1. Field of the Invention
The present invention relates to downhole apparatus and particularly, but not exclusively, to multi-cycle circulating subs used during downhole drilling operations.
2. The Prior Art
It is often necessary in downhole drilling operations to bleed the flow of wellbore fluid down the drill string into the wellbore annulus. For example, this may be necessary where the desired fluid flow rate to drive a drilling tool is insufficient to carry all the drilled material up the annulus to the surface. In these circumstances, a circulating sub may be used to allow the flow rate required to remove the drilled material to be pumped into the annulus whilst maintaining the lower flow rate required at the drilling tool.
It is known to provide a circulating sub with an axially movable piston for opening and closing vent apertures. The vent apertures are provided in a body of the sub and allow wellbore fluid pumped downhole through a central bore of the sub to pass into the surrounding wellbore annulus. Opening and closing of the vent apertures by means of the piston is controlled by a pin and groove arrangement. The pin is located in one of the piston and body and is received within the groove provided in the other of the piston and body. The profile of the groove is such that axial movement of the piston results in rotation of the piston within the body. Furthermore, the extent of axial piston movement is limited by the groove profile. Thus, the piston may be moved axially downhole by means of a predetermined fluid flow rate and returned uphole by means of a biasing spring so as to cycle the piston into a position wherein the control groove permits subsequent movement of the piston from a vent aperture closed position to a vent aperture open position.
A problem associated with the aforementioned prior art means for controlling the piston results from the helical compression spring generally used to bias the piston uphole. As the piston is pressed downhole by a fluid flow so as to compress the spring, there is a tendency for the spring to grip the piston and apply a rotational force thereto. This rotational force can often be in opposition to the control groove and pin. For example, in a movement of a piston from a vent aperture closed position to a vent aperture open position, a control groove will typically have a profile which is intended to allow for axial piston movement without any rotation of the piston relative to the body. In these circumstances, it is known for the rotational force applied by the spring to undesirably shear the control pin within the control groove.
The present invention provides apparatus for selectively providing fluid communication between the interior of a downhole assembly and the exterior thereof, such apparatus including a body incorporating a wall provided with at least one aperture extending therethrough; a piston having a longitudinal bore extending therethrough and being slidably mounted in the body so as to be movable between a first position relative to the body preventing fluid communication between the bore of the piston and the exterior of the body via the or each aperture and a second position relative to the body permitting fluid communication between the bore of the piston and the exterior of the body via the or each aperture; and controlling means for controlling the movement of the piston between the first and second positions, the controlling means comprising: a control member slidable in the body and movable by fluid pressure in the body in a first axial direction relative to the body; a spring biasing the control member in an opposite axial direction of the body; a pin secured to one of the body and the control member; and a control groove in which a portion of the pin is received formed in the other of the body and the control member, the control groove being shaped to limit axial displacement of the control member generated by pressure variations in the body such that only after a predetermined number of movements of the control member to a first axial position is the control member able to move to a second axial position so as to displace the piston from one of the first and second piston positions to the other of the first and second piston positions; characterised in that the controlling means further comprises a first element connected to the control member so as to prevent relative rotation between the first element and the control member, and a second element connected to the body so as to prevent relative rotation between the second element and the body, wherein the arrangement of said elements is such that, as the control member moves from said first axial position to said second axial position, increasing lengths of said elements locate adjacent one another so as to provide resistance to relative rotation, in at least one direction, of the control member and body, said relative rotation being relative rotation which presses the control pin against the control groove.
Thus, in apparatus according to the present invention, as the control member moves from the first axial position to the second axial position and thereby displaces the piston into one of the first and second piston positions, elements connected to the control member and apparatus body locate adjacent one another so as to provide resistance to relative rotation of the control member and body. As a consequence, relative rotation which tends to press a control pin against the control groove can be resisted and damage to the control pin thereby avoided. The first and second elements may be arranged so as to allow relative rotation between the control member and body as may be permitted by the control groove profile. However, the elements do not allow rotation which will press the control pin and groove against each other to the extent that damage to the pin may occur. Furthermore, as the control member is moved from said first axial position to said second axial position, the elements locate adjacent one another to an increasing extent by virtue of said elements sliding over one another in a collapsing telescoping type of movement. Thus, as the control member moves towards the second axial position (with the spring tending to apply an increasing rotational force), the elements are better able to resist relative rotation due to the increasingly long lengths of element portions located adjacent one another. In the event that the spring applies a rotational force opposing the control groove and pin, adjacent lengths of elements abut one another and prevent the force transmitted between the control groove and control pin increasing to an unacceptable level. Since the rotational force applied by the spring (by virtue of its compression) acts in one direction only, the elements need only resist relative rotation in one direction. Accordingly, the elements need only locate adjacent one another along one edge (said edge extending in a generally axial direction so as to be capable of transmitting rotational force centered on the apparatus axis).
