The present invention relates to a multi-dimensional detector for a receiver of a Multiple Input Multiple Output (MIMO) system, and a method thereof; and, more particularly, to a multi-dimensional detector for a receiver of an MIMO system and a method thereof, which uses multiple dimensions of a received signal when each of symbols is demodulated at a receiver of an orthogonal frequency division multiplexing (OFDM) MIMO system in order to improve performance while reducing hardware complexity.
This work was supported by the IT R&D program of MIC/IITA [2006-S-002-02, “IMT-Advanced Radio Transmission Technology with Low Mobility”].
Current wireless communication system requires transmission of a high-volume and high-quality multimedia data through limited frequency. As a method for transmitting high-volume data using limited frequency, a Multiple Input and Multiple Output (MIMO) system was introduced. The MIMO system forms a plurality of independent fading channels using multiple antennas at receiving and transmitting ends and transmits different signals through each of multiple transmission antennas, thereby significantly increasing a data transmission rate. Accordingly, the MIMO system can transmit a great deal of data without expansion of a frequency.
However, the MIMO system has a shortcoming that the MIMO system is weak to inter-symbol interference (ISI) and frequency selective fading. In order to overcome the shortcoming, an Orthogonal Frequency Division Multiplexing (OFDM) scheme was used. OFDM scheme is the most proper modulation scheme for transmitting data at a high speed. The OFDM scheme transmits one data sequence through a subcarrier having a low data transmission rate.
A channel environment for wireless communication has multiple paths due to obstacles such as a building. In a wireless channel environment having multi-paths, delay spread occurs due to the multiple paths. If delay spray time is longer than a symbol transmission interval, inter-symbol interference (ISI) is caused. In this case, frequency selective fading occurs in a frequency domain. In case of using a single carrier, an equalizer is used to remove the ISI. However, complexity of the equalizer increases as a data transmission rate increases.
The shortcomings of the MIMO system can be attenuated using an Orthogonal Frequency Division Multiplexing (OFDM) technology. In order to overcome the shortcomings of the MIMO system while maintaining the advantages of the MIMO system, an OFDM technology was applied to an MIMO system having N transmission antennas and M reception antennas. That is, an MIMO-OFDM system was introduced.
Referring to
Referring to
The MIMO receiver 110 generally uses a decision feedback equalizer (DFE), zero forcing (ZF), minimum mean square error estimation (MMSE), and bell labs layered space-time (BLAST). As described above, the MIMO receiver has a problem of low performance although the MIMO receiver has a comparative simple structure compared to maximum likelihood detection (MLD).
An embodiment of the present invention is directed to providing a multi-dimensional detector for a receiver of a multiple input multiple output (MIMO) system and a method thereof, which uses multiple dimensions of a received signal when each of symbols is demodulated at a receiver of an Orthogonal Frequency Division Multiplexing (OFDM) MIMO system in order to improve performance while reducing hardware complexity.
Other objects and advantages of the present invention can be understood by the following description, and become apparent with references to the embodiments of the present invention. Also, it is obvious to those skilled in the art of the present invention that the objects and advantages of the present invention can be realized by the unit as claimed and combinations thereof.
In accordance with an aspect of the present invention, there is provided a multi-dimensional detector for a receiver of a Multiple Input Multiple Output (MIMO) system, including: a first symbol detecting unit for calculating symbol distance values using an upper triangular matrix (R) obtained from QR decomposition to detect an mth symbol; a symbol deciding unit for deciding a symbol having a minimum distance value among the calculated symbol distance values from the first symbol detecting unit; and a second symbol detecting unit for calculating symbol distance values using an updated received signal y and the upper triangular matrix R to detect a (m−1)th symbol.
The multi-dimensional detector may further include a column removing and y updating unit for removing an mth column of an upper triangular matrix R from the decided mth symbol, and updating the received signal y, and providing the column removed upper triangular matrix R and the updated received signal y to the second symbol detecting unit.
The multi-dimensional detector may further include: a first log likelihood ratio calculating unit for calculating a first log likelihood ratio using the symbol distance values outputted from the first symbol detecting unit; and a second log likelihood ratio calculating unit for calculating a second log likelihood ratio using the symbol distance values outputted from the second symbol detecting unit.
