This application claims priority to European Patent Application No. 11162708.9, filed Apr. 15, 2011, the entire disclosure of which is incorporated herein by reference.
The present invention refers to multicylinder internal combustion engines, of the type comprising, for each cylinder:
An engine of the type specified above is described in EP-A-1 378 638 of the Applicant. Over the years, the Applicant has developed internal combustion engines comprising a system for the variable actuation of the intake valves of the previously indicated type, sold under the trademark “MULTIAIR”. The Applicant owns various patents and patent applications regarding engines provided with a system of the type described above. Such system, which will be described in detail hereinafter with reference to
In document EP-A-1 378 638, the Applicant proposed a method for controlling the engine in which, using the aforementioned “MULTIAIR” system, the abovementioned solenoid valves associated to the various engine cylinders are controlled in a differentiated manner, so as to substantially reduce the differences of the amount of air taken in by the various engine cylinders to zero.
Further experiments and studies conducted by the Applicant however revealed that such method for controlling the engine is not entirely satisfactory, given that it does not guarantee uniformity in the operative performance of the various engine cylinders and therefore does not eliminate the irregularities in the rotation speed of the engine shaft.
The object of the present invention is to provide an engine of the type described above, capable of allowing to obtain a compensation of the differences in the torque produced by the various engine cylinders, so as to reduce the irregularities in the rotation speed of the engine shaft to the minimum.
A further object lies in the fact of allowing attaining such object through relatively simple and reliable means.
In order to attain such object, the invention aims at providing an engine of the type indicated at the beginning of the present description and further characterized in that the abovementioned electronic control means receive signals indicating the operative performance of each cylinder during the operation of the engine and are programmed to dynamically vary the amount of air taken in by each cylinder during the operation of the engine, through the differentiated control of said solenoid valves, so as to maintain the torques produced by the engine cylinders substantially identical to each other.
According to a further characteristic, the engine according to the invention further comprises:
Still according to a further characteristic of the invention, the engine further comprises:
The invention also aims at providing the control method implemented in the engine described above.
Due to the characteristics indicated above, the engine according to the invention allows easily obtaining, exploiting the operative flexibility of the “MULTIAIR” system, a substantially constant operative performance of the various engine cylinders, regardless of the difference of the fluid dynamic conditions in which the cylinders operate, hence substantially eliminating the irregularities in the rotation speed of the engine shaft.
Further characteristics and advantages of the invention will be apparent from the description that follows with reference to the attached drawings, provided purely by way of non-limiting example, wherein:
Over the years, the Applicant has developed internal combustion engines comprising a system for the variable actuation of the intake valves of the previously indicated type, sold under the trademark “MULTIAIR”. The Applicant owns various patents and patent applications regarding engines provided with a system of the type indicated above.
With reference to such
Each valve 7 is returned towards the closed position by springs 9 interposed between an inner surface of the head 1 and an end retaining cap 10 of the valve. The communication of the two exhaust conduits 6 with the combustion chamber is controlled by two valves 70, also of the conventional type, to which springs 9 for return towards the closed position are associated.
The opening of each intake valve 7 is controlled, as described hereinafter, by a camshaft 11 rotatably mounted around an axis 12 within supports for the head 1, and comprising a plurality of cams 14 for the actuation of the intake valves 7.
Each cam 14 controlling an intake valve 7 cooperates with the plate 15 of a tappet 16 slidably mounted along an axis 17 which, in the case of the example illustrated in the mentioned prior art document, is substantially directed at 90° with respect to the axis of the valve 7. The plate 15 is returned against the cam 14 by a spring associated thereto. The tappet 16 constitutes a pumping piston slidably mounted within a bushing 18 carried by a body 19 of a preassembled assembly 20, incorporating all electrical and hydraulic devices associated to the actuation of the intake valves, according to the description outlined hereinafter.
The pumping piston 16 is capable of transmitting a thrust to the stem 8 of the valve 7, so as to cause the opening of the latter against the action of the elastic means 9, by means of pressurized fluid (preferably oil coming from the engine lubrication circuit) present in a pressure chamber C to which the pumping piston 16 is faced, and by means of a piston 21 slidably mounted in a cylindrical body constituted by a bushing 22 also carried by the body 19 of the sub-assembly 20.
