The instant application should be granted the priority date of May 5, 2006 the filing date of the corresponding Austrian patent application A 774/2006.
The present invention relates to a multi-cylinder internal combustion engine, especially for a commercial vehicle.
The present application proceeds from DE 103 22 963 A1, FIGS. 2A and 2C of which disclose a multi-cylinder internal combustion engine according to which the exhaust gas outlets of a portion of the cylinders communicate with a first exhaust gas manifold section, and the exhaust gas outlets of the other portion of the cylinders communicate with a second exhaust gas manifold section, whereby a catalytic converter is disposed in each of the exhaust gas manifold sections. However, this document provides no discussion regarding the type of catalytic converters that are disposed in the individual exhaust gas manifold sections. DE 101 23 359 A1 discloses in FIG. 21 and the associated text the provision of a muffler in an exhaust gas manifold, whereby a hydrolysis catalytic converter, and at least one oxidation catalytic converter, can have flow through them in parallel in the muffler. A reduction agent is metered into the inlet region of the hydrolysis catalytic converters with ammonia being produced by the reaction agent. The oxidation catalytic converter serves for the conversion of NO into NO2. This type of parallel flow through the two catalytic converters, proceeding from a common exhaust gas intake chamber in the muffler, can lead to undesired non-uniform flow components, which can effect either an NO2 production that is too high, or a non-complete conversion of the reduction agent, accompanied by harmful separation products such as isocyanic acid or solid cyanuric acid particles.
It is therefore an object of the present application to associate an exhaust gas post treatment device with an internal combustion engine of the aforementioned general type, according to which, due to the selection and arrangement of the catalytic converters, the problems that can occur with the parallel arrangement of the catalytic converters in the muffler of DE 101 23 359 A1 are eliminated.
This object, and other objects and advantages of the present invention; will appear more clearly from the following specification in conjunction with the accompanying schematic drawings, in which;
The multi-cylinder internal combustion engine of the present application comprises an oxidation catalytic converter disposed in a first exhaust gas manifold section, wherein nitric oxide contained in the exhaust gas that flows through is adapted to be converted by the oxidation catalytic converter into nitrogen dioxide; a hydrolysis catalytic converter disposed in a second exhaust gas manifold section, wherein downstream of the oxidation and hydrolysis catalytic converters, the first and second exhaust gas manifold sections discharge into a common main exhaust gas manifold, at least one further catalytic converter disposed in the main exhaust gas manifold; and means for introducing a reduction agent into the second exhaust gas manifold section upstream of the hydrolysis catalytic converter, wherein ammonia is adapted to be produced from the reduction agent via the hydrolysis catalytic converter.
As a result of the inventive arrangement of the oxidation catalytic converter and of the hydrolysis catalytic converter in its own respective exhaust gas manifold section, each of these catalytic converters is always acted upon by a defined exhaust gas stream. Due to their arrangement separate from one another, the functionalities of the two catalytic converters do not mutually interfere with one another, but rather are fully effective. In other words, a defined exhaust gas stream flows through the oxidation catalytic converter, in which a defined quantity of the NO is converted into NO2. Associated with the hydrolysis catalytic converter is a metering-in stretch defined by the pipe or conduit of the exhaust gas manifold section for the reduction agent. Downstream of the catalytic converters, the two at that point still different gas streams are joined together, are subsequently thoroughly mixed in the main exhaust gas manifold in an adequately long mixing zone, and are then conveyed through the SCR catalytic converter or converters, as well as possibly through further catalytic converters.
Further specific features of the present invention will be described in detail subsequently.
Referring now to the drawings in detail, in the figures an internal combustion engine is designated by the reference numeral 1 and serves, for example, as the drive source of a vehicle. In
Pursuant to the present application the catalytic converter 7 that is disposed in the first exhaust gas manifold section 3 is formed by an oxidation catalytic converter via which the nitric oxide (NO) contained in the exhaust gas that flows through is converted into nitrogen dioxide (NO2). Furthermore, the catalytic converter 8 that is disposed in the second exhaust gas manifold section 4 is formed by a hydrolysis catalytic converter, and upstream of the hydrolysis catalytic converter 8 a reduction agent can be introduced into the second exhaust gas manifold section 4, and in particular via a nozzle or jet 11 to which the required quantity of reduction agent is supplied from a supply tank 12 via a metering device 13. Ammonia can be produced from this reduction agent with the aid of the hydrolysis converter 8.
If the reduction agent is an aqueous urea solution, a flow mixer 14, and if desired also an evaporator or a heating device 15, can be disposed upstream of the hydrolysis catalytic converter 8. The flow mixer 14 serves for a thorough mixing of the metered-in reduction agent with the exhaust gas, as well as for a homogenization of the distribution of this mixture over the entire entry cross-section of the hydrolysis catalytic converter 8. The evaporator or heating device 15 serves to accelerate the evaporation of the metered-in reduction agent.
With the V engine of
The at least one further catalytic converter 10 in the main exhaust gas manifold 9 comprises one or more SCR(Selective Catalytic Reduction)-type catalytic converter or converters, for example ammonia (NH3) suppression oxidation catalytic converter or converters 10a, particle oxidation catalytic converter or converters 10b, and nitrogen dioxide (NO2) suppression catalytic converter or converters 10c.
In the embodiment illustrated in
Each portion of the main exhaust gas manifold 9 between the junction 20 of the two exhaust gas manifold sections 3, 4 and the inlet location into the (first one of the) catalytic converter or converters 10 forms an adequately long mixing zone for the two different gas streams that are introduced into the main exhaust gas manifold 9 from the exhaust gas manifold sections 3, 4. In the embodiment of
The specification incorporates by reference the disclosure of Austrian priority document A774/2006 filed May 5, 2006.
The present invention is, of course, in no way restricted to the specific disclosure of the specification and drawings, but also encompasses any modifications within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
A 774/2006 | May 2006 | AT | national |
Number | Name | Date | Kind |
---|---|---|---|
6189316 | Surnilla | Feb 2001 | B1 |
6568177 | Surnilla | May 2003 | B1 |
6928807 | Jacob et al. | Aug 2005 | B2 |
20030213234 | Funk et al. | Nov 2003 | A1 |
20060096275 | Robel et al. | May 2006 | A1 |
20060257303 | Telford | Nov 2006 | A1 |
20070074506 | Driscoll et al. | Apr 2007 | A1 |
20070175204 | Shirai et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
4203807 | Aug 1993 | DE |
10123359 | Nov 2002 | DE |
10218255 | Nov 2003 | DE |
487886 | Jun 1992 | EP |
1357267 | Oct 2003 | EP |
1 422 410 | May 2004 | EP |
2 389 918 | Dec 2003 | GB |
WO 2004076829 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070261393 A1 | Nov 2007 | US |