In accordance with another aspect of the present invention, there is provide a multiple detecting method for a receiver of a multiple input multiple output. (MIMO) system, including: calculating symbol distance values using an upper triangular matrix R obtained from QR decomposition to detect an mth symbol; deciding a symbol having a minimum distance value among the calculated symbol distance values; and calculating symbol distance values using an updated received signal y and the upper triangular matrix R to detect a (m−1)th symbol.
In accordance with still another embodiment of the present invention, there is provided a receiver of a Multiple Input Multiple Output (MIMO) system, including: a QR decomposing unit for decomposing a received signal to an unitary matrix Q and an upper triangular matrix R; and a multi-dimensional detecting unit for deciding an mth symbol and a (m−1)th symbol through multi-dimensional detection for the output of the QR decomposing unit, wherein the multi-dimensional detecting unit includes: a first symbol detecting unit for calculating symbol distance values using an upper triangular matrix (R) obtained from QR decomposition to detect an mth symbol; a symbol deciding unit for deciding a symbol having a minimum distance value among the calculated symbol distance values from the first symbol detecting unit; and a second symbol detecting unit for calculating symbol distance values using an updated received signal y and the upper triangular matrix R to detect a (m−1)th symbol.
A multi-dimensional detector for a receiver of an MIMO system and a method thereof according to the present invention uses multiple dimensions of a received signal when each of symbols is demodulated at a receiver of an OFDM MIMO system. Therefore, performance can be improved while reducing hardware complexity.
The advantages, features and aspects of the invention will become apparent from the following description of the embodiments with reference to the accompanying drawings, which is set forth hereinafter.
Referring to
The QAM mappers 202 are sequentially connected to the IFFT units 203, the CP adders 204, and the DAC & RF units 205, respectively. Since the operations of the QAM mappers 202, the IFFT units 203, the CP adders 204, and the DAC and RF units 205 are identical to the constituent elements shown in
Referring to
The MIMO receiver and decoder 304 are a multi-dimensional receiver and decoder that demodulate the received symbols from the FFT units 303.
If it is assumed that the receiver includes M transmission antennas and N receipt antennas, a received signal vector z can be expressed as Eq. 1 in a sub carrier after FFT.
z=Hs+n Eq. 1
In Eq. 1, the received signal vector Z can be expressed as
a channel H can be expressed as
and a transmission symbol s can be expressed as
The channel H can be expressed as H=QR after QR decomposition. Here, R denotes an upper triangular matrix. Since the MIMO system includes N antennas for receiving a signal and M antennas for transmitting a signal, the upper triangular matrix R can be expressed as follow.
Q denotes a Unitary matrix (QHQ=I). Since the channel matrix H is N×M, the unitary matrix Q is N×N and the upper triangular matrix R is N×M. The unitary matrix Q can be expressed as follow.
After QR decomposition, a received signal can be expressed as Eq. 2.
Eq. 2 can be simplified as follow.
The MIMO receiver according to the present embodiment includes a QR decomposition unit, a multi-dimensional detector (MDD), an inverse matrix and weight calculator, an interference remover, and a weight zero forcing (WZF) unit.
The QR decomposition unit calculates the unitary matrix Q, the upper triangular matrix R, and a vector size (norm) from the received signal vector z during a long training field (LTF) period. The QR decomposition unit stores the calculated unitary matrix Q and the upper triangular matrix R, vector sizes (norm) for each element of the unitary matrix Q. Here, the normi is equivalent to ∥qi∥2.
A signal field detector performs detection for a signal field from an output vector of the QR decomposing unit in a SIG interval. The inverse matrix and weight calculator calculates an inverse matrix of the upper triangular matrix R during first two symbol intervals among symbols for receiving data symbols using the calculated upper triangular matrix R and the vector size (1/√{square root over (norm)}. The multi-dimensional detector MDD calculates a log likelihood ratio (LLR) through multiple detections using the output vector y and the upper triangular matrix value of the QR decomposition. The calculated LLR value is inputted to a channel decoder, and used to demodulate the signal.
The interference remover receives the data stream demodulated by the channel decoder, generates symbols corresponding to a data stream demodulated through symbol mapping, and removes interference from the output vector, which is the QR decomposition result, using the generated symbol. The WZF unit performs zero-forcing using the interference removed output vector and the inverse matrix of the upper triangular matrix R. The channel decoder receives the LLR value outputted from the WZF unit and uses the LLR value to demodulate signals.
