Multi-cusp ion source

Information

  • Patent Grant
  • 6294862
  • Patent Number
    6,294,862
  • Date Filed
    Tuesday, May 19, 1998
    27 years ago
  • Date Issued
    Tuesday, September 25, 2001
    24 years ago
Abstract
An ion source (26) includes a plasma confinement chamber and a plasma electrode (70) forming a generally planar wall section of the plasma confinement chamber. The plasma electrode (70) has at least one opening (84, 86) for allowing an ion beam (88) to exit the confinement chamber and has a set of magnets (78, 80, 82) that generate a magnetic field extending across the openings (84, 86) in the plasma electrode (70). The openings (84, 86) in the plasma electrode (70) can be fashioned as elongated slots or circular openings aligned along the axis. The ion source (26) can further include a power supply (72) for negatively biasing the plasma electrode relative to the plasma confinement chamber and an insulator (74) for electrically insulating the plasma electrode (70). Cooling tubes can also be provided to transfer heat away from the magnets in the plasma electrode (70).
Description




FIELD OF THE INVENTION




The present invention relates generally to an ion source for ion implantation equipment and more specifically to an ion source having a magnetic field that enhances performance of the ion source.




BACKGROUND OF THE INVENTION




Ion implantation has become a standard accepted technology used in doping workpieces such as silicon wafers or glass substrates with impurities in the large scale manufacture of items such as integrated circuits and flat panel displays. Conventional ion implantation systems include an ion source that ionizes a desired dopant element which is then accelerated to form an ion beam of prescribed energy. The ion beam is directed at the surface of the workpiece to implant the workpiece with the dopant element. The energetic ions of the ion beam penetrate the surface of the workpiece to form a region of desired conductivity. The implantation process is typically performed in a high vacuum process chamber which prevents dispersion of the ion beam by collisions with residual gas molecules and which minimizes the risk of the contamination of the workpiece by airborne particulates.




Conventional ion sources consist of a plasma confinement chamber, which may be formed from graphite, having an inlet aperture for introducing a gas to be ionized into a plasma and an exit aperture through which the plasma is extracted to form the ion beam. The plasma comprises ions desirable for implantation into a workpiece, as well as ions which are not desirable for implantation and which are a by-product of the ionization process. The plasma also includes electrons of varying energies.




One example of an ionizing gas is phosphine (PH


3


). When phosphine is exposed to a high energy source, such as high energy electrons or radio frequency (RF) energy, the phosphine can disassociate to form positively charged phosphorous (P


+


) ions for doping the workpiece and hydrogen ions. Typically, phosphine is introduced into the plasma confinement chamber and then exposed to the high energy source to produce both phosphorous ions and hydrogen ions. The phosphorous ions and the hydrogen ions are then extracted through the exit aperture into the ion beam. If hydrogen ions in the beam or high energy electrons find their way to the surface of the workpiece, they may be implanted along with the desired ions. If sufficient current densities of hydrogen ions or high energy electrons are present, these ions and electrons may cause an unwanted increase in the temperature of the workpiece that may damage structures such as resists on the surface of the substrate, which are employed to mask regions of the workpiece.




In order to reduce the number of unwanted ions and high energy electrons contained within the ion beam, it is known to provide magnets within the source chamber to separate the ionized plasma The magnets confine undesirable ions and high energy electrons to a region of the source chamber away from the exit aperture and confines the desirable ions and low energy electrons to a region of the source chamber near the exit aperture. Such a magnet arrangement is shown in the applicant's commonly-owned, co-pending U.S. patent application Ser. No. 09/014,472, filed Jan. 28, 1998, entitled Magnetic Filter For Ion Source, now U.S. Pat. No. 6,016,036, issued Jan. 18, 2000, which is incorporated by reference herein as if fully set forth. Other related examples of magnet configurations within an ion source chamber are shown in U.S. Pat. Nos. 4,447,732 and 4,486,665 to Leung et al. The Leung references show a magnetic filter comprised of a plurality of longitudinally extending magnets oriented parallel to each other. The Leung '665 patent also shows a negative ion source having a plasma grid assembly. The plasma grid assembly has a plurality of spaced-apart conductive grid members positioned adjacent the ion extraction zone.




