Multi-diameter K-wire for orthopedic applications

Information

  • Patent Grant
  • 11890039
  • Patent Number
    11,890,039
  • Date Filed
    Friday, September 11, 2020
    4 years ago
  • Date Issued
    Tuesday, February 6, 2024
    9 months ago
Abstract
A multi-diameter fixation pin, such as a K-wire can be used during an orthopedic procedure. The multi-diameter fixation pin may include a leading diameter sized for the specific orthopedic procedure being undertaken and/or the size of the bone into which the fixation pin is being inserted. The multi-diameter fixation pin may include a trailing diameter different than the leading diameter. The trailing diameter may be sized for use with a specific sized powered driver. For example, in orthopedic procedures that involve inserting larger diameter pins and smaller diameter pins into bone(s), all pins used in the procedure may have a trailing diameter (e.g., the larger diameter or the smaller diameter) that allows the pins to be inserted with the same powered driver (e.g., the same attachment head) without needing different sized drivers or attachment heads for different sized pins.
Description
TECHNICAL FIELD

This disclosure relates to orthopedic devices and techniques.


BACKGROUND

Kirschner wires, or K-wires, are sterilized, sharpened, smooth or threaded metal pins configured for a variety of medical, orthopedic, dental, and plastic surgical procedures, as well as various types of veterinary surgeries. K-wires can be used to hold bone fragments together and/or to provide an anchor for skeletal traction. A K-wire may be driven into bone using a powered or hand drill.


Example applications in which K-wires may be used include procedures for realigning comparatively small bones within in the human body, such as bones in the hand or foot. These bones may be misaligned and require anatomical realignment with the aid of a K-wire during a surgical procedure. For example, one common type of bone deformity is hallux valgus, which is a progressive foot deformity in which the first metatarsophalangeal joint is affected and is often accompanied by significant functional disability and foot pain. The metatarsophalangeal joint is laterally deviated, resulting in an abduction of the first metatarsal while the phalanges adduct. This often leads to development of soft tissue and a bony prominence on the medial side of the foot, which is called a bunion. Surgical intervention may be used to correct a bunion deformity.


SUMMARY

In general, this disclosure is directed to multi-diameter fixation pins for orthopedic procedures, such as multi-diameters K-wires, and techniques utilizing such a fixation pin. A multi-diameter fixation pin can be inserted into a bone during an orthopedic procedure, such as inserted through one bone portion into an adjacent bone portion to fixate the two bone portions relative to each other. The two bone portions may be different portions of the same bone (e.g., separated by a cut or fracture) or different two different bones. In either case, a multi-diameter fixation pin according to the disclosure may include a leading diameter sized for the specific orthopedic procedure being undertaken and/or the size of the bone into which the fixation pin is being inserted. The multi-diameter fixation pin may also include a trailing diameter different than the leading diameter. The trailing diameter may be sized for use with a specific sized powered driver. For example, in orthopedic procedures that involve inserting larger diameter pins and smaller diameter pins into bone(s), all pins used in the procedure may have a trailing diameter (e.g., the larger diameter or the smaller diameter) that allows the pins to be inserted with the same powered driver (e.g., the same attachment head) without needing different sized drivers or attachment heads for different sized pins.


As an example implementation, a clinician may select a powered driver and/or a collet for the powered driver that is configured to receive a certain size fixation pin or certain range of sizes of fixation pins. For example, the clinician may from select one collet for the powered driver from a set of different collets, each of which is sized to receive a different size fixation pin (or range of sizes). The clinician can insert the selected collet into the powered driver. The clinician can then use the powered driver with selected collet to insert multiple fixation pins into one or more bone portions during a procedure.


The clinician can insert a fixation pin having a size acceptable for use with the selected collet into the powered driver and then use the powered driver to drive the fixation pin into one or more bone portions. The fixation pin can have a constant (e.g., same) diameter over it length, e.g., optionally with narrowing or other shaping features adjacent the tip. Before or after inserting the fixation pin with constant diameter into the powered driver and then into a bone portion, the clinician may also wish to insert a fixation pin into a bone portion having a diameter outside of the size acceptable for use with the selected collet. Traditionally, this would require the clinician to obtain a different powered driver or change the collet on the powered driver, necessitating additional time and procedural steps.


A multi-diameter fixation pin according to some examples of the present disclosure can be configured with a driver engagement portion and a bone insertion portion. The driver engagement portion can have a diameter different (smaller or larger) than the bone insertion portion. The driver engagement portion may have a size corresponding to the size of one or more other constant diameter fixation pins used during the surgical procedure. The driver engagement portion of the multi-diameter fixation pin can have a size acceptable for use with the selected collet of the powered driver that is appropriately sized for receiving and driving one or more other constant diameter fixation pins. However, the bone insertion portion of the multi-diameter fixation pin can have a different diameter. As a result, the clinician can insert the multi-diameter fixation pin into the powered driver without changing drivers and/or collets used for inserting one or more other fixation pins during the procedure and insert a portion of the multi-diameter fixation pin into one or more bone portions that has a size not otherwise acceptable for use with the collet and/or driver.


In one example, a method is described that includes inserting a pin having a first diameter into a collet of a powered driver and driving the pin into at least one of a metatarsal and a cuneiform. The method further involves moving the metatarsal relative to the cuneiform to establish a moved position of the metatarsal. The method also includes inserting a driver engagement portion of a multi-diameter fixation pin into the collet of the driver and driving a bone insertion portion of the multi-diameter fixation pin through the metatarsal and into another bone to hold the moved position of the metatarsal. The example specifies that the collet of the powered driver is sized to receive the pin having the first diameter and the driver engagement portion of the multi-diameter fixation pin but not the bone insertion portion of the multi-diameter fixation pin.


In another example, a method is described that includes inserting a driver engagement portion of a multi-diameter fixation pin into a collet of a powered driver and driving a bone insertion portion of the multi-diameter fixation pin through one or more bone portions. The example specifies that the collet of the powered driver is sized to receive the driver engagement portion of the multi-diameter fixation pin but not the bone insertion portion of the multi-diameter fixation pin.


In another example, a surgical fixation wire is described. The surgical fixation wire has a body extending from a first end to a second end opposite the first end. The body defines a driver engagement portion having a first diameter and a bone insertion portion having a second diameter less than the first diameter. The example specifies that the first end of the body defines a tip configured for insertion into a bone and the driver engagement portion is configured for insertion into a powered driver.


The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1A and 1B are front views of a foot showing a normal first metatarsal position and an example frontal plane rotational misalignment position, respectively.



FIGS. 2A and 2B are top views of a foot showing a normal first metatarsal position and an example transverse plane misalignment position, respectively.



FIGS. 3A and 3B are side views of a foot showing a normal first metatarsal position and an example sagittal plane misalignment position, respectively.



FIG. 4 is an illustration of an example multi-diameter fixation pin according to disclosure.



FIG. 5 is an illustration of an example powered driver system that can be used to drive the multi-diameter fixation pin of FIG. 4.



FIG. 6 is a side perspective view of an example bone positioning guide that can be used with a multi-diameter fixation pin.



FIG. 7 is a top plan view of an example bone preparation guide that can be used with a multi-diameter fixation pin.



FIG. 8 is a perspective view of an example bone preparing guide, spacer, and tissue removing instrument check member that can be used with a multi-diameter fixation pin.



FIG. 9 is a perspective view of a foot depicting a bone positioning guide on the foot prior to an alignment of a first metatarsal.



FIG. 10 is a perspective view of a foot depicting a bone positioning guide on the foot.



FIG. 11 is a perspective view of a foot depicting a bone positioning guide on the foot after an alignment of a first metatarsal and with a spacer inserted into a joint space.



FIG. 12 is a perspective view of a foot depicting a bone preparation guide positioned on the foot.



FIG. 13 is a perspective view of a foot depicting a bone preparation guide on the foot with pins inserted through the bone preparation guide.



FIG. 14 is a perspective view of a foot depicting a removal of a bone preparation guide.



FIG. 15 is a side perspective view of a foot depicting bone plates across a joint between first and second bones.





DETAILED DESCRIPTION

In general, this disclosure is directed to fixation pins used during orthopedic procedures and techniques utilizing such fixation pins. As used herein, the terms “fixation pin” and “fixation wire” are generally used interchangeably. In practice, clinicians may generally refer to fixation pins having a comparatively small diameter (e.g., 1.6 mm or less) as a fixation wire and fixation pins having a comparatively larger diameter is just a fixation pin. However, the specific nomenclature choice between pin and wire can vary between clinicians and providers. Accordingly, multi-diameter fixation pins as described herein can also embrace multi-diameter fixation wires. Example embodiments of the fixation pins include multi-diameter Kirschner wires, or K-wires, and multi-diameter Steinmann pins.


A multi-diameter fixation pin as described herein can be used in any desired orthopedic procedure, including procedures utilizing only a single fixation pin or procedures utilizing multiple fixation pins (which may all be multi-diameter fixation pins as described herein or a combination of multi-diameter fixation pins and constant diameter fixation pins). The multi-diameter fixation pin can be inserted into a single bone portion or into multiple bone portions when used during the orthopedic procedure. For example, the multi-diameter fixation pin may be inserted through one bone portion and into an adjacent bone portion. The two bone portions may be different portions of the same bone (e.g., separated by a cut or fracture). Alternatively, the two bone portions may be different bones, such as to adjacent bones separated by a joint space.


In an example implementation, a multi-diameter fixation pin can be used during a surgical joint realignment procedure. For example, a multi-diameter fixation pin can be used during a surgical procedure, such as a bone alignment, osteotomy, fusion procedure, and/or other procedures where one or more bones are to be prepared (e.g., cartilage or bone removal and/or cut). Such a procedure can be performed, for example, on bones (e.g., adjacent bones separated by a joint or different portions of a single bone) in the foot or hand, where bones are relatively smaller compared to bones in other parts of the human anatomy. In one example, a procedure utilizing a multi-diameter fixation pin can be performed to correct an alignment between a metatarsal (e.g., a first metatarsal) and a second metatarsal and/or a cuneiform (e.g., a medial, or first, cuneiform), such as in a bunion correction surgery. An example of such a procedure is a Lapidus procedure (also known as a first tarsal-metatarsal fusion). In another example, the procedure can be performed by modifying an alignment of a metatarsal (e.g., a first metatarsal). An example of such a procedure is a basilar metatarsal osteotomy procedure.


A multi-diameter fixation pin may be used with one or more other instruments, such as a bone positioning guide and/or a bone preparation guide. The bone preparation guide may be pinned by one or more fixation pins to one or more bone portions to facilitate preparation of adjacent bone portions for fusion. The bone positioning guide may be used to impart a force to one bone portion to move the bone portion relative to another bone portion.


In some examples, one or more multi-diameter fixation pins are used during a realignment procedure in which a metatarsal (e.g., first metatarsal) is moved relative to and oppose cuneiform across a tarsal-metatarsal joint to establish a moved position of the metatarsal. One or more constant diameter fixation pins (fixation pins not having a multiple diameter) may be used during the surgical procedure. The constant diameter fixation pin(s) may have a diameter different (e.g., smaller or larger) than the diameter of the bone insertion portion of the multi-diameter fixation pin. Accordingly, use of the multi-diameter fixation pin can allow the clinician to insert a fixation pin having a different diameter than the constant diameter fixation pins into one or more bone portions during the surgical procedure without changing driver hardware.



FIGS. 1-3 are different views of a foot 200 showing example anatomical misalignments that may occur and be corrected according to the present disclosure. Such misalignment may be caused by a hallux valgus (bunion), natural growth deformity, or other condition causing anatomical misalignment. FIGS. 1A and 1B are front views of foot 200 showing a normal first metatarsal position and an example frontal plane rotational misalignment position, respectively. FIGS. 2A and 2B are top views of foot 200 showing a normal first metatarsal position and an example transverse plane misalignment position, respectively. FIGS. 3A and 3B are side views of foot 200 showing a normal first metatarsal position and an example sagittal plane misalignment position, respectively. While FIGS. 1B, 2B, and 3B show each respective planar misalignment in isolation, in practice, a metatarsal may be misaligned in any two of the three planes or even all three planes. Accordingly, it should be appreciated that the depiction of a single plane misalignment in each of FIGS. 1B, 2B, and 3B is for purposes of illustration and a metatarsal may be misaligned in multiple planes that is desirably corrected.


With reference to FIGS. 1A and 2A, foot 200 is composed of multiple bones including a first metatarsal 210, a second metatarsal 212, a third metatarsal 214, a fourth metatarsal 216, and a fifth metatarsal 218. The metatarsals are connected distally to phalanges 220 and, more particularly, each to a respective proximal phalanx. The first metatarsal 210 is connected proximally to a medial cuneiform 222, while the second metatarsal 212 is connected proximally to an intermediate cuneiform 224 and the third metatarsal is connected proximally to lateral cuneiform 226. The fourth and fifth metatarsals 216, 218 are connected proximally to the cuboid bone 228. The joint 230 between a metatarsal and respective cuneiform (e.g., first metatarsal 210 and medial cuneiform 222) is referred to as the tarsometatarsal (“TMT”) joint. The joint 232 between a metatarsal and respective proximal phalanx is referred to as a metatarsophalangeal joint. The angle 234 between adjacent metatarsals (e.g., first metatarsal 210 and second metatarsal 212) is referred to as the intermetatarsal angle (“IMA”).


As noted, FIG. 1A is a frontal plane view of foot 200 showing a typical position for first metatarsal 210. The frontal plane, which is also known as the coronal plane, is generally considered any vertical plane that divides the body into anterior and posterior sections. On foot 200, the frontal plane is a plane that extends vertically and is perpendicular to an axis extending proximally to distally along the length of the foot. FIG. 1A shows first metatarsal 210 in a typical rotational position in the frontal plane. FIG. 1B shows first metatarsal 210 with a frontal plane rotational deformity characterized by a rotational angle 236 relative to ground, as indicated by line 238.



FIG. 2A is a top view of foot 200 showing a typical position of first metatarsal 210 in the transverse plane. The transverse plane, which is also known as the horizontal plane, axial plane, or transaxial plane, is considered any plane that divides the body into superior and inferior parts. On foot 200, the transverse plane is a plane that extends horizontally and is perpendicular to an axis extending dorsally to plantarly (top to bottom) across the foot. FIG. 2A shows first metatarsal 210 with a typical IMA 234 in the transverse plane. FIG. 2B shows first metatarsal 210 with a transverse plane rotational deformity characterized by a greater IMA caused by the distal end of first metatarsal 210 being pivoted medially relative to the second metatarsal 212.



FIG. 3A is a side view of foot 200 showing a typical position of first metatarsal 210 in the sagittal plane. The sagittal plane is a plane parallel to the sagittal suture which divides the body into right and left halves. On foot 200, the sagittal plane is a plane that extends vertically and is perpendicular to an axis extending proximally to distally along the length of the foot. FIG. 3A shows first metatarsal 210 with a typical rotational position in the sagittal plane. FIG. 3B shows first metatarsal 210 with a sagittal plane rotational deformity characterized by a rotational angle 240 relative to ground, as indicated by line 238.


A system and technique that utilizes a compressor-distractor and/or a pin lock according to the disclosure can be useful during a bone positioning procedure, for example, to correct an anatomical misalignment of a bones or bones. In some applications, the compressor-distractor can help establish and/or maintain a realignment between a metatarsal and an adjacent cuneiform. Additionally or alternatively, the compressor-distractor can facilitate clean-up and compression between adjacent bone portions between fixation. The pin lock can help hold the compressor-distractor at an appropriate position along the length of a pin or pins connecting the compressor-distractor to bone portions to be compressed and/or distracted.


