The present invention relates to fluid ejection devices.
Conventional fluid ejection systems, such as inkjet printing systems, include a printhead, an ink supply that provides liquid ink to the printhead, and an electronic controller that controls the printhead. The printhead ejects ink drops through multiple nozzles (also referred to as orifices) toward a print medium, such as a sheet of paper, thereby printing onto the print medium. Typically, the multiple nozzles are arranged in one or more arrays such that properly sequenced ejection of ink from the nozzles causes characters or other images to be printed on the print medium as the printhead and the print medium are moved relative to one another.
In a particular arrangement, commonly referred to as a wide-array inkjet printing system, multiple individual printheads (also referred to as printhead assemblies) are mounted on a single carrier. In this arrangement, the number of nozzles and, therefore, the overall number of ink drops that can be ejected per second is increased. Since the overall number of ink drops that can be ejected per second is increased, printing speed can be increased with the wide-array inkjet printing system.
Mounting multiple printhead assemblies on a single carrier can result in an irregular spacing between the multiple arrays of nozzles in the multiple printhead assemblies and between nozzles in printhead assemblies on different carriers. If the movement of the printhead is generally constant, this irregular spacing of nozzles results in irregular time delays between ejection of adjacent ink drops. For example, the time delay between ink drops ejected from adjacent nozzles in the same assembly is relatively small. However, the time delay between ink drops ejected from adjacent nozzles in different assemblies may be significantly larger. Further, the time delay is even greater between ink drops ejected from adjacent nozzles in two different assemblies located on different carriers.
The variance in the distance between adjacent nozzles can cause visible artifacts in the printed image due to non-uniform drying times of the ink drops, non-uniform interaction between the ink and the print medium, and non-uniform interactions between multiple ink drops. These visible artifacts degrade the quality of the printed image.
An embodiment of the present invention provides a fluid ejection device and method of operation that enhances the uniformity with which fluid drops are deposited on a medium. In one embodiment, a fluid ejection device includes a first edge and an electrical interconnect disposed along the first edge. The fluid ejection device also includes a second edge that is opposite the first edge. Multiple dies are disposed on the fluid ejection device. Each of the multiple dies contains at least one drop-ejecting element. Two of the multiple dies are disposed adjacent the second edge and another die is disposed adjacent the first edge. Multiple fluid ejection devices are arranged such that the second edges of the fluid ejection devices are adjacent one another.
The systems and methods discussed herein are illustrated by way of example and not limitation in the figures of the accompanying drawings. The same numbers are used throughout the figures to reference like components and/or features.
The systems and methods described herein provide a fluid ejection device and method of operation suitable for use with inkjet printing systems and other systems that utilize fluid ejection devices. In particular, a fluid ejection device contains multiple dies arranged in rows such that the spacing between adjacent rows is substantially uniform regardless of whether the adjacent rows are located on the same fluid ejection device or located on adjacent fluid ejection devices. Although particular examples described herein refer to inkjet printing systems, the systems and methods discussed herein are applicable to any fluid ejection device or component.
Ink supply assembly 104 supplies ink to printhead assembly 102 and includes an ink reservoir 106 that stores ink. Ink flows from ink reservoir 106 to printhead assembly 102. Ink supply assembly 104 and printhead assembly 102 can form either a one-way ink delivery system or a recirculating ink delivery system. In a one-way ink delivery system, substantially all of the ink supplied to printhead assembly 102 is consumed during printing. In a recirculating ink delivery system, only a portion of the ink supplied to printhead assembly 102 is consumed during printing. Ink that is not consumed during printing is returned to ink supply assembly 104.
In one embodiment, printhead assembly 102 and ink supply assembly 104 are housed together in an inkjet cartridge or pen. In another embodiment, ink supply assembly 104 is separate from printhead assembly 102 and supplies ink to printhead assembly 102 through an interface connection, such as a supply tube. In either embodiment, ink reservoir 106 of ink supply assembly 104 may be removed, replaced, or refilled. In one embodiment, where printhead assembly 102 and ink supply assembly 104 are housed together in an inkjet cartridge, ink reservoir 106 includes a local reservoir located within the cartridge as well as a larger reservoir located separately from the cartridge. In this embodiment, the separate, larger reservoir serves to refill the local reservoir. The separate, larger reservoir and/or the local reservoir can be removed, replaced, or refilled.
Mounting assembly 108 positions printhead assembly 102 relative to media transport assembly 110. Media transport assembly 110 positions print medium 116 relative to printhead assembly 102. A print zone 118 is defined adjacent to nozzles 114 in an area between printhead assembly 102 and print medium 116. In one embodiment, printhead assembly 102 is a scanning type printhead assembly. In this embodiment, mounting assembly 108 includes a carriage that moves printhead assembly 102 relative to media transport assembly 110 to scan print medium 116. In another embodiment, printhead assembly 102 is a non-scanning type printhead assembly. In this embodiment, mounting assembly 108 fixes printhead assembly 102 at a particular position relative to media transport assembly 110. Media transport assembly 110 positions print medium 116 relative to printhead assembly 102.
Electronic controller 112 communicates with printhead assembly 102, mounting assembly 108 and media transport assembly 110. Electronic controller 112 receives data 120 from a host system, such as a computer, and includes memory capable of temporarily storing data 120. Typically, data 120 is sent to inkjet printing system 100 along an electronic, infrared, optical, or other information transfer path. Data 120 represents, for example, a document and/or file to be printed. In one embodiment, data 120 forms a print job for inkjet printing system 100 and includes one or more print job commands and/or command parameters.