An object of the present invention is to improve upon known ion sources having magnetic filters by forming an ion source having an enhanced magnetic field.




SUMMARY OF THE INVENTION




The ion source of the present invention achieves the objects of the invention by providing a plasma electrode which can form a generally planar wall section of an ion source confinement chamber and having at least one primary magnet and an opposing magnet oriented relative to an opening in the plasma electrode, such that the magnets form a magnetic field extending across the opening. This magnetic field improves the confinement of the plasma within the confinement chamber and filters high energy electrons from the ion beam.




One aspect of the invention provides for an ion source having a plasma electrode with at least one opening for allowing an ion beam to exit the confinement chamber and having at least one primary magnet and an opposing magnet. The primary magnet is coupled to the plasma electrode and is oriented to present one pole along an edge of the opening in the plasma electrode. The opposing magnet is coupled to the plasma electrode and is oriented to present an opposite pole along an opposing edge of the opening in the plasma electrode. The primary magnet and the opposing magnet generate a magnetic field that extends across the opening in the plasma electrode through which the ion beam passes.




According to another aspect of the invention, improved ion beam performance is achieved through a removable and replaceable plasma electrode. The plasma electrode includes at least one opening for allowing an ion beam to exit the confinement chamber and includes at least one primary magnet and an opposing magnet. The primary magnet and the opposing magnet are oriented relative to edges of the opening in the plasma electrode such that they generate a magnetic field that extends across the opening.




Other features of the invention include a power supply for negatively biasing the plasma electrode relative to the plasma confinement chamber and an insulator for electrically insulating the plasma electrode. The openings in the plasma electrode can be fashioned as elongated slots or circular opening aligned along an axis. In the case of an array of circular openings, the primary magnet and the opposing magnet are positioned relative to the openings such that the magnetic field is generally oriented at an angle Θ relative to the axis, where the angle Θ is greater than 0 degrees and less than 90 degrees. The invention can further include cooling tubes for transferring heat away from the magnets coupled with the plasma electrode. The cooling tubes can be mounted adjacent to the magnets or the tubes can enclose the magnets.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing and other objects, features and advantages of the invention will be apparent from the following description and apparent from the accompanying drawings, in which like reference characters refer to the same parts throughout the different views.





FIG. 1

is a perspective view of an ion implantation system into which an ion source constructed according to the invention is incorporated;





FIG. 2

is a partially cut away, perspective view of an ion source according to the present invention;





FIG. 3

is a cross-sectional view of a plasma electrode, taken along line


3





3


of

FIG. 2

;





FIG. 4

is a cross-sectional view of an alternative plasma electrode configuration;





FIG. 5

shows a top view of a plasma electrode that can be utilized in the ion source of

FIG. 2

;





FIG. 6

shows a top-view of another alternative plasma electrode configuration that can be utilized in accordance with the invention;





FIG. 7

is an enlarged cross-sectional view showing further details of the plasma electrode of

FIG. 2

; and





FIG. 8

is another cross-sectional view illustrating other aspects of the plasma electrode of FIG.


2


.











DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS





FIG. 1

shows an ion implantation system


10


for implanting large area substrates such as flat panels P. The system


10


comprises a pair of panel cassettes


12


and


14


, a loadlock assembly


16


, a robot or end effector


18


for transferring panels between the loadlock assembly and the panel cassettes, a process chamber housing


20


providing a process chamber


22


, and an ion source


26


. Panels P are serially processed in the process chamber


22


by an ion beam emanating from the ion source which passes through an opening


28


in the process chamber housing


20


. Insulative bushing


30


electrically insulates the process chamber housing


20


and the ion source housing


26


from each other.




Panel P is processed by the system


10


as follows. The end effector


18


removes a panel to be processed from cassette


12


, rotates is 180°, and installs the removed panel into a selected location in the loadlock assembly


16


. The loadlock assembly


16


provides a plurality of locations into which panels may be installed. The process chamber


22


is provided with a translation assembly that includes a pickup arm


32


which is similar in design to the end effector


18


.