The metatarsal undergoing realignment may be anatomically misaligned in the frontal plane, transverse plane, and/or sagittal plane, as illustrated and discussed with respect to FIGS. 1-3 above. Accordingly, realignment may involve releasing the misaligned metatarsal for realignment and thereafter realigning the metatarsal in one or more planes, two or more planes, or all three planes. After suitably realigning the metatarsal, the metatarsal can be fixated to hold and maintain the realigned positioned.


While a metatarsal can have a variety of anatomically aligned and misaligned positions, in some examples, the term “anatomically aligned position” means that an angle of a long axis of first metatarsal 210 relative to the long axis of second metatarsal 212 is about 10 degrees or less (e.g., 9 degrees or less) in the transverse plane and/or sagittal plane. In certain embodiments, anatomical misalignment can be corrected in both the transverse plane and the frontal plane. In the transverse plane, a normal IMA 234 between first metatarsal 210 and second metatarsal 212 is less than about 9 degrees. An IMA 234 of between about 9 degrees and about 13 degrees is considered a mild misalignment of the first metatarsal and the second metatarsal. An IMA 234 of greater than about 16 degrees is considered a severe misalignment of the first metatarsal and the second metatarsal. In some embodiments, methods and/or devices according to the disclosure are utilized to anatomically align first metatarsal 210 by reducing the IMA from over 10 degrees to about 10 degrees or less (e.g., to an IMA of 9 degrees or less, or an IMA of about 1-5 degrees), including to negative angles of about −5 degrees or until interference with the second metatarsal, by positioning the first metatarsal at a different angle with respect to the second metatarsal.


With respect to the frontal plane, a normal first metatarsal will be positioned such that its crista prominence is generally perpendicular to the ground and/or its sesamoid bones are generally parallel to the ground and positioned under the metatarsal. This position can be defined as a metatarsal rotation of 0 degrees. In a misaligned first metatarsal, the metatarsal may be axially rotated between about 4 degrees to about 30 degrees or more. In some embodiments, methods and/or devices according to the disclosure are utilized to anatomically align the metatarsal by reducing the metatarsal rotation from about 4 degrees or more to less than 4 degrees (e.g., to about 0 to 2 degrees) by rotating the metatarsal with respect to the adjacent cuneiform.


A multi-diameter fixation pin and technique that utilizes a multi-diameter fixation pin according to the disclosure can be useful during a bone positioning procedure, for example, to correct an anatomical misalignment of a bones or bones. In some applications, the multi-diameter fixation pin can be used to help hold a moved position of a metatarsal relative to an adjacent cuneiform. For example, after a metatarsal is moved relative to an adjacent cuneiform, the multi-diameter fixation pin may be inserted into the move metatarsal and adjacent bone (e.g., through a first metatarsal and into an adjacent second metatarsal). This can provide temporary fixation helping to hold the move position of the metatarsal (e.g., first metatarsal) for further procedural steps, such as applying one or more permanent fixation devices (e.g., plate, screw, intramedullary pin).


The metatarsal undergoing realignment may be anatomically misaligned in the frontal plane, transverse plane, and/or sagittal plane, as illustrated and discussed with respect to FIGS. 1-3 above. Accordingly, realignment may involve releasing the misaligned metatarsal for realignment and thereafter realigning the metatarsal in one or more planes, two or more planes, or all three planes. After suitably realigning the metatarsal, the metatarsal can be fixated to hold and maintain the realigned positioned.


While a metatarsal can have a variety of anatomically aligned and misaligned positions, in some examples, the term “anatomically aligned position” means that an angle of a long axis of first metatarsal 210 relative to the long axis of second metatarsal 212 is about 10 degrees or less (e.g., 9 degrees or less) in the transverse plane and/or sagittal plane. In certain embodiments, anatomical misalignment can be corrected in both the transverse plane and the frontal plane. In the transverse plane, a normal IMA 234 between first metatarsal 210 and second metatarsal 212 is less than about 9 degrees. An IMA 234 of between about 9 degrees and about 13 degrees is considered a mild misalignment of the first metatarsal and the second metatarsal. An IMA 234 of greater than about 16 degrees is considered a severe misalignment of the first metatarsal and the second metatarsal. In some embodiments, methods and/or devices according to the disclosure are utilized to anatomically align first metatarsal 210 by reducing the IMA from over 10 degrees to about 10 degrees or less (e.g., to an IMA of 9 degrees or less, or an IMA of about 1-5 degrees), including to negative angles of about −5 degrees or until interference with the second metatarsal, by positioning the first metatarsal at a different angle with respect to the second metatarsal.


With respect to the frontal plane, a normal first metatarsal will be positioned such that its crista prominence is generally perpendicular to the ground and/or its sesamoid bones are generally parallel to the ground and positioned under the metatarsal. This position can be defined as a metatarsal rotation of 0 degrees. In a misaligned first metatarsal, the metatarsal may be axially rotated between about 4 degrees to about 30 degrees or more. In some embodiments, methods and/or devices according to the disclosure are utilized to anatomically align the metatarsal by reducing the metatarsal rotation from about 4 degrees or more to less than 4 degrees (e.g., to about 0 to 2 degrees) by rotating the metatarsal with respect to the adjacent cuneiform.


An example technique utilizing a multi-diameter fixation pin will be described in greater detail below with respect to FIGS. 9-15. However, example multi-diameter fixation pin that may be used according to the disclosure will first be described with respect to FIGS. 4 and 5.



FIG. 4 is an illustration of an example multi-diameter fixation pin 300 for an orthopedic procedure. Fixation pin 300 has a body extending lengthwise from a first end 302 to a second and 304 at an opposite end of the body. Fixation pin 300 defines a driver engagement portion 306 and a bone insertion portion 308. Driver engagement portion 306 and bone insertion portion 308 may be different portions of the fixation pin having different cross-sectional areas (e.g., diameters).


For example, driver engagement portion 306 of fixation pin 300 can be configured (e.g., sized and/or shaped) for insertion into a powered driver. The driver engagement portion 306 may have a length and diameter that allows the driver engagement portion to be inserted into a powered driver to a depth appropriate for the powered driver to then act on the fixation pin for driving the pin a surgical procedure


Bone insertion portion 308 a fixation pin 300 can be configured to be partially or fully inserted into one or more bone portions. For example, bone insertion portion 308 may have a diameter different than driver engagement portion 306. In some implementations, bone insertion portion 308 has a diameter smaller than the diameter of driver engagement portion 306. When so configured, a comparatively larger region a fixation pin 300 defined by driver engagement portion 306 can be inserted into the powered driver. A comparatively smaller region a fixation pin 300 defined by bone insertion portion 308 can be partially or fully inserted into and/or through one or more bone portions.


Depending on the procedure being undertaken, it may be clinically beneficial to insert a comparatively smaller diameter fixation pin into the one or more bone portions than a comparatively larger diameter fixation pin. The smaller diameter fixation pin may cause less bone trauma. Additionally or alternatively, in instances where the fixation pin is inserted into comparatively small bones, such as bones of the foot (e.g., cuneiform, first metatarsal, second metatarsal), a comparatively smaller fixation pin may reduce the tendency of the bone(s) to fracture or break upon insertion of a fixation pin. Such fracturing or breaking may occur when a comparatively large fixation pin is inserted into the bone(s).


While fixation pin 300 is described as having a driver engagement portion 306, it should be appreciated that the entire portion need not be inserted into a driver during a surgical procedure. Rather, driver engagement portion 306 may define a section along the length of fixation pin 300 having a first diameter different than one or more other sections of the fixation pin having one or more other diameters. Driver engagement portion 306 may or may not include second end 304.


Likewise, it should be appreciated that while fixation pin 300 is described as having a bone insertion portion 308, the entire portion need not be inserted into a bone during a surgical procedure. Rather, bone insertion portion 308 may define a section along the length of fixation pin 300 having a second diameter different than driver engagement portion 306. At least part of the length of bone insertion portion 308 may be inserted into and/or through one or more bone portions during a surgical procedure.


Fixation pin 300 in some examples, driver engagement portion 306 and bone insertion portion 308 a fixation pin 300 are immediately adjacent to each other along the length of the fixation pin. A sharp (e.g., 90 degree) transition may be provided between driver engagement portion 306 and bone insertion portion 308, such as a dimensional instep or out step between the two differently sized portions. In other configurations, fixation pin 300 to define a taper portion between driver engagement portion 306 and bone insertion portion 308. The taper portion may be a region of dimensional transition between the cross-sectional size of driver engagement portion 306 and the cross-sectional size of bone insertion portion 308.


In the example of FIG. 4, fixation pin 300 is illustrated as including a taper portion 310 sandwiched between driver engagement portion 306 and bone insertion portion 308. Taper portion 310 can have a size (e.g., diameter) that transitions from the cross-sectional size of driver engagement portion 306 to the cross-sectional size of bone insertion portion 308. Taper portion 310 may taper at any suitable angle 312. In some implementations, angle 312 ranges from 5° to 75°, such as from 10° to 60°, or from 15° to 45°.


In some examples, fixation pin 300 may include an indicator 314 positioned at a location along the length of the fixation pin. Indicator 314 may designate how deep fixation pin 300 can be inserted into a powered driver. For example, in use, a clinician may insert second end 304 of fixation pin 300 into a powered driver and advance the fixation pin deeper into the body (e.g., collet) up to indicator. The clinician may not advance fixation pin 300 beyond indicator 314 into the driver. When configured with indicator 314, the indicator may be implemented in a variety of different ways. As one example, a color band or marking may be provided on a perimeter surface of fixation pin 300. As another example, a notch may be formed in a perimeter surface of fixation pin 300. For instance, a laser scribe may be formed partially or fully about a circumferential perimeter of fixation pin 300 to define indicator 314.


As noted, multi-diameter fixation pin 300 includes first end 302. First end 302 is the leading end of the fixation pin that is inserted into bone during a procedure. In some examples, first end 302 is tapered/sharpened to a point or rounded. This may help ease insertion of the pin during a surgical procedure. In other examples, first end 302 of fixation pin 300 is not shaped relative to a remainder of bone insertion portion 308.


The specific dimensions of fixation pin 300 can vary depending on the needs of the clinician in the desired procedure in which the fixation pin is going to be utilized. In some examples, driver engagement portion 306 of fixation pin 300 is sized to have a same diameter as one or more other pins used in a surgical procedure (wherein the pins have a constant diameter across their length instead of having multiple diameters). Additionally or alternatively, driver engagement portion 306 of fixation pin 300 may be sized to have a diameter that is different than but sufficiently close to the diameter of one or more other pins used in the surgical procedure such that the fixation pin can be inserted into bone using the same powered driver hardware used to insert the one or more other pins.


Bone insertion portion 308 can have a different diameter (e.g., smaller diameter) than driver engagement portion 306. The diameter of bone insertion portion 308 may be sufficiently different than the diameter of driver engagement portion 306 such that, if the entire length of fixation pin 300 had the diameter of bone insertion portion 308, the fixation pin could not be inserted into bone using the same powered driver hardware used to insert the one or more other pins used in a surgical procedure (wherein the pins have a constant diameter across their length instead of having multiple diameters).


As examples, driver engagement portion 306 may define a first diameter greater than or equal to 2.0 mm, such as a diameter within a range from 2.0 mm to 3.2 mm. Bone insertion portion 308 may define a second diameter less than 2.0 mm, such as a diameter within a range from 0.7 mm to 1.8 mm. Independent of the specific diameters of driver engagement portion 306 and bone insertion portion 308, the difference between the diameters of the two portions may be at least 0.1 mm, such as at least 0.2 mm, or at least 0.5 mm. For example, the difference between the diameters of driver engagement portion 306 and bone insertion portion 308 may range from 0.1 mm to 1.5 mm, such as from 0.2 mm to 0.5 mm.


One or more other pins used in a surgical procedure with fixation pin 300 (wherein the one or more other pins have a constant diameter across their length instead of having multiple diameters) can have a diameter the same as and/or within the same range of as those listed above with respect to driver engagement portion 306. In some examples, the one or more other pins used in the surgical procedure have a diameter that differs from the diameter of driver engagement portion 306 by less than 0.5 mm, such as less than 0.2 mm.


The overall length of multi-diameter fixation pin 300 from first end 302 to second end 304 can also vary depending on the desired clinical application. In different examples, fixation pin 300 may have a length within a range from 25 mm to 500 mm, such as from 50 mm to 260 mm. Further, while fixation pin 300 may typically have a circular cross-sectional shape, the fixation pin can have any polygonal (e.g., square, rectangle) or arcuate (e.g., curved, elliptical) shape.


Fixation pin 300 may be formed as a unitary body from a single piece of material, e.g., via casting, molding, and/or milling. Alternatively, fixation pin 300 may be formed from multiple segments of material (e.g., materials having different diameters) that are then joined together to form a unitary body (e.g., via welding or other permanent joining) technique. In general, fixation pin 300 can be formed from a biocompatible material. Example materials that may be used to fabricate fixation pin 300 include steel (e.g., stainless steel), titanium, ceramic materials, biocompatible plastics, and combinations thereof. After fabrication, fixation pin 300 may be packaged and sterilized, e.g., chemically and/or thermally. Fixation pin 300 may be packaged alone or as part of a kit that includes one or more other pins and/or other instruments used during a surgical procedure.


Multi-diameter fixation pin 300 can be inserted into one or more bone portions using a powered driver. The powered driver may receive the fixation pin by inserting driver engagement portion 306 into the driver and then applying a force to the pin to drive bone insertion portion 308 of the pin into and/or through one or more bone portions. The powered driver may apply a rotary force, causing rotation of the fixation pin, and/or an axial impact force to drive the pin actually into the bone.



FIG. 5 is an illustration of an example system that includes a powered driver 318 that can be used to insert fixation pin 300. Powered driver 318 in this example is shown with interchangeable collets 320A and 320B (collectively referred to as “collet 320”). Collet 320 may be a chuck that forms a collar around an object (e.g., fixation pin 300 and one or more other fixation pins optionally used during a surgical procedure) and can exert a clamping force on the object. Collet 320 can have a sleeve with a cylindrical inner surface. The collet may be squeezed against a matching taper such that its inner surface contracts to a slightly smaller diameter, squeezing a pin inserted therein to hold the pin securely.


Powered driver 318 can have an integral collet 320 that can only receive a specific size or range of sizes of fixation pins. Alternatively, powered driver 318 can have interchangeable collets 320, each of which is configured to receive a different specific size or range of sizes of fixation pins.


Powered driver 318 can be powered by any motive energy, such as a pneumatic energy or electrical energy. To engage powered driver 318, the clinician may depress trigger 322 to drive a fixation pin 300 inserted into the powered driver into a bone. While fixation pin 300 is generally described as being inserted into a bone using a powered driver, such as powered driver 318, it should be appreciated that a fixation pin according to disclosure is not limited to such an example insertion device. For example, the multi-diameter fixation pin can be inserted using hand force or a powered driver having a different configuration than that illustrated and described with respect to FIG. 5.


