The following relates to printing platforms. It finds particular application to printing platforms employing a multi-development system low-cost-per-page print engine having at least two different toners.
In conventional xerography, an electrostatic latent image is created on the surface of a photoconducting insulator and subsequently transferred to a final receiving substrate or medium. This typically involves the following. An electrostatic charge is deposited on the photoreceptor surface (e.g., by a corona discharge). The photoreceptor is exposed, which selectively dissipates the surface charge in the exposed regions and creates a latent image in the form of an electrostatic charge pattern. The image is developed by transferring electrostatically charged toner particles to the photoreceptor surface. The toner particles are then transferred to a receiving substrate or to one or more intermediate transfer elements and then to the receiving substrate. The transferred image is made permanent by various techniques, including pressure, heat, radiation, solvent, or some combination thereof.
With conventional systems, a print job that includes both color and black pages typically is processed using a color engine, wherein color toner is used to process the color pages and black toner is used to process black pages. This results in consistency of the black portions of the transferred images between the color and the black and white pages. However, using the black toner from a color engine to process a black and white page may be inefficient in that color engines typically are relatively slower than monochrome black toner engines and more costly on a per page basis. With conventional systems having both color and black engines, matching the black from the color engine with the black from the black engine may not possible since the black toner used with color engines typically is a glossy black, while the black toner used with black engines typically is a flat black. Thus, using such engines for processing the same print job may render pages with visually different looking black.
The following applications, the disclosures of each being totally incorporated herein by reference are mentioned:
U.S. application Ser. No. 10,761,522 , filed Jan. 21, 2004, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 10/785,211 , filed Feb. 24, 2004, entitled “UNIVERSAL FLEXIBLE PLURAL PRINTER TO PLURAL FINISHER SHEET INTEGRATION SYSTEM,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/881,619 , filed Jun. 30,2004, entitled “FLEXIBLE PAPER PATH USING MULTIDIRECTIONAL PATH MODULES,” by Daniel G. Bobrow;
U.S. application Ser. No. 10/917,768, filed Aug. 13,2004, entitled “PARALLEL PRINTING ARCHITECTURE CONSISTING OF CONTAINERIZED IMAGE MARKING ENGINES AND MEDIA FEEDER MODULES,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/924,106, filed Aug. 23,2004, entitled “PRINTING SYSTEM WITH HORIZONTAL HIGHWAY AND SINGLE PASS DUPLEX,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/924,113, filed Aug. 23, 2004, entitled “PRINTING SYSTEM WITH INVERTER DISPOSED FOR MEDIA VELOCITY BUFFERING AND REGISTRATION,” by Joannes N. M. deJong, et al.;
U.S. application Ser. No. 10/924,459, filed Aug. 23, 2004, entitled “PARALLEL PRINTING ARCHITECTURE USING IMAGE MARKING ENGINE MODULES (as amended),” by Barry P. Mandel, et al.;
U.S. Pat. No. 6,959,165, issued Oct. 25, 2005, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 11/089,854, filed Mar. 25,2005, entitled “SHEET REGISTRATION WITHIN A MEDIA INVERTER,” by Robert A. Clark, et al.;
U.S. application Ser. No. 11/090,498, filed Mar. 25, 2005, entitled “INVERTER WITH RETURN/BYPASS PAPER PATH,” by Robert A. Clark;
U.S. application Ser. No. 11/094,998, filed Mar. 31,2005, entitled “PARALLEL PRINTING ARCHITECTURE WITH PARALLEL HORIZONTAL PRINTING MODULES,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/109,566, filed Apr. 19, 2005, entitled “MEDIA TRANSPORT SYSTEM,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 11/166,581, filed Jun. 24,2005, entitled “MIXED OUTPUT PRINT CONTROL METHOD AND SYSTEM,” by Joseph H. Lang, et al.;
U.S. application Ser. No. 11/166,299, filed Jun. 24, 2005, entitled “PRINTING SYSTEM,” by Steven R. Moore;
U.S. application Ser. No. 11/208,871, filed Aug. 22,2005, entitled “MODULAR MARKING ARCHITECTURE FOR WIDE MEDIA PRINTING PLATFORM,” by Edul N. Dalal, et al.;
U.S. application Ser. No. 11/248,044, filed Oct. 12,2005, entitled “MEDIA PATH CROSSOVER FOR PRINTING SYSTEM,” by Stan A. Spencer, et al.; and
U.S. application Ser. No. 11/291,583, filed Nov. 30, 2005, entitled “MIXED OUTPUT PRINTING SYSTEM,” by Joseph H. Lang;
U.S. application Ser. No. 11/312,081, filed Dec. 20, 2005, entitled “PRINTING SYSTEM ARCHITECTURE WITH CENTER CROSS-OVER AND INTERPOSER BY-PASS PATH,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 11/317,589, filed Dec. 23, 2005, entitled “UNIVERSAL VARIABLE PITCH INTERFACE INTERCONNECTING FIXED PITCH SHEET PROCESSING MACHINES,” by David K. Biegelsen, et al., and
U.S. application Ser. No. 11/331,627, filed Jan. 13, 2006, entitled “PRINTING SYSTEM INVERTER APPARATUS,” by Steven R. Moore.