FIGS. 4-6

demonstrate that the magnetic field lines can be generally oriented at any desired angle relative to a linear array of openings in the plasma electrode. As discussed in the commonly owned U.S. Pat. No. 6,016,036, it may be preferable to orient the magnetic field lines at a predetermined angle relative to the linear array of openings in the plasma electrode in order to improve the current density uniformity of the ion beam. Accordingly, in one aspect of the invention, the magnetic fields are generally oriented at an angle Θ relative to axis


100


, wherein Θ is greater than 0 degrees and less than 90 degrees, i.e. the magnetic field lines are neither orthogonal nor parallel to the axis 100.




The pickup arm


32


removes a panel P from the loadlock assembly


16


in a horizontal position (i.e. the same relative position as when the panel resides in the cassettes


12


and


14


and when the panel is being handled by the end effector


18


). The pickup arm


32


then moves the panel from this horizontal position in the direction of arrow


44


to a vertical position P


2


as shown by the dashed lines in FIG.


1


. The translation assembly then moves the vertically positioned panel in a scanning direction, from left to right in

FIG. 1

, across the part of an ion beam generated by the ion source and emerging from the opening


28


.




The ion source


26


outputs a ribbon beam. The term “ribbon beam” as used herein shall mean an elongated ion beam having a length that extends along an elongation axis and having a width that is substantially less than the length and that extends along an axis which is orthogonal to the elongation axis. The term “orthogonal” as used herein shall mean substantially perpendicular. Ribbon beams have proven to be effective in implanting large surface area workpieces because they require only a single unidirectional pass of the workpiece through the ion beam to implant the entire surface area, as long as the ribbon beam has a length that exceeds at least one dimension of the workpiece.




In the system of

FIG. 1

, the ribbon beam has a length that exceeds at least the smaller dimension of a flat panel being processed. The use of such a ribbon beam in conjunction with the ion implantation system of

FIG. 1

provides for several advantages in addition to providing the capability of a single scan complete implant. For example, the ribbon beam ion source provides the ability to process panel sizes of different dimensions using the same source within the same system, and permits a uniform implant dosage by controlling the scan velocity of the panel in response to the sampled ion beam current.





FIG. 2

illustrates a perspective view of the ion source


26


shown in FIG.


1


. The ion source


26


includes a set of walls defining a plasma confinement chamber


49


for holding a plasma. The plasma confinement chamber


49


can take the form of a parallelepiped, as shown in FIG.


2


. Alternatively, the confinement chamber


49


can be shaped like a bucket. The parallelepiped confinement chamber


49


illustrated in

FIG. 2

includes a rear wall


50


, a front wall


52


, and sidewalls


54


,


56


,


58


and


60


(not shown). The walls of the confinement chamber


49


may be comprised of aluminum or other suitable materials such as stainless steel While graphite, or other suitable materials, can be used to line the interior of these walls.




The rear wall


50


includes a gas inlet


62


and an excitor


64


. The inlet is used to release a gas from a gas source (not shown) into the confinement chamber


49


. The excitor


64


ionizes the discharged gas to initiate the creation of a plasma within the ion source


26


. The excitor


64


can be formed of a tungsten filament which when heated to a suitable temperature thermionically emits electrons. The emitted electrons generated by the excitor interact with and ionize the released gas to form a plasma within the plasma chamber. The excitor can also be formed of other high energy sources, such as an RF antenna that ionizes the electrons by emitting a radio frequency signal.




The ion source


26


further includes a set of bar magnets


66


that urge the plasma towards the center of the plasma confinement chamber


49


. The magnets


66


can be formed of a samarium cobalt structure and the magnets are typically fixed into grooves on the outside of the side walls


54


,


56


,


58


and


60


. The magnets are preferably arranged into assemblies in which the poles of the magnets alternate and provide a multi-cusped magnetic field within the housing. As further illustrated in

FIG. 2

, the bar magnets


66


are polarized so that the north and south poles of each magnet run the length of the magnet. Accordingly, the resulting field lines running from north to south poles of adjacent magnets


66


, create a multi-cusped type field that urges the plasma towards the center of the chamber.