In a particular embodiment, electronic controller 112 provides control of printhead assembly 102 including timing control for ejection of ink drops from nozzles 114. Electronic controller 112 defines a pattern of ejected ink drops that form characters, symbols, and/or other graphics or images on print medium 116. Timing control and the pattern of ejected ink drops is determined by, for example, the print job commands and/or command parameters. In one embodiment, logic and drive circuitry forming a portion of electronic controller 112 is incorporated in an integrated circuit (IC) located on printhead assembly 102. In another embodiment, logic and drive circuitry is located off printhead assembly 102.
Pen 200 also includes a recessed portion 212 that, for example, provides access to electrical contacts (not shown) on the side of printhead assembly 206 opposite the printhead dies 208. The electrical contacts may engage an electrical connector or other device positioned in recessed portion 212. Alternatively, the electrical contacts may be positioned at other locations on printhead assembly 206. As discussed below, multiple pens may be coupled together in a particular printing device.
Printhead assembly 300 also includes an electrical interconnect 310 that is used to couple the printhead assembly 300 to an electronic controller or similar device (such as electronic controller 112 in FIG. 1). Electrical interconnect 310 typically includes multiple electrical contacts (also referred to as input/output contacts). Electrical contacts may include, for example, pins that engage corresponding receptacles coupled to the electronic controller, and pads or fingers that contact corresponding electrical nodes coupled to the electronic controller. Although a particular type of electrical interconnect 310 is shown in
Printhead assembly 400 also includes an electrical interconnect (not shown) that is used to couple the printhead assembly 400 to an electronic controller or similar device (such as electronic controller 112 in FIG. 1). Any type of electrical interconnect device can be used with printhead assembly 400 and can be positioned at various locations on printhead assembly 400.
In the embodiments of
In a particular implementation, a printhead assembly includes an odd number of printhead dies, such as three printhead dies or five printhead dies as discussed herein. The odd number of printhead dies are arranged, for example, in two rows where one row contains one less printhead die than the other row. The rows of printhead dies are arranged such that the printhead dies in one row span the “gaps” between adjacent printhead dies in the other row. For example, as shown in
Example embodiments of printhead dies 306/406 include a thermal printhead, a piezoelectric printhead, a flex-tensional printhead, or any other type of fluid ejection device. Although various embodiments discussed herein describe the ejection of ink, the systems and methods described herein can be applied to the ejection of any type of liquid.
The figures discussed herein are not necessarily drawn to scale. The relative sizes and positioning of the illustrated components and features may vary from that shown in the drawings.
The example printhead dies discussed herein may be a single color or multiple colors. Printhead dies that are multiple colors support, for example, different colors in each row of drop-ejecting elements. In the examples shown here, each printhead die has an array of drop-ejecting elements that contain two rows of elements. Each of these rows of drop-ejecting elements may be a different color. In this configuration, several printhead assemblies provide full color printing. Full color printing typically uses four to eight different colors. In alternate embodiments, each printhead die supports a single color (i.e., all drop-ejecting elements in the printhead die eject the same color of ink).
A particular mounting assembly can be used to support printhead assemblies having any number of printhead dies. Further, a mounting assembly can support multiple printhead assemblies.
Printhead 602(1) includes printhead dies 603, 604 and 606. Printhead 602(2) includes printhead dies 608, 610 and 612. Printhead 602(3) includes printhead dies 614, 616 and 618. Printheads and/or their mounting assemblies may be physically coupled to one another to prevent movement of one assembly with respect to another. Alternatively, printheads and/or their mounting assemblies can be coupled to another device or structure that secures the positioning of the assemblies.
The various printhead dies 603-618 shown in
In particular embodiments, the linear distance between adjacent rows of printhead dies is approximately twice the linear distance between a printhead die and the nearest edge of the printhead assembly with which the printhead die is associated. In the example of
As shown in
Referring to
The various printhead dies shown in
In a particular embodiment, print media moves in a substantially vertical manner (as indicated by an arrow 730) with respect to the printhead assemblies. Alternatively, print media may move in any direction with respect to the printhead assemblies.
In the embodiment shown in
Although the embodiments of
Although the invention has been described in language specific to structural features and/or methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or steps described. Rather, the specific features and steps are disclosed as particular examples of implementing the claimed invention.
Number | Name | Date | Kind |
---|---|---|---|
5057854 | Pond et al. | Oct 1991 | A |
5160945 | Drake | Nov 1992 | A |
5469199 | Allen et al. | Nov 1995 | A |
6053598 | Inpyn | Apr 2000 | A |
6312099 | Hawkins et al. | Nov 2001 | B1 |
6341845 | Scheffelin et al. | Jan 2002 | B1 |
6350013 | Scheffelin et al. | Feb 2002 | B1 |
6394580 | Scheffelin et al. | May 2002 | B1 |
6409307 | Akhavain et al. | Jun 2002 | B1 |
6428145 | Feinn et al. | Aug 2002 | B1 |
6435653 | Boyd et al. | Aug 2002 | B1 |
6450614 | Scheffelin et al. | Sep 2002 | B1 |
6464333 | Scheffelin et al. | Oct 2002 | B1 |
6502920 | Anderson et al. | Jan 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040201641 A1 | Oct 2004 | US |