U.S. application Ser. No. 11/331,627, filed Jan. 13, 2006, entitled “PRINTING SYSTEM INVERTER APPARATUS,” by Steven R. Moore.
In one aspect, a multi-purpose print platform is illustrated. The multi-purpose print platform includes a low-cost-per-page print engine having at least two development systems, each of which is associated with a different type of black toner.
With reference to
The low-cost-per-page print engine includes separate development systems for each different type of black toner and/or highlight color toner. Individual development systems may be associated with various dedicated or common components such as photoreceptors, intermediate transfer elements (e.g., drums, belts, etc.), fusers, etc., as well as other conventional xerographic elements such as photoreceptor cleaners, photoreceptor chargers, expose units (including optics, a laser raster output scanner, LEDs, etc.), charge transfer elements, fusers, finishers, print medium feeders, print medium inserters, etc. Where common components (e.g., a common photoreceptor, a common fuser, etc.) are used for more than one type of black toner, a single black development system may process an entire page or multiple black development systems may process the page, wherein each black development system used processes a different portion of the page.
Leveraging both the color print engine and the low-cost-per-page print engine can improve system performance and reduce cost. For instance, color print engines typically process pages at a lower rate relative to a monochrome black and/or other low-cost-per-page print engine. Thus, by using the color print engine to process color pages and the low-cost-per-page print engine (instead of the color print engine) to process black and white and/or highlight color pages, the average page per minute processing rate can be increased. In addition, the per page cost associated with processing a page typically is greater for a color print engine relative to a low-cost-per-page print engine. Thus, by using both the color and the low-cost-per-page print engines, the total cost of processing the job can be reduced. However, it is to be understood that page-per-minute (ppm) of the low-cost-per-page print engine is independent of whether or not the color print engine is printing, and vice versa. In addition, depending on the types of black toner available, the user can match the black on the color pages and the black on the black and white pages or intentionally use different types of black toners to introduce a difference in the black on the color pages and the black on the black and white pages. The user can also use a plurality of the black development systems for processing a black and white page in order to introduce a difference within the black on a single black and white page. Moreover, such a system provides the capability to deliver a more flexible, “Universal Printer,” in which the different black development systems enables a job that has black only pages to be printed at lower cost to the customer and at lower wear on the color engine.
The print platform includes a controller 10, which can include software, firmware, and/or hardware, that controls various components of the printing platform. As depicted, the controller 10 can control at least one or more of a color print engine 12 and a low-cost-per-page print engine 14. Other components controlled by the controller 10 can include, but are not limited to, other color and/or black print engines, displays, fusers, job schedulers, print medium trays, print medium pathways, controls (e.g., physical and software based buttons, knobs, etc.), etc.
The color print engine 12 includes at least a color development system (CDS) 16. The CDS 16 includes a developer (not shown) and housings (not shown) for storing color and black toner. Typically, the color print engine 12 houses a glossy black. However, in various instances, the black toner may be a flat, low gloss, semi-gloss, magnetic, etc. black toner. The color print engine 12 also includes various other xerographic elements (not shown), including, but not limited to, one or more photoreceptors (e.g., drums and/or belts), photoreceptor cleaners, photoreceptor chargers, expose systems (e.g., laser, etc.), intermediate transfer systems (e.g., belts and/or drums), transfer chargers, fusers, finishers, dischargers, etc. One of more of these other components may also be considered as part of the CDS 16.