The ion source


26


also includes a plasma electrode


70


that forms a generally planer wall section of the front wall


52


of the plasma confinement chamber


49


. An insulator


74


can be positioned between the front wall


52


and the sidewalls


54


,


56


,


58


and


60


in order to electrically isolate the front wall and the plasma electrode structure from the remaining sections of the plasma confinement chamber (e.g. the sidewalls


54


,


56


,


58


and


60


).




The plasma electrode


70


includes a least one opening


84


for allowing an ion beam


88


to exit the housing. The plasma electrode further includes a primary magnet


78


coupled to the plasma electrode and oriented to present one pole along an edge of the opening


84


in the plasma electrode


70


. A opposing magnet


80


is also coupled to the plasma electrode


70


and oriented to present an opposite pole along an opposing edge of the opening


84


in the plasma electrode


70


. The primary magnet


78


and the opposing magnet


80


form a magnetic field


94


that extends across the opening


84


in the plasma electrode


70


through which the ion beam passes. The magnetic field


94


typically has a field strength exceeding 100 gauss.




An extraction electrode


76


located outside the plasma confinement chamber extracts the plasma through the opening


84


, as is known in the art. The extracted plasma forms an ion beam


88


which is conditioned and directed towards the target surface.




In operation, a source gas can be introduced through the gas inlet


62


. One exemplary source gas is phosphine (PH


3


) which is diluted with hydrogen. The resulting phosphine (PH


3


) plasma comprises PH


n




+


ions and P


+


ions. In addition to the PH


n




+


ions and the P


+


ions, the ionization process occurring within the plasma chamber results in the generation of hydrogen ions and high energy electrons. The high energy electrons and hydrogen ions can be undesirable for implantation into target workpieces as they may cause unwanted heating and subsequent damage to the panel.




The magnetic field


94


generated by the primary magnet


78


and the opposing magnet


80


form a magnetic filter at the plasma electrode which aids in reducing the high energy electrons present in the ion beam


88


, and accordingly reduces the high energy electrons impacting the workpiece. In particular, the primary and opposing magnets


78


,


80


form a relatively strong magnetic field extending over the opening


84


, this magnetic field deflects the high-energy electrons with relatively high velocities away from the opening


84


. However, lower velocity particles such as ions and low-energy electrons can typically pass through the magnetic field


94


. The magnetic field


94


also improves confinement of the plasma within the plasma confinement chamber. By improving the confinement of the plasma, the magnetic field provides for increased beam currents in the ion beam


88


.




Preferably, the magnets


78


and


80


are polarized so that the north and south poles of each magnet run the length of the magnet (rather than being polarized end-to-end). The magnets are polarized in the same direction so that opposing poles face each other. As such, the magnetic field line


94


extends between opposing poles of adjacently positioned magnets. The magnetic field line improves plasma confinement and potentially filters high energy electrons from the ion beam


94


.




In another aspect of the invention, the plasma electrode


70


includes at least a plurality of openings (i.e. two or more openings). The plasma electrode can include a first opening


84


and a second opening


86


both of which allow ion beams to exit the housing. The first opening


84


forms a first ion beam


94


and the second opening


86


forms a second ion beam


96


. The first ion beam


94


and the second ion beam


96


typically overlap at or before the surface of the workpiece undergoing implantation.




As shown in

FIG. 2

, those plasma electrodes having two or more openings also include three or more magnets to provide a strong confinement field for the plasma. For instance, a primary magnet


78


is oriented to present a south pole along the edge of opening


84


and the opposing magnet


80


is oriented to present a north pole along the opposing edge of opening


84


. In addition, the opposing magnet


80


is oriented to present a south pole along the edge of opening


86


and a secondary magnet


82


is oriented to present a north pole along the opposing edge of opening


86


. This arrangement produces a first magnetic field


94


that extends across opening


84


and it also produces a second magnetic field


96


that extends across the second opening


86


. The magnetic fields


94


,


96


form a multi-cusp magnetic field that extends over the openings


84


,


86


, the multi-cusp magnetic field improves confinement of the plasma and reduces the number of high-energy electrons entering the ion beams


88


,


90


.