Referring to
The symbol decider 402 decides an 8th symbol having a minimum distance among the calculated symbol distances calculated by the 8th symbol detector 401. The column remover and updating unit 404 removes an 8th column of the upper triangular matrix R from the determined 8th symbol from the symbol determiner 402 and updates a signal y.
The 7th symbol detector 405 calculates symbol distances for detecting a 7th symbol using the updated signal y through the same operations performed for detecting the 8th symbol. The LLR calculator 406 calculates a log likelihood ratio (LLR) using the calculated distances by the 7th symbol detector 405.
Referring to
The 7th symbol hard decision and 8th symbol distance calculator 502 performs hard decision for a 7th symbol for symbols generated from the symbol generator 501 and calculates distance values of a 8th symbol in order to detect a 8th symbol using an output vector of QR decomposition and an upper triangular matrix R value of a R memory when an enable signal mdd_ene is in an on state. Then, the 7th symbol hard decision and 8th symbol distance calculator 502 stores the updated signal y to the y register 506 while removing the 8th column of the upper triangular matrix R.
The 6th symbol hard decision and 7th symbol distance calculator 503 performs hard decision for a 6th symbol generated from the symbol generator 501 and calculates distance values of the 7th symbol using the updated y value of the y register 506 and the upper triangular matrix R value of the R memory in order to detect the 8th symbol. The distance value accumulator and buffer 507 accumulates the distance values of the 8th symbol and the distance values of the 7th symbol and stores the accumulated distance values in a register.
The 5th symbol hard decision and 6th symbol distance calculator performs hard decision for a 5th symbol generated by the symbol generator 501 using the updated y value of the y register 506 in order to detect the 8th symbol and the upper triangular matrix R value in the R memory and calculates distance values of a 6th symbol.
Then, distances for a 5th symbol, distances for a 4th symbol, distances for a 3rd symbol, distances 504 for a 2nd symbol, and distances 505 for a 1st symbol are sequentially calculated through the same operations as described above.
The distance value accumulator and buffer 507 accumulates distance values of each symbol for detecting the calculated 8th symbol and stores the accumulated distance value in a register. The values, stored in the distance value accumulator and buffer 507, are transferred to the LLR calculator and the symbol decider.
A 7th symbol detector for detecting a 7th symbol has the similar structure of the 8th symbol detector shown in
The operations for deciding the 8th symbol and the 7th symbol will be described as cycle.
In {tilde over (y)}1,8,8,x, a 1st subscript denotes cycle, a 2nd subscript denotes a symbol number to estimate, and a 3rd subscript denotes a number of a signal y vector, and x denotes the number of symbols generated from the symbol generator.
For example, the x may be smaller than 4 for QPSK, the x may be smaller than 16 for 16 QAM, and smaller than 64 for 64 QAM. In E8,8,x, a 1st subscript denotes a symbol number to estimate, a 2nd subscript denotes the number of vector elements for calculating a distance, and a 3rd subscript denotes the number of symbols generated from the symbol generator. In {tilde over (S)}8,7,x, a 1st subscript denotes the number of symbols generated from the symbol generator, a 2nd subscript denotes the number of vector elements for hard decision, and a 3rd subscript denotes the number of symbols generated from the symbol generator. In one cycle, C denotes constant of Eq. 3.
At first, a first cycle for detecting an 8th symbol is expressed as Eq. 4.
{tilde over (y)}1,8,8,x=Cy8−r8,8s8,x
{tilde over (y)}1,8,7,x=Cy7−r7,8s8,x
. . .
{tilde over (y)}1,8,1,x=Cy1−r1,8s8,x
E8,8,x=|{tilde over (y)}1,8,8,x|2
{tilde over (s)}8,7,x=hard decision({tilde over (y)}1,8,7,x/r7,7) Eq. 4
A 2nd cycle for detecting an 8th symbol can be expressed as Eq. 5.
{tilde over (y)}2,8,7,x={tilde over (y)}1,8,7,x−r7,7{tilde over (s)}8,7,x
{tilde over (y)}2,8,6,x={tilde over (y)}1,8,6,x−r6,7{tilde over (s)}8,7,x
. . .