The low-cost-per-page print engine 14 includes N black and/or highlight color development systems (DSs) 181, 182, . . ., 18N, (or DSs 18, collectively) wherein N is an integer equal to or greater than one. Each of the DSs 18 includes a developer (not shown) and a housing (not shown) for storing a different type of black toner or a highlight color toner. For example, the DS 181, may include a housing for storing a flat black toner, the DS 182 may include a housing for storing a semi-gloss black toner, . . . , and the DS 18N may include a housing for storing a glossy black toner. It is to be understood that the foregoing example is provided for explanatory purposes and is not limiting. Thus, each of the DSs 18 may include a different toner, including a toner suitable for Magnetic Ink Character Recognition (MICR), which includes a magnetized toner, or a highlight color toner. Thus, the DS 181 may alternatively include a housing for storing a low gloss, a semi-gloss, a gloss, a MICR, etc. black toner or a highlight color toner. The low-cost-per-page print engine 14 also includes various xerographic elements (not shown), including, but not limited to, one or more photoreceptors (e.g., drums and/or belts), photoreceptor cleaners, photoreceptor chargers, expose systems (e.g., laser, LED, etc.), intermediate transfer systems (e.g., belts and/or drums), transfer chargers, fusers, finishers, dischargers, etc. In some instances, one or more of these elements may be considered as part of the DSs 18, and each of the DSs 18 may be associated with one or more common or individual elements such as common photoreceptors and/or common fusers.
Various types of print medium or print substrate can be provided to the print engines 12 and 14 via one or more feeders in which each feeder may provide print medium, individually and/or in combination with at least one other feeder, to at least one of the print engines 12 and 14. Examples of suitable print medium include, but are not limited to, paper, plastic, velum, silicon, and ceramic. The print medium can be supplied to the print medium feeder system via one or more trays or the like, a print medium path (e.g., feeding print medium at least partially processed by another print engine(s)), and/or via manual feed by a user. The particular source of the print medium can be determined by the controller 10, a user (e.g., via manual selection of the source), a default configuration, a customized configuration, at least one characteristic (e.g., the number of pages in a job, whether there is color and/or black and white pages, etc.) of a job, a status of a component(s) (e.g., empty paper tray, non-functional paper tray, busy paper tray, etc.), etc.
One or more jobs received by the print platform are processed by one or both of the color print engine 12 and low-cost-per-page black print engine 14. The one or more jobs can be initiated at the print platform (e.g., via controls, menus, etc. thereon), a computer, another print platform, etc. The controller 10 and/or other component(s) (not shown) analyze the one or more jobs and determine whether each job includes color, highlight color, and/or black and white pages. It is to be understood that as used herein the term “highlight color page” can include highlight color and black or just highlight color. For each job, the controller 10 sends the color pages to the color print engine 12 for processing and the highlight color and/or black and white pages to the low-cost-per-page print engine 14. With duplex printing, if at least one side of the print medium includes color, then both sides of the print medium typically are processed with the color print engine 12, regardless of whether the other side only includes highlight color and/or black and white regions. However, on some instances, one side of a page can be processed with the color print engine 12 and the other side can be processed by the low-cost-per-page print engine 14.
The controller 10 also controls which of the DSs 18 is (are) used to process the highlight color and/or black and white pages. In one instance, only one of the DSs 18 is used to process each page. In this instance, the other DSs 18 typically reside in an inactive state, while the one DS 18 processes the page. In another instance, two or more DSs 18 are used to process a page. In this instance, the first DS 18 used to transfer the initial image can be interactive, whereas any subsequent DSs 18 contributing to the image are non-interactive in that they do not disturb the initial image and self-contaminate. That is, subsequent DSs 18 do not interact with the image developed on the photoreceptor by a previous one of the DSs 18. This mitigates mixing different types of black (e.g., a flat with a gloss, etc.) on the same page. Byway of example, where a page is processed by DS 181, 182, and 18N, DS 181 may be interactive and DSs 182 and 18N, may be non-interactive. In another example, where a page is processed by either DS 181 or DS 182, and DS 18N, DSs 181 and/or 182 may be interactive and DSs 18N may be non-interactive. DSs associated with highlight color toner typically are non-interactive development systems. If, the registration between two of the black DSs 18 and/or a black DS 18 and a highlight color DS 18 is held relatively tight, then two different types of toners (e.g., two different types of black toner or a black and a highlight color toner) could be located very close to one another, on a page. Examples of conventional systems with tight registration between black and color include the Xerox 4850 and the Xerox 4890 printers.