FIG. 2

also illustrates an ion source


26


having a power supply


72


electrically coupled between the plasma electrode


70


and the other sections of the plasma confinement chamber


94


. The power supply


72


creates an electrical bias between the plasma electrode


70


and the other sections of the plasma confinement chamber


94


. The insulator


74


electrically insulates the plasma electrode from the bulk of the plasma confinement chamber, thus allowing the creation of the electrical bias. Typically, the power supply


72


slightly negatively biases the plasma electrode relative to the sidewalls of the plasma confinement chamber and the bias is generally four volts. This slight negative voltage of the plasma electrode aids in inhibiting negative ions from leaving the plasma chamber through the openings


84


,


86


.





FIG. 3

illustrates a cross-section of the ion source


26


taken along line


3





3


of FIG.


2


. Particularly,

FIG. 3

illustrates an exemplary cross-section of the plasma electrode


70


. The illustrated plasma electrode


70


includes a plurality of slots shaped openings aligned substantially parallel to each other. For instance, an opening


84


′ is elongated along the length of axis


100


and an opening


86


′ is elongated along the length of the axis


102


, which lies parallel to axis


100


. Opening


84


′ and opening


86


′ are slot shaped so that they form ion beams having a cross-sectional ribbon beam shape. Typically, the length of the slot


84


′ along axis


100


is at least fifty times the width of the slong measured along an orthogonal axis. The illustrated magnets


78


,


80


and


82


also have an elongated shape. Each of the magnets presents one pole along an elongated edge of the slotted openings


84


′,


86


′.




The illustrated plasma electrode of

FIG. 3

also includes an even number of openings in the plasma electrode. An even number of openings advantageously provides for a more uniform ion beam, as compared to an ion beam produced within odd number of openings.





FIG. 4

illustrates an alternative embodiment of a plasma electrode


70


′ again as a cross-sectional view (e.g., as if taken along line


4





4


of FIG.


2


). The plasma electrode


70


′ includes a plurality of circular openings


104




a


,


104




b


,


104




c


and


104




d


for passing a stream of ions. The openings


104




a


-


104




d


are linearly arranged along axis


100


. The plasma electrode can also include a second grouping of circular openings


106




a,




106




b,




106




c


and


106




d


for passing a stream of ions. The second group of openings


106




a-




106




d


are linearly arranged along axis


102


, which lies substantially parallel to axis


100


.




The plurality of openings


104




a-




104




d


are separated by a predetermined distance along axis


100


such that the ion beams formed by each of the respective openings overlap at or before the surface of the workpiece. Thus the openings


104




a-




104




d


approximately form an ion beam having a envelope similar to the ion beam formed by the elongated opening


84


′. In an analogous fashion, the openings


106




a-




106




d


are separated by a distance along axis


102


and form ion beams that overlap at or before the workpiece and generate a cumulative ion beam having an envelope that approximates the ion beam formed by opening


86


′.





FIG. 4

also shows a plasma electrode


70


′ having a first set of magnets


108




a,




108




b,




108




c


and


108




d


which are oriented to present a north pole along the edge of the openings


104




a-




104




d,


respectively. A second set of magnets


110




a,




110




b,




110




c


and


110




d


are oriented to present a south pole along the opposing edge of openings


104




a-




104




d,


respectively. The magnets


110




a-




110




d


are also oriented to present a north pole along the edge of openings


106




a,




106




b,




106




c


and


106




d


respectively. Additionally, a third set of magnets,


112




a,




112




b,




112




c


and


112




d


are oriented to present a south pole along the edge of the openings


106




a-




106




d,


respectively.




The orientation of the magnets


108




a-




108




d


and


110




a-




110




d


relative to the openings


104




a-




104




d


form a set of magnetic field lines that extend across the openings


104




a-




104




d.


The orientation of the magnets


110




a-




110




d


and


112




a-




112




d


form a second set of magnetic field lines that extend across the set of openings


106




a-




106




d.


These magnetic field lines extend across the openings in a direction generally orthogonal to the linear extension of the array of openings (i.e. orthogonal to axes


100


and


102


). In addition, these magnetic field lines improve the confinement of the plasma and reduce the number of high-energy electrons entering the ion beams.