{tilde over (y)}2,8,1,x={tilde over (y)}1,8,7,x−r1,7{tilde over (s)}8,7,x
E8,7,x=E8,8,x+|{tilde over (y)}2,8,7,x|2
{tilde over (s)}8,6,x=hard decision({tilde over (y)}2,8,6,x/r6,6) Eq. 5
Then, a 3rd cycle for detecting an 8th symbol can be expressed as Eq. 6.
{tilde over (y)}3,8,6,x={tilde over (y)}2,8,6,x−r6,6{tilde over (s)}8,6,x
{tilde over (y)}3,8,5,x={tilde over (y)}2,8,5,x−r5,6{tilde over (s)}8,6,x
. . .
{tilde over (y)}3,8,1,x={tilde over (y)}2,8,1,x−r1,6{tilde over (s)}8,6,x
E8,6,x=E8,7,x+|{tilde over (y)}3,8,6,x|2
{tilde over (s)}8,5,x=hard decision({tilde over (y)}3,8,5,x/r5,5) Eq. 6
The same operations are repeated from a 4th cycle to a 7th cycle. Then, an 8th cycle is expressed as Eq. 7.
{tilde over (y)}8,8,1,x={tilde over (y)}7,8,1,x−r1,1{tilde over (s)}8,1,x
E8,1,x=E8,2,x+|{tilde over (y)}8,8,1,x|2 Eq. 7
After calculating distance values of each vector element for detecting the 8th symbol through the 8 cycles, a symbol having the minimum value among the calculated distance values is detected as the 8th symbol in the 9th cycle like Eq. 8.
min(D8,1,x)=>{tilde over (s)}8 Eq. 8
The LLR of the 8th symbol is calculated like Eq. 9 in p=(b0b1b2b3) using the calculated distance values at the 9th cycle. In Eq. 9, k denotes a symbol number. For example, k is as 8 in case of a 16 QAM modulation scheme.
ρk0=min(Ek,1,0,Ek,1,1,Ek,1,2,Ek,1,3,Ek,1,4,Ek,1,5,Ek,1,6,Ek,1,7)−min(Ek,1,8,Ek,1,9,Ek,1,10,Ek,1,11,Ek,1,12,Ek,1,13,Ek,1,14,Ek,1,15)
ρk1=min(Ek,1,0,Ek,1,1,Ek,1,2,Ek,1,3,Ek,1,8,Ek,1,9,Ek,1,10,Ek,1,11)−min(Ek,1,4,Ek,1,5,Ek,1,6,Ek,1,7,Ek,1,12,Ek,1,13,Ek,1,13,Ek,1,14,E1,1,15)
ρk2=min(Ek,1,0,Ek,1,4,Ek,1,8,Ek,1,12,Ek,1,1,Ek,1,5,Ek,1,9,Ek,1,13)−min(Ek,1,2,Ek,1,6,Ek,1,10,Ek,1,14,Ek,1,3,Ek,1,7,Ek,1,11,Ek,1,15)
ρk3=min(Ek,1,0,Ek,1,4,Ek,1,8,Ek,1,12,Ek,1,2,Ek,1,6,Ek,1,10,Ek,1,14)−min(Ek,1,1,Ek,1,5,Ek,1,9,Ek,1,13,Ek,1,3,Ek,1,7,Ek,1,11,Ek,1,15) Eq. 9
Then, a 10th cycle for detecting a 7th symbol is expressed as Eq. 10.
{tilde over (y)}10,7,7,x=y7−r7,8{tilde over (s)}8,x
{tilde over (y)}10,7,6,x=y6−r6,8{tilde over (s)}8,x
. . .
{tilde over (y)}10,7,1,x=y1−r1,8{tilde over (s)}8,x
E7,7,x=|{tilde over (y)}10,7,7,x|2
{tilde over (s)}7,6,x=hard decision({tilde over (y)}10,7,6,x/r6,6) Eq. 10
Then, an 11th cycle for detecting a 7th symbol is expressed as Eq. 11.
{tilde over (y)}11,7,6,x={tilde over (y)}10,7,6,x−r6,6{tilde over (s)}7,6,x
{tilde over (y)}11,7,5,x={tilde over (y)}10,7,5,x−r5,6{tilde over (s)}7,6,x
. . .