The particular DS(s) 18 used can be selected by the user and/or automatically selected by the controller 10 (e.g., via a predetermined default DS, intelligence using inferences, probabilities, a priori information, etc.). For instance, if the color pages are processed using a glossy toner from the color print engine 12, the user and/or controller 10 may select a DS 18 associated with a glossy black toner in order to provide color consistency across the processed pages. In this instance, the job is processed more efficiently relative to using the color print engine 12 to print all (color and black and white) pages since low-cost-per-page print engines such as monochrome black or the like are associated with a relatively higher page per minute rate. In another instance, the user and/or controller 10 may select a DS 18 associated with a black toner that is different from the color print engine black toner in order to generate a visually noticeable difference, for example, to distinguish between the black from the print engines 12 and 14. Moreover, the user and/or controller 10 may select multiple different toners for processing one or more of the black and white pages. Typically, the rate of each of the DSs 18 is substantially similar and faster than the processing rate of the CDS 12. Thus, system performance is improved regardless of which and/or how many of the DSs 18 are used to process the black and white pages.
Print medium, after an image is transferred and fused thereto, is conveyed to a print medium path 20. As depicted, the color print engine 12 and the low-cost-per-page print engine 14 can be associated with a buffer 22 and a buffer 24, respectively. The buffers 22 and 24 are used to facilitate suitably inserting processed print medium into the print medium path 20. For instance, a print job may include color, highlight color, and/or black pages, wherein the color print engine 12 is used to process the color pages and the low-cost-per-page print engine 14 is used to process the highlight color and/or the black and white pages. The buffers 22 and 24 can be used to hold, if needed, processed pages until they can be correctly inserted or merged into the print medium path 20. In instances where one or both of the buffers 22 and 24 are not needed, the buffers 22 and/or 24 can be bypassed. An inserter 26, which may be controlled by the controller 10, can coordinate insertion of the processed print medium into the print medium path 20.
The DSs 18 are disposed adjacent to a common photoreceptor 28, which can be a belt, a drum, or the like. As illustrated, each of the DSs 181, 182, . . . , 18N can include a photoreceptor cleaner (“cleaner”) 301, 302, . . . , 30N, (collectively referred to herein as cleaners 30), a photoreceptor charger (“charger”) 321, 318, . . . , 32N, (collectively referred to herein as chargers 32), an expose unit 341, 342, . . . , 34N, (collectively referred to herein as expose units 34), and a developer 361, 362, . . . , 36N, (collectively referred to herein as developers 36), each with a toner housing 381, 382, 38N, (collectively referred to herein as toner housings 38), respectively. Each of the cleaners 30 can clean the common photoreceptor 28, each of the chargers 32 can create a charge on a surface of the common photoreceptor 28, each of the expose units 34 can expose the surface of the common photoreceptor 28 in order to create a latent electrostatic image on the surface, and each of the developers 36 can develop the image using its corresponding toner 38. With multiple cleaners, the sequences of such cleaners typically is controlled such that the cleaner operating at any one time is the one in the first development system being used for a given page. In some instances, a single common cleaner is shared across DSs 18.
In this example, the photoreceptor 28 is common to all of the DSs 18. As describe above, in instances in which only one of the DS 18 is used to process a black and white page, the other DSs 18 typically remain in an inactive state. For example, if the DS 181 is used to process the black and white page, the DS 182,-18N remain inactive and do not contribute to the black and white page, while DS 181 is used to clean and create a charge on the surface of the photoreceptor 28, produce a latent electrostatic image on the charged surface, and develop the exposed surface using its toner. The images is then transferred to the photoreceptor 28 and subsequently transferred to print medium 40. The print medium 40 is then conveyed to a fuser (not shown), which fixes the image to the print medium 28. The fuser used may be common to all of the DSs 18 and include a common or individual configurations (e.g., specifying set points, etc.) or include a different fuser for each of the DSs 18, as described in detail below. The print medium 28 is then suitably inserted into the print medium path 20.
In instances where multiple DSs 18 are used to process a black and white page, the first of the DSs 18 used transfers a portion of the image can be interactive while the remaining DSs 18 that contribute to the final image are non-interactive so that they do not disturb the image created by the first of the DSs 18. The non-interaction also mitigates self-contamination of the remaining DSs 18 by the toner applied by the first of the DSs 18 used.
After an image has been transferred to the photoreceptor 28 via on or more of the DSs 18, the image is transferred to the print medium 40, and the print medium 40 is inserted into the print medium path 20. The image is then fixed to the print medium 40 via one or more fusers 46. In one instance, a single fuser 46 is used fix images transferred from any of the DSs 18. In this instance, a configuration with a common set point, which can be stored in the configuration bank 48, can be loaded by the controller 10 and used for the DSs 18. However, since the melting point, as well as other characteristics of each type of toner may vary, a configuration with set points for each type of toner can also be used. Depending on the DS 18 used to process the page, the corresponding set point can be obtained from the configuration bank 48 and loaded by the controller 10. In instances in which multiple DSs 18 are used to process the page, a single set point may be loaded and used for the multiple DSs 18 or the set point can be changed based on the DS 18 used to process the portion of the image being fixed by the single fuser 46. Thus, different set points can be used to suitably adjust the single fuser 46 when fixing an image created by two or more of the DSs 18. In another instance, the fusers 46 may include a separate fuser for each of the DSs 18, wherein each of the fusers uses a set point from a configuration corresponding to the toner used by its associated DS 18.