FIG. 5

illustrates a cross-section of an alternative plasma electrode


70


″. The plasma electrode


70


″ includes a first set of circular openings


104




a-




104




c


that extend along an axis


100


and a second set of circular openings


106




a-




106




c


that extend along a second axis


102


. The plasma electrode also includes a set of magnets


120




a,




120




b,




120




c


and


120




d


that generate magnetic field lines extending across the openings


104




a-




104




c


and across the openings


106




a-




106




c.


In comparison to

FIG. 4

, the magnetic field lines illustrated in

FIG. 5

extend across the openings in a direction generally parallel to the linear extension of the array of openings (i.e. parallel to axes


100


and


102


).





FIG. 6

illustrates a cross-section of a further alternative plasma electrode


70


′″. The plasma electrode includes a first set of circular openings


104




a-




104




b


that extend along an axis


100


and a second set of circular openings


106




a-




106




b


that extend along a second axis


102


. The plasma electrode also includes a set of magnets


122




a,




122




b,




122




c


and


122




d


that generate magnetic field lines extending across the openings


104




a-




104




c


and across the openings


106




a-




106




c.


The magnetic field lines illustrated in

FIG. 6

extend across the openings in a direction oriented generally at an angle Θ relative to axis


100


(or axis


102


which lies substantially parallel to axis


100


).





FIGS. 4-6

demonstrate that the magnetic field lines can be generally oriented at any desired angle relative to a linear array of openings in the plasma electrode. As discussed in the co-pending, commonly owned U.S. patent application, Ser. No. 09/014,472, now U.S. Pat. No. 6,016,036, it may be preferable to orient the magnetic field lines at a predetermined angle relative to the linear array of openings in the plasma electrode in order to improve the current density uniformity of the ion beam. Accordingly, in one aspect of the invention, the magnetic fields are generally oriented at an angle Θ relative to axis


100


, wherein Θ is greater than 0 degrees and less than 90 degrees, i.e. the magnetic field lines are neither orthogonal nor parallel to the axis


100


.





FIG. 7

shows further details of the plasma electrode


70


of FIG.


2


. The plasma electrode includes the magnets


78


and


80


positioned around opposite sides of the opening


84


. The magnets are contained with a section of the plasma electrode


70


. The magnet


78


is separated from an internal surface of the plasma electrode by a metallic yolk plate


124




a,


and the magnet


80


is separated from another internal surface of the plasma electrode by a second metallic yolk plate


124




b.


The metallic yolk plates


124




a,




124




b


can be formed from metals, such as steel.




The illustrated plasma electrode also includes cooling tubes


122




a


and


122




b


mounted adjacent the magnet


78


, and cooling tubes


122




c


and


122




d


mounted adjacent the magnet


80


. The cooling tubes


122




a


and


122




b


transfer heat away from the magnet


78


and the cooling tubes


122




c


and


122




d


transfer heat away from the magnet


80


. The cooling tubes


122




a-




122




d


can be filled with a suitable cooling fluid such as water to transfer heat away from the magnets


78


and


80


. The cooling tubes are typically formed of copper.





FIG. 8

other aspects of the plasma electrode, labeled


71


, according to the invention. The plasma electrode


71


includes the first opening


84


and the second opening


86


for forming the first ion beam


88


and the second ion beam


90


. The plasma electrode also includes magnets


78


,


80


and


82


oriented to form magnetic fields that extend across opening


84


and opening


86


. The magnets


78


,


80


and


82


are polarized so that the north and south poles of each magnet run the length of the magnet.




The orientation of the magnets


78


,


80


and


82


, however, differ from the orientation illustrated in FIG.


2


. The magnets


78


,


80


and


82


are rotated 90 degrees around an axis extending out of the plane of the page, relative to the orientations of the same magnets shown in FIG.