In some examples, a multi-diameter fixation pin is used as part of a metatarsal realignment procedure in which a metatarsal is realigned relative to an adjacent cuneiform and/or metatarsal in one or more planes, such as two or three planes. Additional details on example bone realignment techniques and devices with which the multi-diameter fixation pin may be used are described in U.S. Pat. No. 9,622,805, titled “BONE POSITIONING AND PREPARING GUIDE SYSTEMS AND METHODS,” filed on Dec. 28, 2015 and issued Apr. 18, 2017, and U.S. Pat. No. 9,936,994, titled “BONE POSITIONING GUIDE,” filed on Jul. 14, 2016 and issued on Apr. 10, 2018, and US Patent Publication No. 2017/0042599 titled “TARSAL-METATARSAL JOINT PROCEDURE UTILIZING FULCRUM,” filed on Aug. 14, 2016. The entire contents of each of these documents are hereby incorporated by reference.


A multi-diameter fixation pin can be used in any desired orthopedic procedure, and the disclosure is not limited to any particular procedure. In some implementations, however, the multi-diameter fixation pin is used as part of a metatarsal realignment procedure. The metatarsal realignment procedure may or may not utilize one or more other surgical instruments, such as a bone positioning guide and/or a bone preparation guide.



FIG. 6 illustrates an example bone positioning guide 10 that may be used as part of a surgical procedure involving a multi-diameter fixation pin 300. In this example a bone positioning guide 10 includes a main body member 20 and a shaft 30. The bone engagement member 40 is connected to the shaft and a tip 50 is connected to the main body member. In general, the main body member 20 can be sized and shaped to clear anatomy or other instrumentation (e.g., pins and guides) while positioned on a patient. Main body member 20 is illustrated as having a generally C-shaped configuration with a first end 60 and a second end 70.


Shaft 30 can be movably connected to the main body member 20 proximate its first end 60. In some embodiments, the shaft 30 includes threads 80 that engage with the main body member 20 such that rotation of the shaft translates the shaft with respect to the main body member. In other embodiments, the shaft can slide within the main body member and can be secured thereto at a desired location with a set screw. In yet other embodiments, the shaft can be moved with respect to the main body by a ratchet mechanism. In the embodiment shown, the shaft moves along an axis that intersects the tip 50.


Bone positioning guide 10 can include a bone engagement member 40 having a surface 90 configured to contact a bone, such as a metatarsal or a cuneiform. In the embodiment shown, the surface 90 is concave. Such a surface is adapted to promote surface contact with a generally cylindrical bone, such as a metatarsal. In use, bone engagement member 40 can be positioned in contact with a first bone portion (e.g., a first metatarsal) and tip can be positioned in contact with a second bone portion, such as an adjacent bone (e.g., second metatarsal or third metatarsal). Bone positioning guide 10 can include an actuator (e.g., a knob or a handle) 120 to actuate the positioning guide and move bone engagement member 40 relative to tip 50. In the embodiment shown, the actuator can be useful for allowing a user to rotate the shaft with respect to the main body member 20.


In some configurations, bone positioning guide 10 includes a cannulation 130, such as a cannulation 130 extending through the actuator, shaft, and bone engagement member. Multi-diameter fixation pin 300 can be placed through cannulation 130 and into contact with or through a bone engaged with the bone engagement member. For example, fixation wire 300 can be placed into the bone engaged with bone engagement member 40 to fix the position of the bone engagement member with respect to the bone. In another example, fixation wire 300 can be placed through the bone in contact with the bone engagement member and into an adjacent bone (e.g., second metatarsal) to maintain a bone position of the bone in contact with the bone engagement member and the adjacent bone. Fixation pin 300 can be inserted through cannulation 130 and into one or more bone portions using powered driver 318.



FIG. 7 illustrates an example bone preparation guide 150 that may be used as part of a surgical procedure involving a multi-diameter fixation pin 300. In some examples, bone preparation guide 150 includes a body 154 defining a first guide surface 160 to define a first preparing plane and a second guide surface 164 to define a second preparing plane. A tissue removing instrument (e.g., a saw, rotary bur, osteotome, etc., not shown) can be aligned with the surfaces to remove tissue (e.g., remove cartilage or bone and/or make cuts to bone). The first and second guide surfaces 160, 164 can be spaced from each other by a distance, (e.g., between about 2 millimeters and about 10 millimeters, such as between about 4 and about 7 millimeters). In the embodiment shown, the first and second guide surfaces are parallel, such that cuts to adjacent bones using the guide surfaces will be generally parallel.


In some configurations, as shown in FIG. 7, a first facing surface 166 is positioned adjacent the first guide surface 160 and/or a second facing surface 168 is positioned adjacent the second guide surface 164. In such configurations, the distance between the first guide surface and the first facing surface defines a first guide slot, and the distance between the second guide surface and the second facing surface defines a second guide slot. Each slot can be sized to receive a tissue removing instrument to prepare the bone ends. The first and second slots may be parallel or skewed. In the illustrated example, the facing surfaces each contain a gap, such that the surface is not a single, continuous surface. In other embodiments, the facing surfaces can be a single, continuous surface lacking any such gap.


An opening 170 can be defined by the body 154 between the first and second guide surfaces. The opening can be an area between the guide surfaces useful for allowing a practitioner to have a visual path to bones during bone preparation and/or to receive instruments. In the configuration shown, the opening extends across the body and a distance from a surface 172 opposite of the first facing surface 166 to a surface 174 opposite of the second facing surface 168.


The illustrated bone preparation guide also includes a first end 176 extending from the body 154 in a first direction and a second end 178 extending from the body in a second direction. The second direction can be different than the first direction (e.g., an opposite direction). As shown, each of the first end and the second end can include at least one fixation aperture 180 configured to receive a fixation pin to secure the bone preparation guide to an underlying bone. For example, first end 176 of bone preparation guide 150 may define a first fixation aperture through which a first pin is inserted and the second end 178 of bone preparation guide 150 may define a second fixation aperture through which a second pin is inserted. The first and second pins may be inserted using powered driver 318 and may have a constant diameter across their length. The first end 176 and/or the second end 178 of bone preparation guide 150 may also defined one or more additional fixation apertures that are angled (at a non-zero degree angle) or otherwise skewed relative to the two parallel fixation apertures.


In use, a clinician may insert the two pins (e.g., parallel pins) through fixation apertures 180 and may optionally insert one or more angled pins through the one or more angled fixation apertures. This combination of parallel and angled pins may prevent bone preparation guide 150 from being removed from the underlying bones being worked upon.


In some examples as shown in FIG. 13, bone preparation guide 150 can also include a first adjustable stabilization member 182 engaged with the first end 176 and/or a second adjustable stabilization member 184 engaged with the second end 178. Each of the members can be threaded and engage a threaded aperture defined by the ends. The elevation of each end can be adjusted with respect to a bone by adjusting the stabilization member. In some embodiments, as shown, the stabilization members are cannulated such that they can receive a fixation pin.


With reference to FIG. 8, bone preparation guide 150 may include or be used with a spacer 188 that extends downward from the body 154. Spacer 188 may be configured to be placed into a joint (e.g., within the TMT joint). In some embodiments, the spacer 188 is selectively engageable with the body of the bone preparation guide and removable therefrom. The spacer can have a first portion 190 configured to extend into a joint space and a second portion 192 engageable with the body 154. In the embodiment shown, the spacer can be received within opening 170, such that the spacer extends from the body in between the first and second guide surfaces. Such a spacer can be useful for positioning the body at a desired position with respect to a joint and for properly positioning the guide with respect to bones to be cut in more than one plane (e.g., three planes selected from more than one of a frontal plane, a transverse plane, and a sagittal plane). The distance between the spacer and the first guide surface can define a length of tissue removal (e.g., bone or cartilage to be cut) from a first bone, and the distance between the spacer and the second guide surface can define a length of tissue removal (e.g., bone or cartilage to be cut) from a second bone.


As also shown in FIG. 8, bone preparation guide 150 may include or be used with a tissue removal location check member 194. Tissue removal check member 194 may be engageable with the body 154 and configured to extend to a first bone and a second bone. The tissue removal location check member can have a first portion 196 configured to extend into contact with first and second bones and a second portion 198 engageable with the body. In the embodiment shown, the tissue removal check member 194 is configured to extend in the body 154 at both the first and second guiding surfaces. The tissue removal location check member 194 may be useful for allowing a practitioner to see where a tissue removing instrument guided by the surfaces will contact the bone to be prepared.


Bone preparation facilitated by bone preparation guide 150 can be useful, for instance, to facilitate contact between leading edges of adjacent bones, separated by a joint, or different portions of a single bone, separated by a fracture, such as in a bone alignment and/or fusion procedure. A bone may be prepared using one or more bone preparation techniques. In some applications, a bone is prepared by cutting the bone. The bone may be cut transversely to establish a new bone end facing an opposing bone portion. Additionally or alternatively, the bone may be prepared by morselizing an end of the bone. The bone end can be morselized using any suitable tool, such as a rotary bur, osteotome, or drill. The bone end may be morselized by masticating, fenestrating, crushing, pulping, and/or breaking the bone end into smaller bits to facilitate deformable contact with an opposing bone portion.


During a surgical technique utilizing fixation pin 300, a bone may be moved from an anatomically misaligned position to an anatomically aligned position with respect to another bone. Further, both the end of the moved bone and the facing end of an adjacent end may be prepared for fixation. In some applications, the end of at least one of the moved bone and/or the other bone is prepared after moving the bone into the aligned position. In other applications, the end of at least one of the moved bone and/or the other bone is prepared before moving the bone into the aligned position.


Movement of one bone relative to another bone can be accomplished using one or more instruments and/or techniques. In some examples, bone movement is accomplished using a bone positioning device that applies a force to one bone at a single location, such that the bone both translates and rotates in response to the force. This may be accomplished, for example, using a bone positioning guide that includes a bone engagement member, a tip, a mechanism to urge the bone engagement member and the tip towards each other, and an actuator to actuate the mechanism. Additionally or alternatively, bone movement may be accomplished using a compressor-distractor. As yet a further addition or alternative, a clinician may facilitate movement by physically grasping a bone, either through direct contact with the bone or indirectly (e.g., by inserting a K-wire such as fixation pin 300, grasping with a tenaculum, or the like), and moving his hand to move the bone.


An example method for preforming a bone alignment procedure utilizing a compressor-distractor and instrument defining a sliding surface according to the disclosure will now be described with respect to FIGS. 9-15 depicting a foot 200 having a first metatarsal 210, a medial cuneiform 222, and a second metatarsal 212. Unless otherwise indicated, the example steps described can be carried out in any order and need not be performed in the order described.


After customary surgical preparation and access, a bone preparation instrument 296 can be inserted into the joint (e.g., first tarsal-metatarsal joint) to release soft tissues and/or excise the plantar flare from the base of the first metatarsal 210, as shown in FIG. 9. Excising the plantar flare may involve cutting plantar flare off the first metatarsal 210 so the face of the first metatarsal is generally planar. This step helps to mobilize the joint to facilitate a deformity correction. In some embodiments, the dorsal-lateral flare of the first metatarsal may also be excised to create space for the deformity correction (e.g., with respect to rotation of the first metatarsal). In certain embodiments, a portion of the metatarsal base facing the medial cuneiform can be removed during this mobilizing step.


An incision can be made and, if a bone positioning instrument is going to be used, a tip 50 of a bone positioning guide 10 inserted on the lateral side of a metatarsal other than the first metatarsal 210, such as the second metatarsal 212. As shown in FIG. 10, the tip can be positioned proximally at a base of the second metatarsal 212 and a third metatarsal 294 interface. A surface of a bone engagement member 40 can be placed on the proximal portion of the first metatarsal 210. In some embodiments, the bone engagement member engages a medial ridge of the first metatarsal 210. As shown, the body 20 of the positioning guide can be generally perpendicular to the long axis of the second metatarsal 212.


To help avoid a base shift, a clinician can insert a fulcrum in the notch between first metatarsal 210 and second metatarsal 212 at the base of the metatarsals (e.g., adjacent respective cuneiform) before actuating bone positioning guide 10 or otherwise moving the first metatarsal relative to the medial cuneiform. The fulcrum can provide a point about which first metatarsal 210 can rotate and/or pivot while helping minimize or avoid base compression between the first metatarsal and the second metatarsal.


In applications utilizing bone positioning guide 10, the actuator on the bone positioning guide can be actuated to reduce the angle (transverse plane angle between the first metatarsal and the second metatarsal) and rotate the first metatarsal about its axis (frontal plane axial rotation). The first metatarsal 210 can be properly positioned with respect to the medial cuneiform 222 by moving the bone engagement member 40 bone positioning guide with respect to the tip 50 of the bone positioning guide. In some embodiments, such movement simultaneously pivots the first metatarsal with respect to the cuneiform and rotates the first metatarsal about its longitudinal axis into an anatomically correct position to correct a transverse plane deformity and a frontal plane deformity. Other instrumented and/or non-instrumented approaches can be used to adjustment position of first metatarsal 210 relative to medial cuneiform 222. Thus, other applications utilizing compressor-distractor 100 and a pin lock may be performed without utilizing bone positioning guide 10.


Independent of whether bone positioning guide 10 is used, an example technique may include inserting fixation pin 300 into and through first metatarsal 210 into an adjacent bone, such as second metatarsal 212 and/or medial cuneiform 220. The clinician may insert driver engagement portion 306 of fixation pin 300 into powered driver 318 and use the driver to drive the bone insertion portion of the pin into first metatarsal 210. The clinician may drive bone insertion portion 308 through cannulation 130, through first metatarsal 210, and into second metatarsal 212, as illustrated in FIG. 11. The clinician may detach powered driver 318, leaving fixation pin 300 in the bones to temporarily fixate the moved position of the first metatarsal.


As also illustrated in FIG. 11, the example technique may involve positioning joint spacer 188 within the joint between first metatarsal 210 and medial cuneiform 222. Bone preparation guide 150 can be placed over the joint spacer 188 as shown in FIG. 12 and engaged with the joint spacer to set a position and orientation of the bone preparation guide relative to the joint. In other embodiments, bone preparation guide 150 is placed on the bones without using joint spacer 188 to aid with positioning.


As depicted in FIG. 13, one or more fixation pins can be inserted into apertures of the bone preparation guide 150 to secure the guide to the first metatarsal 210 and the medial cuneiform 222. The fixation pins inserted into the apertures of bone preparation guide 150 includes a first fixation pin 112 and second fixation pin 114. The first and second fixation pins may or may not be multi-diameter fixation pins. For example, the first and second fixation pins may have a constant diameter across their length. The clinician may insert first and second fixation pins 112, 114 using the same driver 318 and same collet 320 used to insert fixation pin 300. One or more additional pins can be inserted at an angle or in a converging orientation to help prevent movement of the bone preparation guide 150 during a tissue removing step. After insertion of the pins, the spacer 188 (if used) can optionally be removed in embodiments having a selectively engageable spacer.


In some applications, the end of the first metatarsal 210 facing the medial cuneiform 222 can be prepared with a tissue removing instrument 296 guided by a guide surface of bone preparation guide 150 (e.g., inserted through a slot defined by a first guide surface and a first facing surface). In some embodiments, the first metatarsal 210 end preparation is done after at least partially aligning the bones, e.g., by actuating bone positioning guide 10 or otherwise moving the first metatarsal but after preparing the end of first metatarsal 210. In other embodiments, the first metatarsal 210 end preparation is done before the alignment of the bones.