It is preferable for said first element to remain axially spaced from said second element until the control member is axially moved to the first axial position. The arrangement of the first and second elements may be such that said elements become angularly offset to one another, so as to permit axial movement of said elements past one another, only after said predetermined number of movements of the control member to the first axial position. It is also preferable for the arrangement of the first and second elements to be such that, when said elements are angularly offset so as to permit their axial movement past one another, the control pin is received in one of a plurality of portions of control groove allowing the control member to move to the second axial position. The arrangement of the first and second elements may also be such that, when said elements are angularly offset so as to permit their axial movement past one another, the control pin is received in a portion of control groove allowing the control member either to displace the piston in said first axial direction from the first piston position to the second piston position and then to a third piston position preventing fluid communication between the bore of the piston and the exterior of the body via the or each aperture, or to displace the piston in said first axial direction from the second piston position to the first piston position and then to a third piston position permitting fluid communication between the bore of the piston and the exterior of the body via the or each aperture.
The control groove may comprise a plurality of said portions allowing displacement of the piston to said third piston position. Movement of the control member in said first axial direction past the second axial position may be prevented by means of an abutment of the second element with the control member or a component connected thereto. The second element may also be releasably connected to the body. The second element may be releasably connected to the body by means of a shear pin. When in the second piston position, the piston may be located so as to seal a fluid pathway through the apparatus and thereby, in use, direct fluid flowing into said apparatus through the or each aperture.
Embodiments of the present invention will now be described with reference to the accompanying drawings.
a is a plan view of the unwrapped profile of a control groove located relative to a control pin as shown in
a is a cross-sectional view taken along line 3-3 of
a is a plan view of the unwrapped profile of a control groove relative to a control pin as shown in
a is a cross-sectional view taken along line 7-7 of
a is a plan view of the unwrapped profile of a control groove located relative to a control pin as shown in
a is a cross-sectional view taken along line 11-11 of
The first embodiment shown in
In addition to the cylindrical body members 6, 8, 10 as described above, the body 4 may be considered to also incorporate a cylindrical sleeve 26 located in the elongate bore 12 between the downwardly and upwardly facing shoulders 14, 16. The sleeve 26 has an external diameter substantially equal to the internal diameter of the second body member 8. The external surface of the sleeve 26 is provided with two O-ring seals 28 for preventing axial fluid flow between said external surface and the internal surface of the second body member 8. The arrangement of the sleeve 26 within the second body member 8 is such that the sleeve 26 may slide axially within the bore 12. However, as will be explained hereinafter, such axial movement of the sleeve 26 occurs only during emergency conditions. During normal use of the circulating sub 2, the cylindrical sleeve 26 is selectively retained in a predetermined axial position relative to the second body member 8 by means of a shear pin 30. One or more shear pins may be provided.
At the downhole end of the sleeve 26, three elements 32 integral with the sleeve 26 extend inwardly from the interior surface of the sleeve 26 (see
The body 4 is provided with six apertures 40 extending radially through the wall thereof so as to allow fluid communication between the bore 12 and the exterior of the circulating sub. The apertures 40 lie in a single plane orientated perpendicularly to the longitudinal axis of the body 4. More specifically, the apertures 40 are provided in the second body member 8. The sleeve 26 includes apertures 90 (see
The body 4 houses a plurality of internal parts including a piston 42 and a helical compression spring 44 as principal components. The piston 42 has a generally cylindrical shape with the upper part 46 thereof having a greater outer diameter than the lower part 48. The difference in diameter between the upper and lower parts 46, 48 of the piston 42 provides a piston shoulder 50 (see
An O-ring seal 54 and wear ring 56 are provided on the external surface of the piston 42 above the groove 52. The piston 42 is also provided with a bore 58 having a sufficiently large diameter to allow the passage of wireline or coil tubing tools. It will be understood from
The piston 42 is located in the bore 12 of the second body member 8 with the piston shoulder 50 positioned uphole of a spring shoulder 60 defined by the uphole end of the sleeve 26. The compression spring 44 extends between the spring shoulder 60 and the piston shoulder 50 so as to bias the piston 42 in an uphole axial direction towards the first body member 6. A bearing 62 is located between the spring 44 and the piston shoulder 50 so as to allow the piston 42 to rotate relative to the spring 44 more readily. Uphole displacement of the piston 42 is limited by the downwardly facing shoulder 14. The body 4 and the piston 42 thereby form a piston spring chamber 64 which is sealed by means of the piston O-ring seal 54 and a further O-ring seal 66 mounted in the inner surface of an uphole portion of the sleeve 26. For ease of assembly, the further seal 66 may be provided on the piston 42. The axial movement of the piston 42 within the bore 12 is assisted by the provision of vent holes 68 which, when in use, vent the piston spring chamber 64 to the piston bore 58. Four vent holes 68 are provided. The diameter of each vent hole 68 determines the degree of damping provided to the piston 42. Increasing the diameter of a vent hole 68 decreases the damping. The rate of piston movement may be thereby controlled and drilling vibration counteracted.