2


. The magnets produce magnetic field lines


130


,


132


,


134


and


136


. For example, the magnetic field line


130


extends from the north pole of magnet


78


to the south pole of magnet


80


, and the magnetic field line


132


extends from the north pole of magnet


80


towards the south pole of magnet


78


. The magnetic field line


134


extends from the north pole of magnet


82


to the south pole of magnet


80


, and the magnetic field line


136


extends from the north pole of magnet


80


to the south pole of magnet


82


. Magnetic field lines


130


-


134


aid in confirming the plasma to the plasma chamber and reduce the number of high-energy electrons entering the ion beams


88


and


90


.





FIG. 8

also shows the magnets


78


,


80


and


82


positioned within the cooling tubes


126




a,




126




b


and


126




c,


respectively. The cooling tubes


126




a,




126




b


and


126




c


are hollow and provide passageway for a cooling fluid to flow over the surfaces of the magnets


78


,


80


and


82


. The cooling tube can be formed of copper, and can be filled with a suitable cooling fluid, such as water, that transfers the heat away from the magnets. The cooling fluid can be pumped through the tubes to further aid in cooling the magnets which are being heated by plasma particles colliding with the plasma electrode


71


.




It will thus be seen that the invention efficiently attains the objects set forth above, among those made apparent from the preceding description. Since certain changes may be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense.