In addition to preparing the end of first metatarsal 210, the end of the medial cuneiform 222 facing the first metatarsal 210 can be prepared with the tissue removing instrument 296 guided by a guide surface of bone preparation guide 150 (e.g., inserted through a slot defined by a second guide surface and a second facing surface). In some embodiments, the medial cuneiform 222 end preparation is done after the alignment of the bones. In yet other embodiments, the medial cuneiform 222 end preparation is done before the alignment of the bones. In embodiments that include cutting bone or cartilage, the cuneiform cut and the metatarsal cut can be parallel, conforming cuts. In some examples, a saw blade can be inserted through a first slot to cut a portion of the medial cuneiform and the saw blade can be inserted through a second slot to cut a portion of the first metatarsal.


Any angled/converging pins can be removed and the bone preparation guide 150 can be lifted off the substantially parallel first and second pins 112, 114, as shown in FIG. 14. In applications where bone positioning guide 10 is utilized, the bone positioning guide may be removed before or after bone preparation guide 150 is removed. In either case, in some examples, a temporary fixation pin 300 may be used to maintain the position of the underlying bones (e.g., first metatarsal 210 relative to medial cuneiform 222) while bone preparation guide 150 is removed and compressor-distractor 100 is installed.


With the end faces of the metatarsal and cuneiform optionally pressed together via a compressor-distractor, the clinician may provisionally or permanently fixate the bones or bones portions together. For example, one or more bone fixation devices can be applied across the joint and to the two bones to stabilize the joint for fusion, such as two bone plates positioned in different planes. FIG. 14 illustrates an example fixation device arrangement that includes a first bone plate 400 positioned on a dorsal-medial side of the first metatarsal and medial cuneiform and a second bone plate 410 positioned on a medial-plantar side of the first metatarsal and the medial cuneiform. In other embodiments, second bone plate 410 can be a helical bone plate positioned from a medial side of the cuneiform to a plantar side of the first metatarsal across the joint space. The plates can be applied with the insertion of bone screws. Example bone plates that can be used as first bone plate 400 and/or second bone plate 410 are described in US Patent Publication No. US2016/0192970, titled “Bone Plating System and Method” and filed Jan. 7, 2016, which is incorporated herein by reference. Other types in configurations of bone fixation devices can be used, and the disclosure is not limited in this respect. Any temporary fixation pins 300 inserted into the bones can be removed once permanent fixation is applied.


Multi-diameter fixation pins, along with associated techniques and systems, have been described. In some examples, a multi-diameter fixation pin according to the disclosure is included in a disposable, sterile kit that includes associated surgical instrumentation, such as bone positioning guide and/or a preparation guide described herein. Other components that may be included within the sterile kit include bone fixation devices, bone fixation screws, single diameter pins for insertion into pin-receiving holes, and the like.


Various examples have been described. These and other examples are within the scope of the following claims.

Claims
  • 1. A method comprising: inserting a pin having a first diameter into a collet of a powered driver and driving the pin into at least one of a metatarsal and a cuneiform;moving the metatarsal relative to the cuneiform to establish a moved position of the metatarsal;inserting a driver engagement portion of a multi-diameter fixation pin into the collet of the powered driver and driving a bone insertion portion of the multi-diameter fixation pin through the metatarsal and into another bone to hold the moved position of the metatarsal,wherein the collet of the powered driver is sized to receive the pin having the first diameter and the driver engagement portion of the multi-diameter fixation pin but not the bone insertion portion of the multi-diameter fixation pin.
  • 2. The method of claim 1, wherein inserting the pin having the first diameter into the collet of the powered driver and driving the pin into at least one of the metatarsal and the cuneiform comprises: inserting a first pin having the first diameter into the collet of the powered driver and driving the pin into one of the metatarsal and the cuneiform,removing the first pin from the collet of the powered driver while the first pin remains in the one of the metatarsal and cuneiform,inserting a second pin having the first diameter into the collet of the powered driver and driving the pin into the other of the metatarsal and the cuneiform, andremoving the second pin from the collet of the powered driver while the second pin remains in the other of the metatarsal and cuneiform.
  • 3. The method of claim 1, wherein inserting the driver engagement portion of the multi-diameter fixation pin into the collet of the powered driver comprises inserting the multi-diameter fixation pin into the collet to a depth less than or equal to a depth denoted by an indicator on the multi-diameter fixation pin.
  • 4. The method of claim 3, wherein the indicator comprises a notch formed into a perimeter surface of the multi-diameter fixation pin.
  • 5. The method of claim 1, wherein the first diameter and a diameter of the driver engagement portion each ranges from 2.0 mm to 3.2 mm, and a diameter of the bone insertion portion ranges from 0.7 mm to 1.8 mm.
  • 6. The method of claim 1, wherein the first diameter and a diameter of the driver engagement portion each are greater than or equal to 2.0 mm, and a diameter of the bone insertion portion is less than 2.0 mm.
  • 7. The method of claim 1, wherein driving the bone insertion portion of the multi-diameter fixation pin through the metatarsal into another bone comprises driving the bone insertion portion of the multi-diameter fixation pin through the metatarsal into an adjacent metatarsal.
  • 8. The method of claim 1, wherein driving the pin having the first diameter into at least one of a metatarsal and a cuneiform comprises: driving a first pin having the first diameter into the metatarsal,driving a second pin having the first diameter into the cuneiform, andattaching a bone preparation guide to the metatarsal via the first pin and to the cuneiform via the second pin.
  • 9. The method of claim 8, wherein the bone preparation guide comprises a body with a first guide surface to define a first preparing plane and a second guide surface to define a second preparing plane, the first guide surface being positioned over the metatarsal, and the second guide surface being positioned over the cuneiform.
  • 10. The method of claim 8, further comprising preparing an end of the metatarsal through the bone preparation guide and preparing an end of the cuneiform through the bone preparation guide.
  • 11. The method of claim 1, wherein the metatarsal is a first metatarsal and the cuneiform is a medial cuneiform.
  • 12. The method of claim 1, wherein: the multi-diameter fixation pin defines a body extending from a first end to a second end opposite the first end, the body defines the driver engagement portion having the first diameter and the bone insertion portion having a second diameter less than the first diameter; andthe first end of the body defines a tip.
  • 13. The method of claim 12, wherein the body further defines a taper portion between the driver engagement portion and the bone insertion portion, the taper portion having a diameter that transitions from the first diameter to the second diameter.
  • 14. The method of claim 12, wherein the body is a unitary unity body formed of a single piece material.
  • 15. A method comprising: inserting a driver engagement portion of a multi-diameter fixation pin into a collet of a powered driver and driving a bone insertion portion of the multi-diameter fixation pin through at least one bone portion,wherein the collet of the powered driver is sized to receive the driver engagement portion of the multi-diameter fixation pin but not the bone insertion portion of the multi-diameter fixation pin.
  • 16. The method of claim 15, wherein inserting the driver engagement portion of the multi-diameter fixation pin into the collet of the powered driver comprises inserting the multi-diameter fixation pin into the collet to a depth less than or equal to a depth denoted by an indicator on the multi-diameter fixation pin.
  • 17. The method of claim 16, wherein the indicator comprises a notch formed into a perimeter surface of the multi-diameter fixation pin.
  • 18. The method of claim 15, wherein a diameter of the driver engagement portion ranges from 2.0 mm to 3.2 mm, and a diameter of the bone insertion portion ranges from 0.7 mm to 1.8 mm.
  • 19. The method of claim 15, wherein: the multi-diameter fixation pin defines a body extending from a first end to a second end opposite the first end, the body defines the driver engagement portion having a first diameter and the bone insertion portion having a second diameter less than the first diameter; andthe first end of the body defines a tip configured for insertion into the at least one bone portion.
  • 20. The method of claim 19, wherein the body further defines a taper portion between the driver engagement portion and the bone insertion portion, the taper portion having a diameter that transitions from the first diameter to the second diameter.
RELATED MATTERS

This application claims the benefit of U.S. Provisional Application No. 62/900,391, filed Sep. 13, 2019, the entire contents of which are incorporated herein by reference.