Still in the solution described in
When the solenoid valve 24 is open, the chamber C enters in communication with the channel 23, hence the pressurised fluid present in the chamber C flows into such channel and thus obtaining the decoupling of the cam 14 and the decoupling of the respective tappet 16 from intake valve 7, which thus quickly returns to the closure position thereof under the action of the return springs 9. Thus, controlling the communication between the chamber C and the exhaust channel 23, allows varying the opening time and the travel of each intake valve 7 at will.
The exhaust channels 23 of the various solenoid valves 24 end up in the same longitudinal channel 26 communicating with pressure accumulators 27, only one of which can be observed in
All tappets 16 with the associated bushings 18, the pistons 21 with the associated bushings 22, the solenoid valves 24 and the respective channels 23, 26 are carried by and obtained from the abovementioned body 19 of the preassembled assembly 20, to the advantage of an engine that is quick and easy to assemble.
The exhaust valves 70 associated to each cylinder are controlled, in the embodiment illustrated in
Still with reference to
During the normal operation of the known engine illustrated in
In the reverse movement for closing the valve, as previously mentioned, during the final phase, the nose 31 enters into the opening 30 causing the hydraulic braking of the valve, so as to avoid impacts of the body of the valve against the seat thereof, for example after an opening of the solenoid valve 24 which causes the immediate return of the valve 7 to the closed position.
In the described system, when the solenoid valve 24 is enabled, the valve of the engine follows the movement of the cam (full lift). An early closure of the valve can be obtained by disabling (opening) the solenoid valve 24, thus emptying the hydraulic chamber and obtain the closure of the valve of the engine under the action of the respective return springs. Analogously, a delayed opening of the valve can be obtained by delaying the opening of the solenoid valve, while the combination of a delayed opening with an early opening of the valve can be obtained by enabling and disabling the solenoid valve during the thrust of the relative cam. According to an alternative strategy, according to the teachings of the patent application EP 1 726 790 A1 of the applicant, each intake valve can be controlled in “multi-lift” mode i.e. according to two or more repeated opening and closing “sub-cycles”. In each sub-cycle, the intake valve opens and then closes completely. The electronic control unit is thus capable of obtaining a variation of the opening instant and/or of the closing instant and/or of the lift of the intake valve, as a function of one or more engine operative parameters. This allows obtaining the maximum efficiency of the engine, and lower consumption of fuel, under any condition of operation.
The engine according to the invention, schematically illustrated in
With reference to
In the preferred embodiment, the system according to the invention further comprises a third electronic module E3 adapted to statically calculate, with an open loop procedure, by means of previously memorised experimental maps, as a function of the signals w and L indicating the rotation speed of the engine and of the engine load, a second correction Δ′AIR regarding the amount of air taken in by one cylinder with respect to the other which should be implemented so as to obtain torques produced by the various cylinders substantially identical to each other. In the case of such preferred embodiment, the system further comprises a fourth electronic module E4 which receives the correction signals ΔAIR and A′AIR, from said second module E2 and from said third module E3 and processes them to emit—in output—a signal Δα indicating a variation of the crank angle value corresponding to the opening of the intake valve for each cylinder of the engine such to ensure that the dispersion in the production of torque of the various cylinders, due to fluid dynamic reasons or a dispersion of single components, is reduced to a minimum value or eliminated entirely, hence limiting the irregularities in the rotation speed of the engine shaft.
The diagram of
Obviously, without prejudice to the principle of the invention, the construction details and embodiments may widely vary with respect to what has been described and illustrated purely by way of example, without departing from the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
11162708 | Apr 2011 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6691669 | Surnilla et al. | Feb 2004 | B2 |
7246595 | Hoare et al. | Jul 2007 | B1 |
7440836 | Yasui et al. | Oct 2008 | B2 |
20070074705 | Nakasaka et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
102006030192 | Jan 2008 | DE |
0803642 | Oct 1997 | EP |
1378638 | Jul 2004 | EP |
1726790 | Nov 2006 | EP |
2796417 | Jan 2011 | FR |
2006050383 | May 2006 | WO |
Entry |
---|
Sep. 7, 2011 European Search Report in related Application No. 11162708.9. |
Number | Date | Country | |
---|---|---|---|
20120260872 A1 | Oct 2012 | US |