Claims
  • 1. An ion source including a plasma confinement chamber in which a plasma is generated and including a plasma electrode forming a wall section of the confinement chamber, the plasma electrode having at least one opening for allowing an ion beam to exit the confinement chamber, the improvement comprising:a power source electrically coupled between any other sections of the plasma confinement chamber and the plasma electrode, the power supply negatively biasing the plasma electrode relative to the other sections of the plasma confinement chamber for inhibiting negative ions from leaving from said plasma chamber through said openings; a primary magnet coupled to the plasma electrode and having north and south poles that extend along a length of the magnet, said primary magnet being oriented to present one of said poles along an edge of the opening in the plasma electrode; an opposing magnet coupled to the plasma electrode and having north and south poles that extend along a length of the magnet, said opposing magnet being oriented to present a pole opposite the pole of the primary magnet along an opposing edge of the opening in the plasma electrode such that a magnetic field extends across the opening in the plasma electrode through which the ion beam passes.
  • 2. An ion source including a plasma confinement chamber in which a plasma is generated and including a plasma electrode forming a wall section of the confinement chamber, the plasma electrode having at least one opening for allowing an ion beam to exit the confinement chamber, the improvement comprising:an insulator electrically insulating the plasma electrode from any other sections of the plasma confinement chamber, a power source electrically coupled between the other sections of the plasma confinement chamber and the plasma electrode, the power supply negatively biasing the plasma electrode relative to the other sections of the plasma confinement chamber a primary magnet coupled to the plasma electrode and having north and south poles that extend along a length of the magnet, said primary magnet being oriented to present one of said poles along an edge of the opening in the plasma electrode, and an opposing magnet coupled to the plasma electrode and having north and south poles that extend along a length of the magnet, said opposing magnet being oriented to present a pole opposite the pole of the primary magnet along an opposing edge of the opening in the plasma electrode such that a magnetic field extends across the opening in the plasma electrode through which the ion beam passes, wherein said primary magnet and the opposing magnet generate a magnetic field that extends over the openings in the plasma electrode through which the ion beam passes for filtering selected ions from the ion beam.
  • 3. An ion source according to claim 2, wherein the magnetic field extending across the opening is greater than 100 gauss.
  • 4. An ion source according to claim 2, wherein the opening in the plasma electrode is a slot.
  • 5. An ion source according to claim 4, wherein the length of the slot is at least 50 times the width of the slot.
  • 6. An ion source according to claim 4, wherein the plasma electrode includes a plurality of slots aligned substantially parallel to each other.
  • 7. An ion source according to claim 6 including an even number of slots in the plasma electrode, each slot being aligned substantially parallel to the other slots.
  • 8. An ion source according to claim 4, wherein the primary magnet and the opposing magnet are elongated and wherein the primary magnet and the opposing magnet extend along the length of the slot in the plasma electrode.
  • 9. An ion source according to claim 2, wherein the plasma electrode includes a plurality of circular openings aligned along an axis.
  • 10. An ion source according to claim 9, wherein the primary magnet and the opposing magnet are positioned relative to the opening such that the magnetic field is generally oriented at an angle Θ relative to the axis, the angle Θ being greater than 0 degrees and less than 90 degrees.
  • 11. An ion source according to claim 2, further comprisinga second opening in the plasma electrode, the second opening positioned such that the opposing magnet lies between the opening and the second opening, and a secondary magnet coupled to the plasma electrode and oriented to present a pole along the edge of the second opening such that the opposing magnet and the secondary magnet form a secondary magnetic field that extends across the second opening in the plasma electrode.
  • 12. An ion source according to claim 2, further comprising a cooling tube mounted adjacent the primary magnet for transferring heat away from the primary magnet.
  • 13. An ion source according to claim 2, wherein the primary magnet is positioned within a hollow cooling tube filled with a cooling fluid and wherein the cooling tube is mounted to the plasma electrode.
  • 14. An ion source according to claim 2, further comprising a magnetic yoke positioned between the primary magnet and an interior surface of the plasma electrode.
  • 15. A plasma electrode for use in an ion source, the ion source including a plasma confinement chamber in which a plasma is generated and wherein the plasma electrode is adapted to form a wall section of the confinement chamber, the plasma electrode including at least one opening for allowing an ion beam to exit the confinement chamber, the electrode comprising:an insulator electrically insulating the plasma electrode from any other sections of the plasma confinement chamber, a power source electrically coupled between the other sections of the plasma confinement chamber and the plasma electrode, the power supply negatively biasing the plasma electrode relative to the other sections of the plasma confinement chamber a primary magnet coupled to the plasma electrode and oriented to present one pole along an edge of the opening in the plasma electrode, and an opposing magnet coupled to the plasma electrode and oriented to present an opposite pole along an opposing edge of the opening in the plasma electrode such that a magnetic field extends across the opening in the plasma electrode through which the ion beam passes, wherein said primary magnet and the opposing magnet generate a magnetic field that extends over the openings in the plasma electrode through which the ion beam passes for filtering selected ions from the ion beam.
  • 16. A plasma electrode according to claim 15, wherein the opening in the plasma electrode is a slot.
  • 17. A plasma electrode according to claim 16, wherein the length of the slot is at least 50 times the width of the slot.
  • 18. A plasma electrode according to claim 16, wherein the plasma electrode includes a plurality of slots aligned substantially parallel to each other.
  • 19. A plasma electrode according to claim 18, further comprising an even number of slots in the plasma electrode, each slot being aligned substantially parallel to the other slots.
  • 20. A plasma electrode according to claim 16, wherein the primary magnet and the opposing magnet are elongated and wherein the primary magnet and the opposing magnet extend along the length of the slot in the plasma electrode.
  • 21. A plasma electrode according to claim 15, wherein the plasma electrode includes a plurality of linearly arranged circular openings.
  • 22. A plasma electrode according to claim 15, further comprisinga second opening in the plasma electrode, the second opening positioned such that the opposing magnet lies between the opening and the second opening, and a secondary magnet coupled to the plasma electrode and oriented to present a pole along the edge of the second opening such that the opposing magnet and the secondary magnet form a secondary magnetic field that extends across the second opening in the plasma electrode.
US Referenced Citations (9)
Number Name Date Kind
4447732 Leung et al. May 1984
4486665 Leung et al. Dec 1984
4559477 Leung et al. Dec 1985
5136171 Leung et al. Aug 1992
5198677 Leung et al. Mar 1993
5517084 Leung May 1996
5558718 Leung Sep 1996
5563418 Leung Oct 1996
5760405 King et al. Jun 1998
Foreign Referenced Citations (1)
Number Date Country
0 054 621 Jun 1982 EP
Non-Patent Literature Citations (2)
Entry
Forrester, A. Theodore, Large Ion Beams, Fundamentals of Generation and Propagation, (A Wiley-Interscience publication, 1988) pp. 204-227. (No month).
Takagi, K., et al., “A High Current Sheet Plasma Ion Source”, Nuclear Instruments and Methods in Physics Research B37/38 (1989) pp. 169-172 (North-Holland, Amsterdam) (No month).