US Referenced Citations (513)
Number Name Date Kind
3664022 Small May 1972 A
4069824 Weinstock Jan 1978 A
4159716 Borchers Jul 1979 A
4187840 Watanabe Feb 1980 A
4335715 Kirkley Jun 1982 A
4338927 Volkov et al. Jul 1982 A
4349018 Chambers Sep 1982 A
4409973 Neufeld Oct 1983 A
4440168 Warren Apr 1984 A
4501268 Comparetto Feb 1985 A
4502474 Comparetto Mar 1985 A
4509511 Neufeld Apr 1985 A
4565191 Slocum Jan 1986 A
4570624 Wu Feb 1986 A
4627425 Reese Dec 1986 A
4628919 Clyburn Dec 1986 A
4632102 Comparetto Dec 1986 A
4664102 Comparetto May 1987 A
4708133 Comparetto Nov 1987 A
4736737 Fargie et al. Apr 1988 A
4750481 Reese Jun 1988 A
4754746 Cox Jul 1988 A
4757810 Reese Jul 1988 A
4895141 Koeneman et al. Jan 1990 A
4952214 Comparetto Aug 1990 A
4959065 Arnett et al. Sep 1990 A
4959066 Dunn et al. Sep 1990 A
4978347 Ilizarov Dec 1990 A
4988349 Pennig Jan 1991 A
4995875 Coes Feb 1991 A
5021056 Hofmann et al. Jun 1991 A
5035698 Comparetto Jul 1991 A
5042983 Rayhack Aug 1991 A
5049149 Schmidt Sep 1991 A
5053039 Hofmann et al. Oct 1991 A
5078719 Schreiber Jan 1992 A
5112334 Alchermes et al. May 1992 A
5147364 Comparetto Sep 1992 A
5176685 Rayhack Jan 1993 A
5207676 Canadell et al. May 1993 A
5246444 Schreiber Sep 1993 A
5254119 Schreiber Oct 1993 A
5304180 Slocum Apr 1994 A
5312412 Whipple May 1994 A
5358504 Paley et al. Oct 1994 A
5364402 Mumme et al. Nov 1994 A
5374271 Hwang Dec 1994 A
5413579 Du Toit May 1995 A
5417694 Marik et al. May 1995 A
5449360 Schreiber Sep 1995 A
5470335 Du Toit Nov 1995 A
5490854 Fisher et al. Feb 1996 A
5529075 Clark Jun 1996 A
5540695 Levy Jul 1996 A
5578038 Slocum Nov 1996 A
5586564 Barrett et al. Dec 1996 A
5601565 Huebner Feb 1997 A
5613969 Jenkins, Jr. Mar 1997 A
5620442 Bailey et al. Apr 1997 A
5620448 Puddu Apr 1997 A
5643270 Combs Jul 1997 A
5667510 Combs Sep 1997 A
5690639 Lederer et al. Nov 1997 A
5702396 Hoenig et al. Dec 1997 A
H1706 Mason Jan 1998 H
5709686 Talos et al. Jan 1998 A
5709687 Pennig Jan 1998 A
5722978 Jenkins Mar 1998 A
5749875 Puddu May 1998 A
5779709 Harris et al. Jul 1998 A
5785712 Runciman et al. Jul 1998 A
5788695 Richardson Aug 1998 A
5803924 Oni et al. Sep 1998 A
5810822 Mortier Sep 1998 A
5843085 Graser Dec 1998 A
5893553 Pinkous Apr 1999 A
5911724 Wehrli Jun 1999 A
5935128 Carter et al. Aug 1999 A
5941877 Viegas et al. Aug 1999 A
5951556 Faccioli et al. Sep 1999 A
5980526 Johnson et al. Nov 1999 A
5984931 Greenfield Nov 1999 A
6007535 Rayhack et al. Dec 1999 A
6027504 McGuire Feb 2000 A
6030391 Brainard et al. Feb 2000 A
6110174 Nichter Aug 2000 A
6162223 Orsak et al. Dec 2000 A
6171309 Huebner Jan 2001 B1
6203545 Stoffella Mar 2001 B1
6248109 Stoffella Jun 2001 B1
6391031 Toomey May 2002 B1
6478799 Williamson Nov 2002 B1
6511481 von Hoffmann et al. Jan 2003 B2
6540746 Bhler et al. Apr 2003 B1
6547793 McGuire Apr 2003 B1
6676662 Bagga et al. Jan 2004 B1
6719773 Boucher et al. Apr 2004 B1
6743233 Baldwin et al. Jun 2004 B1
6755838 Trnka Jun 2004 B2
6786909 Dransfeld et al. Sep 2004 B1
6796986 Duffner Sep 2004 B2
6859661 Tuke Feb 2005 B2
7018383 McGuire Mar 2006 B2
7033361 Collazo Apr 2006 B2
7037309 Weil et al. May 2006 B2
7097647 Segler et al. Aug 2006 B2
7112204 Justin et al. Sep 2006 B2
7153310 Ralph et al. Dec 2006 B2
7175667 Saunders et al. Feb 2007 B2
7182766 Mogul Feb 2007 B1
7229445 Hayeck et al. Jun 2007 B2
7241298 Nemec et al. Jul 2007 B2
7282054 Steffensmeier et al. Oct 2007 B2
7344538 Myerson et al. Mar 2008 B2
7377924 Raistrick et al. May 2008 B2
7465303 Riccione et al. Dec 2008 B2
7537596 Jensen May 2009 B2
7540874 Trumble et al. Jun 2009 B2
7572258 Stiernborg Aug 2009 B2
7641660 Lakin et al. Jan 2010 B2
D610257 Horton Feb 2010 S
7686811 Byrd et al. Mar 2010 B2
7691108 Lavallee Apr 2010 B2
7695473 Ralph et al. Apr 2010 B2
7763026 Egger et al. Jul 2010 B2
7785355 Mohr et al. Aug 2010 B2
D629900 Fisher Dec 2010 S
7931680 Myerson et al. Apr 2011 B2
7967823 Ammann et al. Jun 2011 B2
7972338 O'Brien Jul 2011 B2
D646389 Claypool et al. Oct 2011 S
8057478 Kuczynski et al. Nov 2011 B2
8062301 Ammann et al. Nov 2011 B2
D651315 Bertoni et al. Dec 2011 S
D651316 May et al. Dec 2011 S
8080010 Schulz et al. Dec 2011 B2
8083746 Novak Dec 2011 B2
8123753 Poncet Feb 2012 B2
8133283 Wilson Mar 2012 B2
8137406 Novak et al. Mar 2012 B2
8147530 Strnad et al. Apr 2012 B2
8162996 Schelling Apr 2012 B2
8167918 Strnad et al. May 2012 B2
8172848 Tomko et al. May 2012 B2
8172884 Bouman May 2012 B2
8172886 Castaneda et al. May 2012 B2
8177819 Medoff May 2012 B2
8177820 Anapliotis et al. May 2012 B2
8177822 Medoff May 2012 B2
8192441 Collazo Jun 2012 B2
8197487 Poncet et al. Jun 2012 B2
8231623 Jordan Jul 2012 B1
8231662 Huebner Jul 2012 B2
8231663 Kay et al. Jul 2012 B2
8235994 Hollawell Aug 2012 B2
8236000 Ammann et al. Aug 2012 B2
8236034 Binder et al. Aug 2012 B2
8241338 Castaneda et al. Aug 2012 B2
8246561 Agee et al. Aug 2012 B1
8246661 Beutter et al. Aug 2012 B2
D666721 Wright et al. Sep 2012 S
8257403 Den Hartog et al. Sep 2012 B2
8257405 Haidukewych et al. Sep 2012 B2
8262664 Justin et al. Sep 2012 B2
8277459 Sand et al. Oct 2012 B2
8282644 Edwards Oct 2012 B2
8282645 Lawrence et al. Oct 2012 B2
8292966 Morton Oct 2012 B2
8303596 Plassky et al. Nov 2012 B2
8313492 Wong et al. Nov 2012 B2
8323289 Re Dec 2012 B2
8337503 Lian Dec 2012 B2
8343159 Bennett Jan 2013 B2
8377105 Buescher Feb 2013 B2
8382807 Austin et al. Feb 2013 B2
8398687 Vasta et al. Mar 2013 B2
8403966 Ralph et al. Mar 2013 B2
D679395 Wright et al. Apr 2013 S
8409209 Ammann et al. Apr 2013 B2
8435246 Fisher et al. May 2013 B2
8444679 Ralph et al. May 2013 B2
8475462 Thomas et al. Jul 2013 B2
8496662 Novak et al. Jul 2013 B2
8496690 Sixto et al. Jul 2013 B2
8512339 Medoff et al. Aug 2013 B2
8518045 Szanto Aug 2013 B2
8523870 Green, II et al. Sep 2013 B2
8529571 Horan et al. Sep 2013 B2
8529608 Terrill et al. Sep 2013 B2
8540777 Ammann et al. Sep 2013 B2
8545508 Collazo Oct 2013 B2
8545540 Castaneda et al. Oct 2013 B2
D694884 Mooradian et al. Dec 2013 S
D695402 Dacosta et al. Dec 2013 S
8652142 Geissler Feb 2014 B2
8657820 Kubiak et al. Feb 2014 B2
D701303 Cook Mar 2014 S
8672945 Lavallee et al. Mar 2014 B2
8696716 Kartalian et al. Apr 2014 B2
8702715 Ammann et al. Apr 2014 B2
8702762 Jacene et al. Apr 2014 B2
D705929 Frey May 2014 S
8715363 Ratron et al. May 2014 B2
8728084 Berelsman et al. May 2014 B2
8734492 Mohr et al. May 2014 B2
8758354 Habegger et al. Jun 2014 B2
8764760 Metzger et al. Jul 2014 B2
8764763 Wong et al. Jul 2014 B2
8764807 Michel et al. Jul 2014 B2
8771279 Philippon et al. Jul 2014 B2
8777948 Bernsteiner Jul 2014 B2
8784427 Fallin et al. Jul 2014 B2
8784457 Graham Jul 2014 B2
8784498 Scheland Jul 2014 B2
8795286 Sand et al. Aug 2014 B2
8801727 Chan et al. Aug 2014 B2
8808303 Stemniski et al. Aug 2014 B2
8808334 Strnad et al. Aug 2014 B2
8828012 May et al. Sep 2014 B2
8828063 Blitz et al. Sep 2014 B2
8834532 Velikov et al. Sep 2014 B2
8834537 Castaneda et al. Sep 2014 B2
8852249 Ahrens et al. Oct 2014 B2
8858602 Weiner et al. Oct 2014 B2
8882778 Ranft Nov 2014 B2
8882816 Kartalian et al. Nov 2014 B2
8888785 Ammann et al. Nov 2014 B2
8888824 Austin et al. Nov 2014 B2
D720456 Dacosta et al. Dec 2014 S
8900247 Tseng et al. Dec 2014 B2
8906026 Ammann et al. Dec 2014 B2
8940026 Hilse et al. Jan 2015 B2
8940029 Leung et al. Jan 2015 B2
8945132 Plassy et al. Feb 2015 B2
8998903 Price et al. Apr 2015 B2
8998904 Zeetser et al. Apr 2015 B2
9023052 Lietz et al. May 2015 B2
9044250 Olsen et al. Jun 2015 B2
9060822 Lewis et al. Jun 2015 B2
9089376 Medoff et al. Jul 2015 B2
9101421 Blacklidge Aug 2015 B2
9107715 Blitz et al. Aug 2015 B2
9113920 Ammann et al. Aug 2015 B2
9138244 Mebarak et al. Sep 2015 B2
D740424 Dacosta et al. Oct 2015 S
9149313 Strnad et al. Oct 2015 B2
9220515 Castaneda et al. Dec 2015 B2
9271769 Batsch et al. Mar 2016 B2
9375242 Worcel Jun 2016 B2
D765844 DaCosta Sep 2016 S
D766434 DaCosta Sep 2016 S
D766437 DaCosta Sep 2016 S
D766438 DaCosta Sep 2016 S
D766439 DaCosta Sep 2016 S
9452057 Dacosta et al. Sep 2016 B2
9522023 Taddad et al. Nov 2016 B2
9592084 Grant Mar 2017 B2
9622805 Santrock et al. Apr 2017 B2
9642656 Kotuljac et al. May 2017 B2
9668793 Gaudin Jun 2017 B2
9750538 Soffiatti et al. Sep 2017 B2
9785747 Geebelen Oct 2017 B2
9867642 Simon Jan 2018 B2
9936994 Smith et al. Apr 2018 B2
9980760 Dacosta et al. May 2018 B2
10028750 Rose Jul 2018 B2
10064631 Dacosta et al. Sep 2018 B2
10159499 Dacosta et al. Dec 2018 B2
10226287 Langford et al. Mar 2019 B2
10238437 Simon Mar 2019 B2
10245088 Dayton et al. Apr 2019 B2
10292713 Fallin et al. May 2019 B2
10327829 Dacosta et al. Jun 2019 B2
10376268 Fallin et al. Aug 2019 B2
10470779 Fallin et al. Nov 2019 B2
10849631 Hatch Dec 2020 B2
11304705 Fallin et al. Apr 2022 B2
20020099381 Maroney Jul 2002 A1
20020107519 Dixon et al. Aug 2002 A1
20020165552 Duffner Nov 2002 A1
20020198531 Millard et al. Dec 2002 A1
20030060827 CoughIn Mar 2003 A1
20040010259 Keller et al. Jan 2004 A1
20040039394 Conti et al. Feb 2004 A1
20040097946 Dietzel et al. May 2004 A1
20040116930 O'Driscoll et al. Jun 2004 A1
20040138669 Horn Jul 2004 A1
20050004676 Schon et al. Jan 2005 A1
20050033430 Powers et al. Feb 2005 A1
20050059978 Sherry et al. Mar 2005 A1
20050070909 Egger et al. Mar 2005 A1
20050075641 Singhatat et al. Apr 2005 A1
20050101961 Huebner et al. May 2005 A1
20050149042 Metzger Jul 2005 A1
20050192578 Horst Sep 2005 A1
20050228389 Stiernborg Oct 2005 A1
20050251147 Novak Nov 2005 A1
20050267482 Hyde Dec 2005 A1
20050273112 McNamara Dec 2005 A1
20060116679 Lutz et al. Jun 2006 A1
20060129163 McGuire Jun 2006 A1
20060149264 Castaneda et al. Jul 2006 A1
20060206044 Simon Sep 2006 A1
20060217733 Plassky et al. Sep 2006 A1
20060229621 Cadmus Oct 2006 A1
20060235397 Sanders et al. Oct 2006 A1
20060241607 Myerson et al. Oct 2006 A1
20060241608 Myerson et al. Oct 2006 A1
20060264961 Murray-Brown Nov 2006 A1
20060276795 Orbay et al. Dec 2006 A1
20070010818 Stone et al. Jan 2007 A1
20070055249 Jensen et al. Mar 2007 A1
20070123857 Deffenbaugh et al. May 2007 A1
20070123884 Abdou May 2007 A1
20070191848 Wack et al. Aug 2007 A1
20070233138 Figueroa et al. Oct 2007 A1
20070265634 Weinstein Nov 2007 A1
20070276383 Rayhack Nov 2007 A1
20080009863 Bond et al. Jan 2008 A1
20080015591 Castaneda et al. Jan 2008 A1
20080015603 Collazo Jan 2008 A1
20080039850 Rowley et al. Feb 2008 A1
20080091197 Coughlin Apr 2008 A1
20080140081 Heavener et al. Jun 2008 A1
20080147073 Ammann et al. Jun 2008 A1
20080172054 Claypool et al. Jul 2008 A1
20080195215 Morton Aug 2008 A1
20080208252 Holmes Aug 2008 A1
20080262500 Collazo Oct 2008 A1
20080269908 Warburton Oct 2008 A1
20080288004 Schendel Nov 2008 A1
20090036893 Kartalian et al. Feb 2009 A1
20090036931 Pech et al. Feb 2009 A1
20090054899 Ammann et al. Feb 2009 A1
20090093849 Grabowski Apr 2009 A1
20090105767 Reiley Apr 2009 A1
20090118733 Orsak et al. May 2009 A1
20090118768 Sixto, Jr. et al. May 2009 A1
20090198244 Leibel Aug 2009 A1
20090198279 Zhang et al. Aug 2009 A1
20090210010 Strnad et al. Aug 2009 A1
20090210013 Kay et al. Aug 2009 A1
20090222047 Graham Sep 2009 A1
20090254092 Albiol Llorach Oct 2009 A1
20090254126 Orbay et al. Oct 2009 A1
20090281543 Orbay et al. Nov 2009 A1
20090287309 Walch et al. Nov 2009 A1
20100004691 Amato et al. Jan 2010 A1
20100023010 Nelson et al. Jan 2010 A1
20100069910 Hasselman Mar 2010 A1
20100121334 Couture et al. May 2010 A1
20100125300 Blitz et al. May 2010 A1
20100130981 Richards May 2010 A1
20100152752 Denove Jun 2010 A1
20100152782 Stone et al. Jun 2010 A1
20100168799 Schumer Jul 2010 A1
20100185245 Paul et al. Jul 2010 A1
20100249779 Hotchkiss et al. Sep 2010 A1
20100256687 Neufeld et al. Oct 2010 A1
20100318088 Warne et al. Dec 2010 A1
20100324556 Tyber et al. Dec 2010 A1
20110008745 McQuillan et al. Jan 2011 A1
20110009865 Orfaly Jan 2011 A1
20110087295 Kubiak et al. Apr 2011 A1
20110093017 Prasad et al. Apr 2011 A1
20110093084 Morton Apr 2011 A1
20110118739 Tyber et al. May 2011 A1
20110137351 Huebner et al. Jun 2011 A1
20110166607 Castaneda et al. Jul 2011 A1
20110178524 Lawrence et al. Jul 2011 A1
20110245835 Dodds et al. Oct 2011 A1
20110264149 Pappalardo et al. Oct 2011 A1
20110288550 Orbay et al. Nov 2011 A1
20110301648 Lofthouse et al. Dec 2011 A1
20110301653 Reed Dec 2011 A1
20120016426 Robinson Jan 2012 A1
20120065689 Prasad et al. Mar 2012 A1
20120078258 Lo et al. Mar 2012 A1
20120123420 Honiball May 2012 A1
20120123484 Lietz et al. May 2012 A1
20120130376 Loring et al. May 2012 A1
20120130382 Jannotti et al. May 2012 A1
20120130383 Budoff May 2012 A1
20120184961 Johannaber Jul 2012 A1
20120185056 Warburton Jul 2012 A1
20120191199 Raemisch Jul 2012 A1
20120239045 Li Sep 2012 A1
20120253350 Anthony et al. Oct 2012 A1
20120265204 Schmierer et al. Oct 2012 A1
20120265301 Demers et al. Oct 2012 A1
20120277745 Lizee Nov 2012 A1
20120303033 Weiner et al. Nov 2012 A1
20120330135 Millahn et al. Dec 2012 A1
20130012949 Fallin et al. Jan 2013 A1
20130035694 Grimm et al. Feb 2013 A1
20130085499 Lian Apr 2013 A1
20130090695 Bernstein et al. Apr 2013 A1
20130096563 Meade et al. Apr 2013 A1
20130131821 Cachia May 2013 A1
20130150900 Haddad et al. Jun 2013 A1
20130150903 Vincent Jun 2013 A1
20130158556 Jones et al. Jun 2013 A1
20130165936 Myers Jun 2013 A1
20130165938 Chow et al. Jun 2013 A1
20130172942 Lewis et al. Jul 2013 A1
20130184714 Kaneyama et al. Jul 2013 A1
20130190765 Harris et al. Jul 2013 A1
20130190766 Harris et al. Jul 2013 A1
20130204259 Zajac Aug 2013 A1
20130226248 Tatch et al. Aug 2013 A1
20130226252 Mayer Aug 2013 A1
