refrigerant condensers, and particularly (although not exclusively) in evaporative refrigerant condensers 10 of the type shown in
The apparatus 10 includes a fan 100 for causing air to flow through the apparatus, and as shown schematically in
Prior art refrigerant coil assemblies 20 have a generally parallelepiped overall shape of six sides retained in a frame 21 and has a major/longitudinal axis 23, where each side is in the form of a rectangle. The coil assembly 20 is made of multiple horizontal closely spaced parallel, serpentine tubes connected at their ends to form a number of circuits through which the refrigerant flows. Each individual circuit within the coil assembly is a single, continuous length of coil tubing that is subjected to a bending operation which forms the tubing into several U-shaped rows that are in a generally vertical and equally-spaced relationship from each other, such that each circuit has a resultant serpentine shape.
The coil assembly 20 has an inlet 22 connected to an inlet manifold or header 24, which fluidly connects to inlet ends of the serpentine tubes of the coil assembly, and an outlet 26 connected to an outlet manifold or header 28, which fluidly connects to the outlet ends of the serpentine tubes of the coil assembly. The assembled coil assembly 20 may be moved and transported as a unitary structure such that it may be dipped, if desired, if its components are made of steel, in a zinc bath to galvanize the entire coil assembly.
The refrigerant gas discharges from the compressor into the inlet connection of the apparatus. Heat from the refrigerant dissipates through the coil tubes to the water cascading downward over the tubes. Simultaneously, air is drawn in through the air inlet louvers at the base of the condenser and travels upward over the coil opposite the water flow. A small portion of the water evaporates, removing heat from the system. The warm moist air is drawn to the top of the evaporative condenser by the fan and discharged to the atmosphere. The remaining water falls to the sump at the bottom of the condenser where it recirculates through the water distribution system and back down over the coils.
The invention constitutes a change and improvement over the prior art wherein instead of tube bundles comprising a single cross-sectional area throughout the entire refrigerant flow path through the coil, the indirect heat exchange section has multiple sections, each having different cross-sectional areas, decreasing as the refrigerant travels through the heat exchange section.
As used herein, the term “total cross-sectional area” refers to the sum of the cross-sectional areas of the individual tubes in a condenser section. The term “total cross-sectional area” as used herein is not calculated to include the area between tubes in a condenser section. The cross-sectional area of each straight tube 105 in first condenser section 103 may be the same as or different from one-another, but the sum of the cross-sectional areas of all straight tubes 105 in first condenser section 103 equals the first total cross-sectional area. The tubes in first condenser section 103 are preferably finned. Each straight tube 105 in the first condenser section 103 terminates at one end at inlet header or manifold 107 and at terminates at a second end at intermediate header or manifold 109.
A second condenser section 111 includes a second plurality of straight tubes 113 having a second total cross-sectional area. The cross-sectional area of each straight tube 113 in second condenser section 111 may be the same as or different from one-another, but the sum of the cross-sectional areas of all straight tubes 113 in second condenser section 111 equals the second total cross-sectional area. The second total cross-sectional area is less than the first total cross-sectional area. The cross-sectional area of each straight tube 113 in the second condenser section may be the same or different from the cross-sectional area of each straight tube 105 in the first condenser section, but the cross-sectional area of each straight tube 113 in the second condenser section is preferably less than cross-sectional area of each straight tube 105 in the first condenser section. The number of tubes in the second condenser section may be the same or different from the number of tubes in the first condenser section, but is preferably less. The length of the tubes in the second condenser section may optionally be shorter than the length of the tubes in the first condenser section (as shown for example in
The second condenser section receives refrigerant from the first condenser section via intermediate header or manifold 109. As shown, for example in
Alternatively, third, fourth and fifth or more condenser sections may be present.
Each of the straight tubes in said third, fourth, and fifth or more condenser section is connected at one end to an immediately upstream condenser section by an intermediate header or manifold, and at a second end to another intermediate header or manifold 121 (if there is a subsequent condenser section) or to an outlet header or manifold 123.
By increasing the number of circuits (tubes) in the first condenser section and increasing the cross-sectional area of each tube in the first condenser section the invention can reduce the inlet vapor velocity more than 50% and thus reduce the refrigerant pressure drop to less than 25% of the original value. Moreover, the entrance vapor velocity, per circuit, is sufficient to establish an internal film heat transfer coefficient greater than the external heat transfer coefficient while limiting the internal pressure drop for the heat rejection intended. The subsequent decrease in total cross sectional area will occur after the first path or even later in the heat transfer fluid path depending upon operating conditions. The number of tubes in the second condenser section may be adjusted to additionally lower vapor velocity which in turn reduces refrigerant pressure drop. The second group also exhibits a reduced total cross sectional area then the first group in this illustration and thus maintains vapor velocity prior to entering the last reduction in cross sectional area. A third condenser section may have further reduced cross sectional area to re-establish the vapor velocity prior to exiting the condenser. It is most preferred that each condenser section incorporate smaller or same as, cross sectional area paths in comparison to the initial circuits. In doing so, the fluid (vapor) velocity is re-established such that the associated internal film heat transfer coefficient is greater than that leaving the initial total cross sectional area provided coupled with initial circuit quantity. Multi-cross sectional interfaces are preferably utilized throughout the condenser as needed via segmented headers (see, e.g.,
Number | Date | Country | |
---|---|---|---|
62458070 | Feb 2017 | US |