As shown in
The down hole end of the piston 42 is provided with three axially extending slots 74 (only two of which are visible in the accompanying drawings). The piston slots 72 extend through the full thickness of the piston wall and effectively provide three elements 76 downwardly projecting from the down hole end of the piston 42. The three piston elements 76 are equi-spaced about the longitudinal axis of the circulating sub 2 and have a length and circumferential width substantially identical to that of the sleeve slots 36. The relative sizes of the sleeve slots 36 and piston elements 76 are such that the piston elements 76 may align with and slide axially into the sleeve slots 36. Clearly, the circumferential width of the sleeve elements 32 relative to the piston slot 74 are also such that, when aligned, the piston slots 74 may slide axially over the sleeve elements 32. As with the piston elements 76 and sleeve slots 36, the circumferential widths of the piston slots 74 and sleeve elements 32 are substantially equal. The purpose of this equality of circumferential widths is to ensure that, when the elements 32, 76 are respectively engaged with the slots 34, 36, the relative rotation possible between the piston 42 and spring 44 is minimal. As will be understood from the following discussion, the purpose of the element/slot engagement is more specifically to prevent rotation of the piston 42 relative to the body 4 in one particular direction during movement of the piston 42 towards the open position shown in
As most clearly shown in the expanded view of
A control pin 86 extends through the wall of the second body 8 so as to project into the bore 12 and locate in the control groove 52. The control pin 86 is secured in position by means of a retaining plug 88. One or more control pins may be provided. The shear pin 30 connecting the second body member 8 and sleeve member 26 also extends through an aperture through the wall of body member 8 and is retained in position by means of a retaining plug.
When in use, the multi-circulating sub 2 forms part of a downhole string through which well bore fluid may be pumped in order to operate equipment such as an anchor packer or a drilling tool, for example, a turbo drill or a positive displacement motor.
However, the axial movement of the piston 42 is controlled by the interaction of the control pin 86 and the control groove 52, and the piston 42 will be prevented from moving to the activated position unless the control pin 86 is located at one of three inactivated groove positions XX within the control groove 52 (see
When the control pin 86 is located in one of the aforementioned three inactivated positions XX within the control groove 52 immediately before the predetermined flow rate is generated or exceeded, the profile of the control groove 52 allows the piston elements 76 to move rotationally into alignment with the sleeve slots 36 and to then allow the piston 42 to move axially downhole without further rotation (see
Also, with the circulating sub 2 arranged in the open configuration, the closed ends of the piston slots 74 abut the upwardly facing sleeve shoulders 34.
Movement of the piston 42 is assisted by the four vent holes 68 which allow fluid to flow between the piston spring chamber 64 and the piston bore 58 as the piston 42 moves axially and varies the volume of the spring chamber 64.
It will be understood that the piston and sleeve elements 76, 32 must be arranged so as to align with the sleeve and piston slots 36, 74 when the control pin 86 moves from the aforementioned inactivated positions XX to the activated groove positions Z. More importantly, the piston and sleeve elements 76, 32 should be arranged relative to one another so that, should the piston 42 attempt to rotate (perhaps under the action of the spring 44) in opposition to the control groove and pin, adjacent piston and sleeve elements 76, 32 abut one another and prevent piston rotation. In this way, the application of undesirable forces on the control pin 86 is prevented. The risk of the control pin 86 becoming sheared and/or the piston 42 becoming jammed is thus reduced. It will be appreciated that, as the piston 42 is increasingly displaced downhole with an increasing tendency for compression of the spring 44 to apply undesirable rotational forces to the piston 42, an increasing length of the piston and sleeve elements 76, 32 locate adjacent one another allowing the piston and sleeve elements 76, 32 to resist piston rotation with increasing effectiveness.