20130231668 Olsen et al. Sep 2013 A1
20130237987 Graham Sep 2013 A1
20130237989 Bonutti Sep 2013 A1
20130238032 Schilter Sep 2013 A1
20130238093 Mauldin Sep 2013 A1
20130261670 Laeng et al. Oct 2013 A1
20130267956 Terrill et al. Oct 2013 A1
20130310836 Raub et al. Nov 2013 A1
20130325019 Thomas et al. Dec 2013 A1
20130325076 Palmer et al. Dec 2013 A1
20130331845 Horan et al. Dec 2013 A1
20130338785 Wong Dec 2013 A1
20140005672 Edwards et al. Jan 2014 A1
20140012887 Tamano Jan 2014 A1
20140025127 Richter Jan 2014 A1
20140039501 Schickendantz et al. Feb 2014 A1
20140039561 Weiner et al. Feb 2014 A1
20140046387 Waizenegger Feb 2014 A1
20140052193 Prandi et al. Feb 2014 A1
20140074099 Vigneron et al. Mar 2014 A1
20140074101 Collazo Mar 2014 A1
20140081341 Lin et al. Mar 2014 A1
20140094861 Fallin Apr 2014 A1
20140094924 Tacking et al. Apr 2014 A1
20140107650 Dacosta et al. Apr 2014 A1
20140107798 Jeng et al. Apr 2014 A1
20140135775 Maxson et al. May 2014 A1
20140163563 Reynolds et al. Jun 2014 A1
20140171953 Gonzalvez et al. Jun 2014 A1
20140172021 Castaneda et al. Jun 2014 A1
20140180342 Lowery et al. Jun 2014 A1
20140180343 Gaudin Jun 2014 A1
20140188139 Fallin et al. Jul 2014 A1
20140194884 Martin et al. Jul 2014 A1
20140194999 Orbay et al. Jul 2014 A1
20140207144 Lee et al. Jul 2014 A1
20140214093 Courtney et al. Jul 2014 A1
20140249537 Wong et al. Sep 2014 A1
20140257291 Houff Sep 2014 A1
20140257308 Johannaber Sep 2014 A1
20140257509 Dacosta et al. Sep 2014 A1
20140276815 Riccione Sep 2014 A1
20140276853 Long et al. Sep 2014 A1
20140277176 Buchanan et al. Sep 2014 A1
20140277214 Helenbolt et al. Sep 2014 A1
20140288562 Von Zabern et al. Sep 2014 A1
20140296995 Reiley et al. Oct 2014 A1
20140303621 Gerold et al. Oct 2014 A1
20140336658 Luna et al. Nov 2014 A1
20140343555 Russi et al. Nov 2014 A1
20140350561 Dacosta et al. Nov 2014 A1
20150032168 Orsak et al. Jan 2015 A1
20150039033 Biedermann Feb 2015 A1
20150045801 Axelson, Jr. et al. Feb 2015 A1
20150045839 Dacosta et al. Feb 2015 A1
20150051650 Verstreken et al. Feb 2015 A1
20150057667 Ammann et al. Feb 2015 A1
20150066094 Prandi et al. Mar 2015 A1
20150112446 Melamed et al. Apr 2015 A1
20150119944 Geldwert Apr 2015 A1
20150142064 Perez et al. May 2015 A1
20150150608 Sammarco Jun 2015 A1
20150182273 Stemniski et al. Jul 2015 A1
20150223851 Hill et al. Aug 2015 A1
20150245858 Weiner et al. Sep 2015 A1
20150313652 Burckhardt et al. Nov 2015 A1
20150335366 Dacosta et al. Nov 2015 A1
20150359580 Dacosta et al. Dec 2015 A1
20160015426 Dayton Jan 2016 A1
20160022315 Soffiatti et al. Jan 2016 A1
20160030098 Dacosta et al. Feb 2016 A1
20160030106 Carter Feb 2016 A1
20160135858 Dacosta et al. May 2016 A1
20160151165 Fallin et al. Jun 2016 A1
20160175089 Fallin et al. Jun 2016 A1
20160192950 Dayton et al. Jul 2016 A1
20160192970 Dayton et al. Jul 2016 A1
20160199076 Fallin et al. Jul 2016 A1
20160213384 Fallin et al. Jul 2016 A1
20160235414 Hatch Aug 2016 A1
20160235454 Treace et al. Aug 2016 A1
20160242791 Fallin et al. Aug 2016 A1
20160256204 Patel et al. Sep 2016 A1
20160324532 Montoya et al. Nov 2016 A1
20160354127 Lundquist et al. Dec 2016 A1
20170014143 Dayton et al. Jan 2017 A1
20170014173 Smith Jan 2017 A1
20170042598 Santrock et al. Feb 2017 A1
20170042599 Bays Feb 2017 A1
20170079669 Bays et al. Mar 2017 A1
20170143511 Cachia May 2017 A1
20170164989 Weiner et al. Jun 2017 A1
20180132868 Dacosta et al. May 2018 A1
20180140339 Silva et al. May 2018 A1
20180344334 Kim et al. Dec 2018 A1
20180344371 Monk et al. Dec 2018 A1
20190357950 Bernstein et al. Nov 2019 A1
20200015856 Treace Jan 2020 A1
20200015870 Treace Jan 2020 A1
20200281637 Denham Sep 2020 A1
20210022879 Hollis Jan 2021 A1
20210282828 Champagne Sep 2021 A1
Foreign Referenced Citations (120)
Number Date Country
2006252612 Apr 2012 AU
2009227957 Jul 2014 AU
2491824 Sep 2005 CA
2854997 May 2013 CA
2715491 Apr 2014 CA
695846 Sep 2006 CH
2701408 May 2005 CN
2930668 Aug 2007 CN
201558162 Aug 2010 CN
101836888 Sep 2010 CN
201572172 Sep 2010 CN
201586060 Sep 2010 CN
201912210 Aug 2011 CN
102755186 Oct 2012 CN
101237835 Nov 2012 CN
202801773 Mar 2013 CN
103462675 Dec 2013 CN
103505276 Jan 2014 CN
203458450 Mar 2014 CN
102860860 May 2014 CN
203576647 May 2014 CN
103892954 Jul 2014 CN
104490460 Apr 2015 CN
104510523 Apr 2015 CN
104523327 Apr 2015 CN
104546102 Apr 2015 CN
204379413 Jun 2015 CN
204410951 Jun 2015 CN
204428143 Jul 2015 CN
204428144 Jul 2015 CN
204428145 Jul 2015 CN
204446081 Jul 2015 CN
202006010241 Mar 2007 DE
102007053058 Apr 2009 DE
685206 Sep 2000 EP
1508316 May 2007 EP
1897509 Jul 2009 EP
2124772 Dec 2009 EP
2124832 Aug 2012 EP
2389884 Jul 2013 EP
2441406 Sep 2013 EP
2632349 Sep 2013 EP
2665428 Nov 2013 EP
2742878 Jun 2014 EP
2750617 Jul 2014 EP
2849684 Mar 2015 EP
2624764 Dec 2015 EP
3023068 May 2016 EP
2379929 May 2012 ES
2362616 Mar 1978 FR
2764183 Nov 1999 FR
2953120 Jan 2012 FR
3030221 Jun 2016 FR
2154143 Sep 1985 GB
2154144 Sep 1985 GB
2334214 Jan 2003 GB
184773 Aug 2012 IL
200607174 Aug 2007 IN
200903719 Jun 2009 IN
200904479 May 2010 IN
140DELNP2012 Feb 2013 IN
2004KOLNP2013 Nov 2013 IN
S635739 Jan 1988 JP
H07313522 Dec 1995 JP
2004174265 Jun 2004 JP
2006158972 Jun 2006 JP
4134243 Aug 2008 JP
4162380 Oct 2008 JP
2011092405 May 2011 JP
2011523889 Aug 2011 JP
4796943 Oct 2011 JP
5466647 Apr 2014 JP
2014511207 May 2014 JP
2014521384 Aug 2014 JP
5628875 Nov 2014 JP
100904142 Jun 2009 KR
101081268 Nov 2011 KR
756 Nov 2014 MD
2098036 Dec 1997 RU
2195892 Jan 2003 RU
2320287 Mar 2008 RU
2321366 Apr 2008 RU
2321369 Apr 2008 RU
2346663 Feb 2009 RU
2412662 Feb 2011 RU
1333328 Aug 1987 SU
0166022 Sep 2001 WO
03075775 Sep 2003 WO
2004024009 Mar 2004 WO
2004089227 Oct 2004 WO
2006065512 Jun 2006 WO
2007006430 Jan 2007 WO
2007106962 Sep 2007 WO
2008029142 Mar 2008 WO
2008029143 Mar 2008 WO
2008051064 May 2008 WO
2009029798 Mar 2009 WO
2009032101 Mar 2009 WO
2011037885 Mar 2011 WO
2012029008 Mar 2012 WO
2013090392 Jun 2013 WO
2013134387 Sep 2013 WO
2013169475 Nov 2013 WO
2014020561 Feb 2014 WO
2014022055 Feb 2014 WO
2014035991 Mar 2014 WO
2014085882 Jun 2014 WO
2014147099 Sep 2014 WO
2014152219 Sep 2014 WO
2014152535 Sep 2014 WO
2014177783 Nov 2014 WO
2014200017 Dec 2014 WO
2015094409 Jun 2015 WO
2015094410 Jun 2015 WO
2015105880 Jul 2015 WO
2015127515 Sep 2015 WO
2016003477 Jan 2016 WO
2016134160 Aug 2016 WO
2017205512 Nov 2017 WO
200808914 Feb 2012 ZA
Non-Patent Literature Citations (209)
Entry
Nagy et al., “The AO Ulnar Shortening Osteotomy System Indications and Surgical Technique,” Journal of Wrist Surgery, vol. 3, No. 2, 2014, pp. 91-97.
NexFix from Nexa Orthopedics, MetaFix I from Merete Medical, Inc. and The BioPro Lower Extremities from BioPro, found in Foot & Ankle International Journal, vol. 28, No. 1, Jan. 2007, 4 pages.
Odenbring et al., “A guide instrument for high tibial osteotomy,” Acta Orthopaedica Scandinavica, vol. 60, No. 4, 1989, pp. 449-451.
Okuda et al., “Postoperative Incomplete Reduction of the Sesamoids as a Risk Factor for Recurrence of Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 91-A, No. 1, Jul. 2009, pp. 1637-1645.
Osher et al., “Accurate Determination of Relative Metatarsal Protrusion with a Small Intermetatarsal Angle: A Novel Simplified Method,” The Journal of Foot & Ankle Surgery, vol. 53, No. 5, Sep./Oct. 2014, published online: Jun. 3, 2014, pp. 548-556.
Otsuki et al., “Developing a novel custom cutting guide for curved per-acetabular osteotomy,” International Orthopaedics (SICOT), vol. 37, 2013, pp. 1033-1038.
Patel et al., “Modified Lapidus Arthrodesis: Rate of Nonunion in 227 Cases,” The Journal of Foot & Ankle Surgery, vol. 43, No. 1, Jan./Feb. 2004, pp. 37-42.
“Patient to Patient Precision, Accu-Cut, Osteotomy Guide System,” BioPro, Foot & Ankle International Journal, vol. 23, No. 8, Aug. 2002, 2 pages.
Peters et al., “Flexor Hallucis Longus Tendon Laceration as a Complication of Total Ankle Arthroplasty,” Foot & Ankle International, vol. 34, No. 1, 2013, pp. 148-149.
“Prophecy Inbone Preoperative Navigation Guides,” Wright Medical Technology, Inc., Nov. 2013, 6 pages.
“RAYHACK Ulnar Shortening Generation II Low-Profile Locking System Surgical Technique,” Wright Medical Technology, Inc., Dec. 2013, 20 pages.
Rx-Fix Mini Rail External Fixator, Wright Medical Technology, Brochure, Aug. 15, 2014, 2 pages.
Saltzman et al., “Prospective Controlled Trial of STAR Total Ankle Replacement Versus Ankle Fusion: Initial Results,” Foot & Ankle International, vol. 30, No. 7, Jul. 2009, pp. 579-596.
Scanlan et al. “Technique Tip: Subtalar Joint Fusion Using a Parallel Guide and Double Screw Fixation,” The Journal of Foot and Ankle Surgery, vol. 49, Issue 3, May-Jun. 2010, pp. 305-309, (Abstract Only).
Scranton Jr. et al, “Anatomic Variations in the First Ray: Part I. Anatomic Aspects Related to Bunion Surgery,” Clinical Orthopaedics and Related Research, vol. 151, Sep. 1980, pp. 244-255.
Siddiqui et al. “Fixation of Metatarsal Fracture With Bone Plate in a Dromedary Heifer,” Open Veterinary Journal, vol. 3, No. 1, 2013, pp. 17-20.
Sidekick Stealth Rearfoot Fixator, Wright Medical Technology, Surgical Technique, Dec. 2, 2013, 20 pages.
Simpson et al., “Computer-Assisted Distraction Ostegogenesis by Ilizarov's Method,” International Journal of Medical Robots and Computer Assisted Surgery, vol. 4, No. 4, Dec. 2008, pp. 310-320, (Abstract Only).
Small Bone External Fixation System, Acumed, Surgical Technique, Effective date Sep. 2014, 8 pages.
“Smith & Nephew scores a HAT-TRICK with its entry into the high-growth hammer toe repair market,” Smith & Nephew, Jul. 31, 2014, 2 pages.
Stableloc External Fixation System, Acumed, Product Overview, Effective date Sep. 2015, 4 pages.
Stahl et al., “Derotation of Post-Traumatic Femoral Deformities by Closed Intramedullary Sawing,” Injury, vol. 37, No. 2, Feb. 2006, pp. 145-151, (Abstract Only).
Talbot et al., “Assessing Sesamoid Subluxation: How Good is the AP Radiograph?,” Foot and Ankle International, vol. 19, No. 8, Aug. 1998, pp. 547-554.
TempFix Spanning the Ankle Joint Half Pin and Transfixing Pin Techniques, Biomet Orthopedics, Surgical Technique, 2012, 16 pages.
Toth et al., “The Effect of First Ray Shortening in the Development of Metatarsalgia in the Second Through Fourth Rays After Metatarsal Osteotomy,” Foot & Ankle International, vol. 28, No. 1, Jan. 2007, pp. 61-63.
Tricot et al., “3D-corrective osteotomy using surgical guides for posttraumatic distal humeral deformity,” Acta Orthopaedica Belgica, vol. 78, No. 4, 2012, pp. 538-542.
Vitek et al., “Die Behandlung des Hallux rigidus mit Cheilektomie und Akin-Moberg-Osteotomie unter Verwendung einer neuen Schnittlehre und eines neuen Schraubensystems,” Orthopadische Praxis, vol. 44, Nov. 2008, pp. 663-566, including English Abstract on p. 564.
Vitek, “Neue Techniken in der Fußchirurgie Das V-tek-System,” ABW Wissenschaftsverlag GmbH, 2009, 11 pages, Including English Abstract.
Weber et al., “A Simple System for Navigation of Bone Alignment Osteotomies of the Tibia,” International Congress Series, vol. 1268, Jan. 2004, pp. 608-613, (Abstract Only).
Weil et al., “Anatomic Plantar Plate Repair Using the Weil Metatarsal Osteotomy Approach,” Foot & Ankle Specialist, vol. 4, No. 3, 2011, pp. 145-150.
Wendl et al., “Navigation in der Knieendoprothetik,” OP—Journal, vol. 17, 2002, pp. 22-27, including English Abstract.
Whipple et al., “Zimmer Herbert Whipple Bone Screw System: Surgical Techniques for Fixation of Scaphoid and Other Small Bone Fractures,” Zimmer, 2003, 59 pages.
Yakacki et al. “Compression Forces of Internal and External Ankle Fixation Devices with Simulated Bone Resorption,” Foot and Ankle International, vol. 31, No. 1, Jan. 2010, pp. 76-85, (Abstract Only).
Yasuda et al., “Proximal Supination Osteotomy of the First Metatarsal for Hallux Valgus,” Foot and Ankle International, vol. 36, No. 6, Jun. 2015, pp. 696-704.
Acumed, “Acu-Loc Wrist Plating System,” Brochure and Surgical Technique, effective date Apr. 2012, reported publication date Sep. 23, 2013, 19 pages.
Acumed, “Hand Fracture System,” Brochure, effective date Sep. 2014, reported publication date Jan. 29, 2016, 6 pages.
Acumed, “Hub Cap Fusion Plates,” Retrieved from <http://www.acumed.net/products/hand-wrist/carpal/hub-cap-fusion-plates>, 2016, 8 pages.
Arthrex, “Double Compression Plates,” Retrieved from <https://www.arthrex.com/foot-ankle/double-compression-plates>, 2016, 3 pages.
Arthrex, “Plantar Lapidus Plate,” 2015, 6 pages.
Arthrex, “Proximal Metatarsal Osteotomy using Plates,” Retrieved from <http://www.arthrex.com/foot-ankle/proximal-metatarsal-osteotomy-using-plates>, 2016, 2 pages.
Chang et al., “Lapidus Arthrodesis: A Different Perspective,” Journal of the American Podiatric Medical Association, vol. 84, No. 6, Jun. 1994, pp. 281-288.
Couzens et al., “Stainless Steel Versus Titanium Volar Multi-Axial Locking Plates for Fixation of Distal Radius Fractures: A Randomised Clinical Trial,” BMC Musculoskeletal Disorders, vol. 15, No. 74, Mar. 2014, 7 pages.
Diaconu et al., “Locking Plates for Fixation of Extra-Articular Fractures of the First Metacarpal Base: A Series of 15 Cases,” Chirurgie de la Main, vol. 30, No. 1, pp. 26-30, Abstract only.
Horton et al., “Deformity Correction and Arthrodesis of the Midfoot with a Medial Plate,” Foot & Ankle, vol. 14, No. 9, Nov./Dec. 1993, pp. 493-499.
Merete GMBH, “MetaFix OpenWedge,” Retrieved from <http://www.merete-medical.com/de/produkte/fuss/hallux-valgus/metafixr-openwedge.html>, 2016, 4 pages (Google Translation).