It will be appreciated that one or more of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4579446 | Fujino et al. | Apr 1986 | A |
4587532 | Asano | May 1986 | A |
4836119 | Siraco et al. | Jun 1989 | A |
5004222 | Dobashi | Apr 1991 | A |
5080340 | Hacknauer et al. | Jan 1992 | A |
5095342 | Farrell et al. | Mar 1992 | A |
5159395 | Farrell et al. | Oct 1992 | A |
5208640 | Horie et al. | May 1993 | A |
5272511 | Conrad et al. | Dec 1993 | A |
5326093 | Sollitt | Jul 1994 | A |
5435544 | Mandel | Jul 1995 | A |
5473419 | Russel et al. | Dec 1995 | A |
5489969 | Soler et al. | Feb 1996 | A |
5504568 | Saraswat et al. | Apr 1996 | A |
5525031 | Fox | Jun 1996 | A |
5557367 | Yang et al. | Sep 1996 | A |
5568246 | Keller et al. | Oct 1996 | A |
5570172 | Acquaviva | Oct 1996 | A |
5596416 | Barry et al. | Jan 1997 | A |
5613176 | Grace | Mar 1997 | A |
5629762 | Mahoney et al. | May 1997 | A |
5710968 | Clark et al. | Jan 1998 | A |
5778377 | Marlin et al. | Jul 1998 | A |
5837408 | Parker et al. | Nov 1998 | A |
5884910 | Mandel | Mar 1999 | A |
5995721 | Rourke et al. | Nov 1999 | A |
6059284 | Wolf et al. | May 2000 | A |
6125248 | Moser | Sep 2000 | A |
6241242 | Munro | Jun 2001 | B1 |
6297886 | Cornell | Oct 2001 | B1 |
6341773 | Aprato et al. | Jan 2002 | B1 |
6384918 | Hubble, III et al. | May 2002 | B1 |
6450711 | Conrow | Sep 2002 | B1 |
6476376 | Biegelsen et al. | Nov 2002 | B1 |
6476923 | Cornell | Nov 2002 | B1 |
6493098 | Cornell | Dec 2002 | B1 |
6537910 | Burke et al. | Mar 2003 | B1 |
6550762 | Stoll | Apr 2003 | B2 |
6554276 | Jackson et al. | Apr 2003 | B2 |
6577925 | Fromherz | Jun 2003 | B1 |
6607320 | Bobrow et al. | Aug 2003 | B2 |
6608988 | Conrow | Aug 2003 | B2 |
6612566 | Stoll | Sep 2003 | B2 |
6612571 | Rider | Sep 2003 | B2 |
6621576 | Tandon et al. | Sep 2003 | B2 |
6633382 | Hubble, III et al. | Oct 2003 | B2 |
6639669 | Hubble, III et al. | Oct 2003 | B2 |
6819906 | Herrmann et al. | Nov 2004 | B1 |
6925283 | Mandel et al. | Aug 2005 | B1 |
6959165 | Mandel et al. | Oct 2005 | B2 |
6973286 | Mandel et al. | Dec 2005 | B2 |
20020078012 | Ryan et al. | Jun 2002 | A1 |
20020103559 | Gartstein | Aug 2002 | A1 |
20030077095 | Conrow | Apr 2003 | A1 |
20040085561 | Fromherz | May 2004 | A1 |
20040085562 | Fromherz | May 2004 | A1 |
20040088207 | Fromherz | May 2004 | A1 |
20040150156 | Fromherz et al. | Aug 2004 | A1 |
20040150158 | Biegelsen et al. | Aug 2004 | A1 |
20040153983 | McMillan | Aug 2004 | A1 |
20040216002 | Fromherz et al. | Oct 2004 | A1 |
20040225391 | Fromherz et al. | Nov 2004 | A1 |
20040225394 | Fromherz et al. | Nov 2004 | A1 |
20040247365 | Lofthus et al. | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070183811 A1 | Aug 2007 | US |