In order to move the control pin 86 from an intermediate groove position Y or activate groove position Z and move the piston 32 towards the inactivated position shown in
In the event that the circulating sub 2 becomes jammed in an open configuration, an attempt to move the circulating sub 2 to a closed configuration can be made by increasing the flow of fluid through the circulating sub 2 so as to shear the shear pin 30 and move the piston 42, together with the sleeve 26, downhole towards the third body member 10. It is envisaged that a greater resultant force on the piston 42 can be generated by a flow of fluid downhole through the borehole 12 than by the compression spring 44. Thus, it may well be possible to move a jammed piston 42 downhole by means of dynamic fluid pressure in circumstances where the compression spring 44 is unable to move the jammed piston 42 uphole. However, since downhole movement of the piston 42 is limited in the open configuration by means of the sleeve elements 32 (so as to ensure alignment of the body apertures 40 and the flow port 72), further downhole movement of the piston 42 must be accompanied by a downhole movement of the sleeve 26. The force applied by the fluid flow to the piston 42 must therefore be sufficient not only to release the piston 42, but also to shear the shear pin 30 and thereby allow movement of the sleeve 26. Once a sufficient force is generated to release the piston 42 and shear the shear pin 30, the piston 42 and sleeve 26 move downhole to an emergency closed position. The profile of the control groove 52 is such as to allow the further downhole movement of the piston 42. As shown in
The present invention is not limited to the specific embodiment described above. Variations and alternatives will be apparent to the reader skilled in the art. For example, the control groove 52 may have an alternative profile with a different number of inactivated, intermediate, activated and extended groove positions. The control groove 52 shown in
The circulating sub 2 shown in
As can be seen most clearly from
In order to provide improved versatility, the elements provided on the sleeve and piston may be respectively detachable from the sleeve and piston. This may be achieved by defining the elements on a cylindrical portion which is screw threadedly engageable with the lower part of the sleeve or piston. In this way, the cycle characteristics of a circulating sub may be rapidly and conveniently altered.
As shown in
A third embodiment 202 is shown in
More specifically, the downhole portions of the sleeve 226 and piston 242 are arranged with an asymmetric configuration. The piston 242 defines a piston bore 258 having an upper portion coaxially arranged with the longitudinal axis of the circulating sub 202 and a lower portion located downhole of the flow ports 72 which extends downhole at an angle relative to the longitudinal axis of the circulating sub 202. Accordingly, the downhole end of the piston bore 258 opens at a location offset from the longitudinal axis of the apparatus 202. This offset location provides a downhole facing piston shoulder 259 extending inwardly into the bore 12 of the circulating sub 202. A single piston element 276 extends downwardly from the shoulder 259. The downhole end of the sleeve 226 has a reduced diameter defining a restricted bore 227 within an axis offset relative to the longitudinal axis of the circulating sub 202. Uphole of the reduced diameter, the sleeve 226 is provided with four ports 229 which extend radially through the thickness of the sleeve 226.
When in the closed configuration as shown in
As described with relation to the first and second embodiments, the third embodiment 202 may be moved to an emergency closed position in the event that the piston 242 becomes jammed and the biasing force of the compression spring 44 is insufficient to return the piston 242 to its original uphole position in abutment with the first body member 6. Again, as described in relation to the first and second embodiments, the emergency closed configuration is achieved by increasing the flow of fluid through the bore 12. The flow rate is increased until the downhole force applied to the piston 242 is sufficient to release the piston 242 and shear the shear pin 30. The piston 242 and sleeve 226 are then moved downhole. Downhole movement of the piston 242 and sleeve 226 is limited by abutment of the sleeve 226 with the third body member 10. Although the restricted sleeve bore 227 remains sealed by the downwardly facing piston shoulder 259, flow through the bore 12 into the third body member 10 is permitted by means of the ports 229 provided in the sleeve 226. Flow through the ports 229 is possible with the sleeve 226 abutting the third body member 10 by virtue of a circumferential recess 231 provided in the interior surface of the second body member 208 at a downhole portion thereof. More specifically, the recess 231 is located uphole of the third body member 10 and downhole of the four ports 229 when the sleeve 226 is located in a non-emergency position (i.e. when retained by the shear pin 30 as shown in
Finally, it will be understood that any of the above described embodiments may be moved to the emergency closed configuration by running means for closing the piston bore. For example, a dart may be run on a wire line downhole through the apparatus so as to locate in the piston 42, 142, 242 and block the piston bore. The shear pin 30 will then shear and the apparatus will close. The dart may then be recovered and circulation through the apparatus restored.
Number | Date | Country | Kind |
---|---|---|---|
0116472.2 | Jul 2001 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB02/02975 | 6/27/2002 | WO | 00 | 2/2/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/004828 | 1/16/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3850250 | Holden et al. | Nov 1974 | A |
3986554 | Nutter | Oct 1976 | A |
4113012 | Evans et al. | Sep 1978 | A |
6109354 | Ringgenberg et al. | Aug 2000 | A |
Number | Date | Country |
---|---|---|
0092354 | Oct 1983 | EP |
0222620 | May 1987 | EP |
2309470 | Jul 1997 | GB |
2314106 | Dec 1997 | GB |
Number | Date | Country | |
---|---|---|---|
20040154839 A1 | Aug 2004 | US |