Osteomed, “ExtremiLock Ankle Plating System,” Brochure, published prior to Nov. 20, 2014, 6 pages.
Osteomed, “ExtremiLock Foot Plating System,” Brochure, published prior to Nov. 20, 2014, 6 pages.
Osteomed, “Hand Plating System,” Brochure, published prior to Nov. 20, 2014, 8 pages.
Plaass et al, “Anterior Double Plating for Rigid Fixation of Isolated Tibiotalar Arthrodesis,” Foot and Ankle International, vol. 30, No. 7, Jul. 2009, pp. 631-639.
Plaass et al., “Placement of Plantar Plates for Lapidus Arthrodesis: Anatomical Considerations,” Foot and Ankle International, vol. 37, No. 4, Apr. 2016, pp. 427-432.
Dayton et al., “Dorsal Suspension Stitch: An Alternative Stabilization After Flexor Tenotomy for Flexible Hammer Digit Syndrome,” The Journal of Foot and Ankle Surgery, vol. 48, No. 5, Sep./Oct. 2009, pp. 602-605.
Dayton et al., “The Extended Knee Hemilithotomy Position for Gastrocnemius Recession,” The Journal of Foot and Ankle Surgery, vol. 49, 2010, pp. 214-216.
Wienke et al., “Bone Stimulation for Nonunions: What the Evidence Reveals,” Podiatry Today, vol. 24, No. 9, Sep. 2011, pp. 52-57.
Dayton et al., “Hallux Varus as Complication of Foot Compartment Syndrome,” The Journal of Foot and Ankle Surgery, vol. 50, 2011, pp. 504-506.
Dayton et al., “Measurement of Mid-Calcaneal Length on Plain Radiographs: Reliability of a New Method,” Foot and Ankle Specialist, vol. 4, No. 5, Oct. 2011, pp. 280-283.
Dayton et al., “A User-Friendly Method of Pin Site Management for External Fixators,” Foot and Ankle Specialist, Sep. 16, 2011, 4 pages.
Dayton et al., “Effectiveness of a Locking Plate in Preserving Midcalcaneal Length and Positional Outcome after vans Calcaneal Osteotomy: A Retrospective Pilot Study,” The Journal of Foot and Ankle Surgery, vol. 52, 2013, pp. 710-713.
Dayton et al., “Does Postoperative Showering or Bathing of a Surgical Site Increase the Incidence of Infection? A Systematic Review of the Literature,” The Journal of Foot and Ankle Surgery, vol. 52, 2013, pp. 612-614.
Dayton et al., “Technique for Minimally Invasive Reduction of Calcaneal Fractures Using Small Bilateral External Fixation,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 7 pages.
Dayton et al., “Clarification of the Anatomic Definition of the Bunion Deformity,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 160-163.
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal Plane Rotation of the First Metatarsal in a Cadaveric Foot Model,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 5 pages.
Dayton et al., “Observed Changes in First Metatarsal and Medial Cuneiform Positions after First Metatarsophalangeal Joint Arthrodesis,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 32-35.
Dayton et al., “Reduction of the Intermetatarsal Angle after First Metatarsal Phalangeal Joint Arthrodesis: A Systematic Review,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 4 pages.
Feilmeier et al., “Reduction of Intermetatarsal Angle after First Metatarsophalangeal Joint Arthrodesis in Patients with Hallux Valgus,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 29-31.
Dayton et al., “Principles of Management of Growth Plate Fractures in the Foot and Ankle,” Clinics in Podiatric Medicine and Surgery, Pediatric Foot Deformities, Oct. 2013, 17 pages.
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal and Transverse Plane Rotation of the Hallux: Does the Hallux Drive the Metatarsal in a Bunion Deformity?,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 4 pages.
Rodriguez et al., “Ilizarov method of fixation for the management of pilon and distal tibial fractures in the compromised diabetic patient: A technique guide,” The Foot and Ankle Journal Online, vol. 7, No. 2, 2014, 9 pages.
Feilmeier et al., “Incidence of Surgical Site Infection in the Foot and Ankle with Early Exposure and Showering of Surgical Sites: A Prospective Observation,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 173-175.
Catanese et al., “Measuring Sesamoid Position in Hallux Valgus: When Is the Sesamoid Axial View Necessary,” oot and Ankle Specialist, 2014, 3 pages.
Dayton et al., “Comparison of Complications for Internal and External Fixation for Charcot Reconstruction: A Systematic Review,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 4 pages.
Dayton et al., “A new triplanar paradigm for bunion management,” Lower Extremity Review, Apr. 2015, 9 pages.
Dayton et al., “American College of Foot and Ankle Surgeons' Clinical Consensus Statement: Perioperative Prophylactic Antibiotic Use in Clean Elective Foot Surgery,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 7 pages.
Dayton et al., “Complications of Metatarsal Suture Techniques for Bunion Correction: A Systematic Review of the iterature,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 3 pages.
DeCarbo et al., “The Weil Osteotomy: A Refresher,” Techniques in Foot and Ankle Surgery, vol. 13, No. 4, Dec. 2014, pp. 191-198.
DeCarbo et al., “Resurfacing Interpositional Arthroplasty for Degenerative Joint Diseas of the First Metatarsalphalangeal Joint,” Podiatry Management, Jan. 2013, pp. 137-142.
DeCarbo et al., “Locking Plates: Do They Prevent Complications?,” Podiatry Today, Apr. 2014, 7 pages.
Easley et al., “Current Concepts Review: Hallux Valgus Part II: Operative Treatment,” Foot and Ankle International, vol. 28, No. 6, Jun. 2007, pp. 748-758.
Kim et lal., “A Multicenter Retrospective Review of Outcomes for Arthrodesis, Hemi-Metallic Joint Implant, and Resectional Arthroplasty in the Surgical Treatment of End-Stage Hallux Rigidus,” The Journal of Foot and Ankle Surgery, vol. 51, 2012, pp. 50-56.
Easley et al., “Current Concepts Review: Hallux Valgus Part I: Pathomechanics, Clinical Assessment, and Nonoperative Management,” Foot and Ankle International, vol. 28, No. 5, May 2007, pp. 654-659.
Sandhu et al., “Digital Arthrodesis With a One-Piece Memory Nitinol Intramedullary Fixation Device: A Retrospective Review,” Foot and Ankle Specialist, vol. 6, No. 5, Oct. 2013, pp. 364-366.
Weber et al., “Use of the First Ray Splay Test to Assess Transverse Plane Instability Before First Metatarsocuneiform Fusion,” The Journal of Foot and Ankle Surgery, vol. 45, No. 4, Jul./Aug. 2006, pp. 278-282.
Smith et al., “Opening Wedge Osteotomies for Correction of Hallux Valgus: A Review of Wedge Plate Fixation,” Foot and Ankle Specialist, vol. 2, No. 6, Dec. 2009, pp. 277-282.
Easley et al., “What is the Best Treatment for Hallux Valgus?,” Evidence-Based Orthopaedics—The Best Answers to Clinical Questions, Chapter 73, 2009, pp. 479-491.
Shurnas et al., “Proximal Metatarsal Opening Wedge Osteotomy,” Operative Techniques in Foot and Ankle Surgery, Section I, Chapter 13, 2011, pp. 73-78.
Coetzee et al., “Revision Hallux Valgus Correction,” Operative Techniques in Foot and Ankle Surgery, Section I, Chapter 15, 2011, pp. 84-96.
Le et al., “Tarsometatarsal Arthrodesis,” Operative Techniques in Foot and Ankle Surgery, Section II, Chapter 40, 2011, pp. 281-285.
Collan et al., “The biomechanics of the first metatarsal bone in hallux valgus: A preliminary study utilizing a weight bearing extremity CT,” Foot and Ankle Surgery, vol. 19, 2013, pp. 155-161.
Eustace et al., “Hallux valgus, first metatarsal pronation and collapse of the medial longitudinal arch—a radiological correlation,” Skeletal Radiology, vol. 23, 1994, pp. 191-194.
Mizuno et al., “Detorsion Osteotomy of the First Metatarsal Bone in Hallux Valgus,” Japanese Orthopaedic Association, Tokyo, 1956; 30:813-819.
Okuda et al., “The Shape of the Lateral Edge of the First Metatarsal Head as a Risk Factor for Recurrence of Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 89, 2007, pp. 2163-2172.
Okuda et al., “Proximal Metatarsal Osteotomy for Hallux Valgus: Comparison of Outcome for Moderate and Severe Deformities,” Foot and Ankle International, vol. 29, No. 7, Jul. 2008, pp. 664-670.
D'Amico et al., “Motion of the First Ray: Clarification Through Investigation,” Journal of the American Podiatry Association, vol. 69, No. 1, Jan. 1979, pp. 17-23.
Groves, “Operative Report,” St. Tammany Parish Hospital, Date of Procedure, Mar. 26, 2014, 2 pages.
Claim Chart for Groves Public Use (Mar. 26, 2014), Exhibit B4 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 161 pages.
Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 41 pages.
Prior Art Publications, Exhibit A of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 3 pages.
Claim Chart for Fishco, “Making the Lapidus Easy,” The Podiatry Institute (Apr. 2014), Exhibit B1 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 97 pages.
Claim Chart for Fishco, “A Straightforward Guide to the Lapidus Bunionectomy,” HMP Global (Sep. 6, 2013), Exhibit B2 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 67 pages.
Claim Chart for Groves, “Functional Position Joint Sectioning: Pre-Load Method for Lapidus Arthrodesis,” Update 2015: Proceedings of the Annual Meeting of the Podiatry Institute, Chpt. 6, pp. 23-29 (Apr. 2015), Exhibit B3 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 151 pages.
Claim Chart for Mote, “First Metatarsal-Cuneiform Arthrodesis for the Treatment of First Ray Pathology: A Technical Guide,” The Journal Foot & Ankle Surgery (Sep. 1, 2009), Exhibit B5 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 21 pages.
Claim Chart for U.S. Pat. No. 10,376,268 to Fallin et al., entitled “Indexed Tri-Planar Osteotomy Guide and Method,” issued Aug. 13, 2019, Exhibit B6 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 155 pages.
Claim Chart for U.S. Pat. No. 8,282,645 to Lawrence et al., entitled “Metatarsal Bone Implant Cutting Guide,” issued Jan. 18, 2010, Exhibit B7 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 76 pages.
Claim Chart for U.S. Pat. No. 9,452,057 to Dacosta et al., entitled “Bone Implants and Cutting Apparatuses and Methods,” issued Apr. 8, 2011, Exhibit B8 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 110 pages.
Obviousness Chart, Exhibit C of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 153 pages.
“Foot and Ankle Instrument Set,” Smith & Nephew, 2013, 2 pages.
“Lapidus Pearls: Gaining Joint Exposure to Decrease Non-Union,” Youtube, Retrieved online from <https://www.youtube.com/watch?v =-jqJyE7pj-Y>, dated Nov. 2, 2009, 3 pages.
“Reconstructive Surgery of the Foot & Ankle,” The Podiatry Institute, Update 2015, Conference Program, May 2015, 28 pages.
“Speed Continuous Active Compression Implant,” BioMedical Enterprises, Inc., A120-029 Rev. 3, 2013, 4 pages.
“Visionaire: Patient Matched Cutting Blocks Surgical Procedure,” Smith & Nephew, Inc., 2009, 2 pages.
Arthrex, “Comprehensive Foot System,” Retrieved online from <https://www.arthrex.com/resources/animation/8U3iaPvY6kO8bwFAwZF50Q/comprehensive-foot-system?referringTeam=foot_and_ankle>, dated Aug. 27, 2013, 3 pages.
Baravarian, “Why the Lapidus Procedure is Ideal for Bunions,” Podiatry Today, Retrieved online from <https://www.hmpgloballearhmpgloballe.com/site/podipodi/article/5542>, dated May 2006, 8 pages.
Bauer et al., “Offset-V Osteotomy of the First Metatarsal Shaft in Hallux Abducto Valgus,” McGlamry's Comprehensive Textbook of Foot and Ankle Surgery, Fourth Edition, vol. 1, Chapter 29, 2013, 26 pages.
Cottom, “Fixation of the Lapidus Arthrodesis with a Plantar Interfragmentary Screw and Medial Low Profile Locking Plate,” The Journal of Foot & Ankle Surgery, vol. 51, 2012, pp. 517-522.
Coughlin, “Fixation of the Lapidus Arthrodesis with a Plantar Interfragmentary Screw and Medial Low Profile ocking Plate,”Orthopaedics and Traumatology, vol. 7, 1999, pp. 133-143.
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal Plane Rotation of the First Metatarsal in a Cadaveric Foot Model,” The Journal of Foot & Ankle Surgery, vol. 53, 2014, pp. 274-278.
Dayton et al., “Relationship of Frontal Plane Rotation of First Metatarsal to Proximal Articular Set Angle and Hallux Alignment in Patients Undergoing Tarsometatarsal Arthrodesis for Hallux Abducto Valgus: A Case Series and Critical Review of the Literature,” The Journal of Foot & Ankle Surgery, 2013, Article in Press, Mar. 1, 2013, 7 pages.
Didomenico et al., “Lapidus Bunionectomy: First Metatarsal-Cuneiform Arthrodesis,” McGlamry's Comprehensive Textbook of Foot and Ankle Surgery, Fourth Edition, vol. 1, Chapter 31, 2013, 24 pages.
Fallin et al., US Provisional Application Entitled Indexed Tri-Planar Osteotomy Guide and Method, U.S. Appl. No. 62/118,378, filed Feb. 19, 2015, 62 pages.
Fishco, “A Straightforward Guide To The Lapidus Bunionectomy, ”Podiatry Today, Retrieved online from <https://www.hmpgloballearningnetwork.com/site/podiatry/blogged/straightforward-guide-lapidus-bunionectomy>, dated Sep. 6, 2013, 5 pages.
Fishco, “Making the Lapidus Easy,” The Podiatry Institute, Update 2014, Chapter 14, 2014, pp. 91-93.
Fleming et al., “Results of Modified Lapidus Arthrodesis Procedure Using Medial Eminence as an Interpositional Autograft,” The Journal of Foot & Ankle Surgery, vol. 50, 2011, pp. 272-275.
Fuhrmann, “Arthrodesis of the First Tarsometatarsal Joint for Correction of the Advanced Splayfoot Accompanied by a Hallux Valgus,” Operative Orthopadie und Traumatologie, No. 2, 2005, pp. 195-210.
Gerard et al., “The Modified Lapidus Procedure,” Orthopedics, vol. 31, No. 3, Mar. 2008, 7 pages.
Giannoudis et al., “Hallux Valgus Correction,” Practical Procedures in Elective Orthopaedic Surgery, Pelvis and Lower Extremity, Chapter 38, 2012, 22 pages.
Greiner, “The Jargon of Pedal Movements,” Foot & Ankle International, vol. 28, No. 1, Jan. 2007, pp. 109-125.
Groves, “Functional Position Joint Sectioning: Pre-Load Method for Lapidus Arthrodesis,” The Podiatry Institute, Update 2015, Chapter 6, 2015, pp. 23-29.
Hardy et al., “Observations on Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 33B, No. 3, Aug. 1951, pp. 376-391.
Holmes, Jr., “Correction of the Intermetatarsal Angle Component of Hallux Valgus Using Fiberwire-Attached Endo-buttons,” Revista Internacional de Ciencias Podologicas, vol. 6, No. 2, 2012, pp. 73-79.
Integra, “Integra Large Qwix Positioning and Fixation Screw, Surgical Technique,” 2012, 16 pages.
Kilmartin et al., “Combined rotation scarf and Akin osteotomies for hallux valgus: a patient focused 9 year follow up of 50 patients,” Journal of Foot and Ankle Research, vol. 3, No. 2, 2010, 12 pages.
Lee et al., “Technique Tip: Lateral Soft-Tissue Release for Correction of Hallux Valgus Through a Medial Incision Using A Dorsal Flap Over the First Metatarsal,” Foot & Ankle International, vol. 28, No. 8, Aug. 2007, pp. 949-951.
Mote et al., “First Metatarsal-Cuneiform Arthrodesis for the Treatment of First Ray Pathology: A Technical Guide,” JFAS Techniques Guide, vol. 48, No. 5, Sep./Oct. 2009, pp. 593-601.
Myerson, “Cuneiform-Metatarsal Arthrodesis,” The Foot and Ankle, Chapter 9, 1997, pp. 107-117.
Sammarco, “Surgical Strategies: Mau Osteotomy for Correction of Moderate and Severe Hallux Valgus Deformity,” Foot & Ankle International, vol. 28, No. 7, Jul. 2007, pp. 857-864.
Schon et al., “Cuneiform-Metatarsal Arthrodesis for Hallux Valgus, ”The Foot and Ankle, Second Edition, Chapter 8, 2002, pp. 99-117.
Sokoloff, “Lapidus Procedure,” Textbook of Bunion Surgery, Chapter 15, 1981, pp. 277-287.
Stamatis et al., “Mini Locking Plate as “Medial Buttress” for Oblique Osteotomy for Hallux Valgus,” Foot & Ankle International, vol. 31, No. 10, Oct. 2010, pp. 920-922.
Stewart, “Use for BME Speed Nitinol Staple Fixation for the Lapidus Procedure,” date unknown, 1 page.
Wukich et al., “Hypermobility of the First Tarsometatarsal Joint,” Foot and Ankle Clinics, vol. 10, No. 1, Mar. 2005, pp. 157-166.
Dayton et al., “Biwinged Excision for Round Pedal Lesions,” The Journal of Foot and Ankle Surgery, vol. 35, No. 3, 1996, pp. 244-249.
Dayton et al., “Medial Incision Approach to the First Metatarsophalangeal Joint,” The Journal of Foot and Ankle Surgery, vol. 40, No. 6, Nov./Dec. 2001, pp. 414-417.
Dayton et al., “Reduction of the Intermetatarsal Angle after First Metatarsophalangeal Joint Arthrodesis in Patients with Moderate and Severe Metatarsus Primus Adductus,” The Journal of Foot and Ankle Surgery, vol. 41, No. 5, Sep./Oct. 2002, pp. 316-319.
Dayton et al., “Use of the Z Osteotomy for Tailor Bunionectomy,” The Journal of Foot and Ankle Surgery, vol. 42, No. 3, May/Jun. 2003, pp. 167-169.
Dayton et al., “Early Weightbearing After First Metatarsophalangeal Joint Arthrodesis: A Retrospective Observational Case Analysis,” The Journal of Foot and Ankle Surgery, vol. 43, No. 3, May/Jun. 2004, pp. 156-159.
“Accu-Cut Osteotomy Guide System,” BioPro, Brochure, Oct. 2018, 2 pages.
“Acumed Osteotomiesystem Operationstechnik,” Acumed, 2014, 19 pages (including 3 pages English translation).
Albano et al., “Biomechanical Study of Transcortical or Transtrabecular Bone Fixation of Patellar Tendon Graft wih Bioabsorbable Pins in ACL Reconstruction in Sheep,” Revista Brasileira de Ortopedia (Rev Bras Ortop.) vol. 47, No. 1, 2012, pp. 43-49.
Alvine et al., “Peg and Dowel Fusion of the Proximal Interphalangeal Joint,” Foot & Ankle, vol. 1, No. 2, 1980, pp. 90-94.
Anderson et al., “Uncemented STAR Total Ankle Prostheses,” The Journal of Bone and Joint Surgery, vol. 86(1, Suppl 2), Sep. 2004, pp. 103-111, (Abstract Only).
Bednarz et al., “Modified Lapidus Procedure for the Treatment of Hypermobile Hallux Valgus,” Foot & Ankle International, vol. 21, No. 10, Oct. 2000, pp. 816-821.
Blomer, “Knieendoprothetik—Herstellerische Probleme und technologische Entwicklungen,” Orthopade, vol. 29, 2000, pp. 688-696, including English Abstract on p. 689.
Bouaicha et al., “Fixation of Maximal Shift Scarf Osteotomy with Inside Out Plating: Technique Tip,” Foot & Ankle International, vol. 32, No. 5, May 2011, pp. 567-569.
Carr et al., “Correctional Osteotomy for Metatarsus Primus Varus and Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 50-A, No. 7, Oct. 1968, pp. 1353-1367.
Coetzee et al., “The Lapidus Procedure: A Prospective Cohort Outcome Study,” Foot & Ankle International, vol. 25, No. 8, Aug. 2004, pp. 526-531.
Dayton et al., “Is Our Current Paradigm for Evaluation and Management of the Bunion Deformity Flawed? A Discussion of Procedure Philosophy Relative to Anatomy,” The Journal of Foot and Ankle Surgery, vol. 54, 2015, pp. 102-111.
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal and Transverse Plane Rotation of the Hallux: Does the Hallux Drive the Metatarsal in a Bunion Deformity?,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 584-587.
Dayton et al., “Relationship of Frontal Plane Rotation of First Metatarsal to Proximal Articular Set Angle and Hallux Alignment in Patients Undergoing Tarsometatarsal Arthrodesis for Hallux Abducto Valgus: A Case Series and Critical Review of the Literature,” The Journal of Foot and Ankle Surgery, vol. 52, No. 3, May/Jun. 2013, pp. 348-354.
Dayton et al., “Quantitative Analysis of the Degree of Frontal Rotation Required to Anatomically Align the First Metatarsal Phalangeal Joint During Modified Tarsal-Metatarsal Arthrodesis Without Capsular Balancing,” The Journal of Foot and Ankle Surgery, 2015, pp. 1-6.
De Geer et al., “A New Measure of Tibial Sesamoid Position in Hallux Valgus in Relation to the Coronal Rotation of the First Metatarsal in CT Scans,” Foot and Ankle International, Mar. 26, 2015, 9 pages.
Didomenico et al., “Correction of Frontal Plane Rotation of Sesamoid Apparatus during the Lapidus Procedure: A Novel Approach,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 248-251.
Dobbe et al. “Patient-Tailored Plate for Bone Fixation and Accurate 3D Positioning in Corrective Osteotomy,” Medical and Biological Engineering and Computing, vol. 51, No. 1-2, Feb. 2013, pp. 19-27, (Abstract Only).
Doty et al., “Hallux valgus and hypermobility of the first ray: facts and fiction,” International Orthopaedics, vol. 37, 2013, pp. 1655-1660.
EBI Extra Small Rail Fixator, Biomet Trauma, retrieved Dec. 19, 2014, from the Internet: <http://footandanklefixation.com/product/biomet-trauma-ebi-extra-small-rail-fixator>, 7 pages.
Dayton et al., “Comparison of the Mechanical Characteristics of a Universal Small Biplane Plating Technique Without Compression Screw and Single Anatomic Plate With Compression Screw,” The Journal of Foot & Ankle Surgery, vol. 55, No. 3, May/Jun. 2016, published online: Feb. 9, 2016, pp. 567-571.
“Futura Forefoot Implant Arthroplasty Products,” Tornier, Inc., 2008, 14 pages.
Galli et al., “Enhanced Lapidus Arthrodesis: Crossed Screw Technique With Middle Cuneiform Fixation Further Reduces Sagittal Mobility,” The Journal of Foot & Ankle Surgery, vol. 54, vol. 3, May/Jun. 2015, published online: Nov. 21, 2014, pp. 437-440.
Garthwait, “Accu-Cut System Facilitates Enhanced Precision,” Podiatry Today, vol. 18, No. 6, Jun. 2005, 6 pages.
Gonzalez Del Pino et al., “Variable Angle Locking Intercarpal Fusion System for Four-Corner Arthrodesis: Indications and Surgical Technique,” Journal of Wrist Surgery, vol. 1, No. 1, Aug. 2012, pp. 73-78.
Gotte, “Entwicklung eines Assistenzrobotersystems für die Knieendoprothetik,” Forschungsberichte, Technische Universitat Munchen, 165, 2002, 11 pages, including partial English Translation.
Gregg et al., “Plantar plate repair and Weil osteotomy for metatarsophalangeal joint instability,” Foot and Ankle Surgery, vol. 13, 2007, pp. 116-121.
Grondal et al., “A Guide Plate for Accurate Positioning of First Metatarsophalangeal Joint during Fusion,” Operative Orthopädie Und Traumatologie, vol. 16, No. 2, 2004, pp. 167-178 (Abstract Only).
“HAT-TRICK Lesser Toe Repair System,” Smith & Nephew, Brochure, Aug. 2014, 12 pages.
“HAT-TRICK Lesser Toe Repair System, Foot and Ankle Technique Guide, Metatarsal Shortening Osteotomy Surgical Technique,” Smith & Nephew, 2014, 16 pages.
Hetherington et al., “Evaluation of surgical experience and the use of an osteotomy guide on the apical angle of an Austin osteotomy,” The Foot, vol. 18, 2008, pp. 159-164.
Hirao et al., “Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: A case report,” Computer Aided Surgery, vol. 19, Nos. 1-3, 2014, pp. 13-19.
“Hoffmann II Compact External Fixation System,” Stryker, Brochure, Literature No. 5075-1-500, 2006, 12 pages.
“Hoffmann II Micro Lengthener,” Stryker, Operative Technique, Literature No. 5075-2-002, 2008, 12 pages.
“Hoffmann Small System External Fixator Orthopedic Instruments,” Stryker, retrieved Dec. 19, 2014, from the Internet: <http://www.alibaba.com/product-detail/Stryker-Hoffmann-Small-System-External-Fixator_1438850129.html>, 3 pages.
Mortier et al., “Axial Rotation of the First Metatarsal Head in a Normal Population and Hallux Valgus Patients,” Orthopaedics and Traumatology: Surgery and Research, vol. 98, 2012, pp. 677-683.
Kim et al., “A New Measure of Tibial Sesamoid Position in Hallux Valgus in Relation to the Coronal Rotation of the First Metatarsal in CT Scans,” Foot and Ankle International, vol. 36, No. 8, 2015, pp. 944-952.
“Lag Screw Target Bow,” Stryker Leibinger GmbH & Co. KG, Germany 2004, 8 pages.
Lapidus, “The Author's Bunion Operation From 1931 to 1959,” Clinical Orthopaedics, vol. 16, 1960, pp. 119-135.
Lieske et al., “Implantation einer Sprunggelenktotalendo-prothese vom Typ Salto 2,” Operative Orthopädie und Traumatologie, vol. 26, No. 4, 2014, pp. 401-413, including English Abstract on p. 403.
MAC (Multi Axial Correction) Fixation System, Biomet Trauma, retrieved Dec. 19, 2014, from the Internet: <http://footandanklefixation.com/product/biomet-trauma-mac-multi-axial-correction-fixation-system>, 7 pages.
Magin, “Computernavigierter Gelenkersatz am Knie mit dem Orthopilot,” Operative Orthopädie und Traumatologie, vol. 22, No. 1, 2010, pp. 63-80, including English Abstract on p. 64.
Magin, “Die belastungsstabile Lapidus-Arthrodese bei Hallux-valgus-Deformität mittels IVP-Plattenfixateur (V-TEK-System),” Operative Orthopädie und Traumatologie, vol. 26, No. 2, 2014, pp. 184-195, including English Abstract on p. 186.
Michelangelo Bunion System, Surgical Technique, Instratek Incorporated, publication date unknown, 4 pages.
Mini Joint Distractor, Arthrex, retrieved Dec. 19, 2014, from the Internet: <http://www.arthrex.com/foot-ankle/mini-joint-distractor/products>, 2 pages.
MiniRail System, Small Bone Innovations, Surgical Technique, 2010, 24 pages.
Miyake et al., “Three-Dimensional Corrective Osteotomy for Malunited Diaphyseal Forearm Fractures Using Custom-Made Surgical Guides Based on Computer Simulation,” JBJS Essential Surgical Techniques, vol. 2, No. 4, 2012, 11 pages.
Modular Rail System: External Fixator, Smith & Nephew, Surgical Technique, 2013, 44 pages.
Monnich et al., “A Hand Guided Robotic Planning System for Laser Osteotomy in Surgery,” World Congress on Medical Physics and Biomedical Engineering vol. 25/6: Surgery, Nimimal Invasive Interventions, Endoscopy and Image Guided Therapy, Sep. 7-12, 2009, pp. 59-62, (Abstract Only).
Moore et al., “Effect of Ankle Flexion Angle on Axial Alignment of Total Ankle Replacement,” Foot and Ankle International, vol. 31, No. 12, Dec. 2010, pp. 1093-1098, (Abstract Only).
Rochet et al., “Proximal Ulna Comminuted Fractures: Fixation Using a Double-Plating Technique,” Revue de Chirurgie Orthopédique et Traumatologique, vol. 96, No. 7, Nov. 2010, pp. 800-807.
Smith & Nephew, Inc, “D-RAD Smart Pack,” Single-Use Volar Distal Radius Plating System, Brochure, Jun. 2014, 8 pages.
Smith & Nephew, Inc, “Evos Mini,” Plating System, Brochure, May 2015, 12 pages.
Smith & Nephew, Inc, “Proximal Humerus Locking Plate,” Peri-Loc Upper Extremity Locked Plating System, Surgical Technique, Sep. 2006, 36 pages.
Smith & Nephew, Inc, “Medial Column Fusion for Midfoot Deformity Correction,” VLP Foot Variable Angle Locked Plating System, Surgical Technique, 2013, 20 pages.
Stryker, “Anchorage Plating System,” Operative Technique, Rev. 2, Aug. 2015, 32 pages.
Stryker, “VariAx Foot Locked Plating System,” Jun. 2008, 25 pages.
Synthes, “LCP Periprosthetic System,” 2009, 8 pages.
Tornier, “Hand and Wrist,” Retrieved from <http://www.tornier-us.com/upper/hand/>, 2016, 1 page.
Tornier, “CoverLoc Volar Plate,” Retrieved from < http://www.tornier-us.com/upper/hand/writra003/>, 2016, 2 pages.
Tornier, “DFX Distal Fibula and DTX Distal Tibia Plates,” Retrieved from < http://www.tornier-us.com/lower/ankle/anktra003/>, 2016, 2 pages.
Tornier, “CalcLock Extreme,” Retrieved from < http://www.tornier-us.com/lower/foot/footra011/>, 2014, 2 pages.
Vilex, “The Vilex Plate System,” Brochure, 2011, 4 pages.
Wright Medical Group N.V., “Foot & Ankle,” Retrieved from < http://www.wright.com/physicians/foot-ankle>, 2016, 4 pages.
Wright Medical Group N.V., “Darco Modular Rearfoot System (MRS) LPS Lapidus Plating System,” Brochure, Aug. 2016, 1 page.
Zimmer, Inc. “Foot and Ankle Solutions,” Retrieved from <http://www.zimmer.com/medical-professionals/products/foot-and-ankle.html>, 2014, 3 pages.
Provisional Applications (1)
Number Date Country
62900391 Sep 2019 US