{tilde over (y)}11,7,1,x={tilde over (y)}10,7,1,x−r1,6{tilde over (s)}7,6,x
E7,6,x=E7,7,x+|{tilde over (y)}11,7,6,x|2
{tilde over (s)}7,5,x=hard decision({tilde over (y)}11,7,5,x/r5,5) Eq. 11
The same operations are repeated from a 12th cycle to a 15th cycle. A 16th cycle is expressed like Eq. 12.
{tilde over (y)}16,7,1,x={tilde over (y)}15,7,1,x−r1,1{tilde over (s)}7,1,x
E7,1,x=E7,2,x+|{tilde over (y)}16,7,1,x|2 Eq. 12
In a next 17th cycle, an LLR for the 7th symbol is calculated like Eq. 13. In Eq. 13, k denotes a symbol number and k is 7 for 16 QAM.
ρk0=min(Ek,1,0,Ek,1,1,Ek,1,2,Ek,1,3,Ek,1,4,Ek,1,5,Ek,1,6,Ek,1,7)−min(Ek,1,8,Ek,1,9,Ek,1,10,Ek,1,11,Ek,1,12,Ek,1,13,Ek,1,14,Ek,1,15)
ρk1=min(Ek,1,0,Ek,1,1,Ek,1,2,Ek,1,3,Ek,1,8,Ek,1,9,Ek,1,10,Ek,1,11)−min(Ek,1,4,Ek,1,5,Ek,1,6,Ek,1,7,Ek,1,12,Ek,1,13,Ek,1,14,Ek,1,15)
ρk2=min(Ek,1,0,Ek,1,4,Ek,1,8,Ek,1,12,Ek,1,1,Ek,1,5,Ek,1,9,Ek,1,13)−min(Ek,1,2,Ek,1,6,Ek,1,10,Ek,1,14,Ek,1,3,Ek,1,7,Ek,1,11,Ek,1,15)
ρk3=min(Ek,1,0,Ek,1,4,Ek,1,8,Ek,1,12,Ek,1,2,Ek,1,6,Ek,1,10,Ek,1,14)−min(Ek,1,1,Ek,1,5,Ek,1,9Ek,1,13,Ek,1,3,Ek,1,7,Ek,1,11,Ek,1,15) Eq. 13
In the symbol hard decision and symbol distance calculation, a multiplier is needed for multiplying symbols generated from the symbol generator with elements of the upper triangular matrix R. If the multiplier is used, computation complexity and hardware complexity will increase.
If one of constants introduced in Eq. 3 is multiplied with a received signal according to a modulation scheme, the symbol generator outputs symbols as shown in Eq. 3. In order to overcome the increment of hardware and computation complexity, shifters and adders are used in the present embodiment instead of using the multiplier for multiplying the symbols generated by the symbol generator with the elements of the upper triangular matrix R.
If the shifters and the adders are used, hardware complexity may be significantly reduced. For example, according to the present invention, ⅝ is equivalent to 4/8+⅛, and r*(⅝) is equivalent to a sum of a result of shifting r once to right and a result of shifting r three times to right.
That is,
Referring to
The 6th symbol hard decision and 7th symbol distance calculator according to the present embodiment includes a shifting and adding unit 601, a multiplexer 602, an adder 603, a squaring unit 604, and a subtractor 605. The shifting and adding unit 601 shifts an inputted upper triangular matrix R as many as symbols generated by the symbol generator and adds them. One of the outputs of the shifting and adding unit 601 is selected by the multiplexer 602 according to the hard decision result of a 7th symbol of a previous cycle.
The subtractor 603 subtracts the selected output from the multiplexer 602 from the received signal y updated at a previous cycle, thereby outputting a newly updated received signal y. The outputted received signal y from the subtractor 603 is squared in a calculator 604, the squared value is accumulated with a distance value of a 8th symbol of a previous cycle in an adder 605, and a distance value of a 7th symbol is calculated.
Then, the hard decision unit 606 performs hard decision for a 6th symbol of an upper triangular matrix R. Remaining elements of the upper triangular matrix R are subtracted from the updated received signal y which is calculated at a previous cycle through the shifter, the adder, the multiplexer, and the subtractor.
For example, in {tilde over (s)}8,7,x=hard decision({tilde over (y)}1,8,7,x/r7,7) for hard decision for a 7th symbol value in order to decide a 8th symbol value in 64 QAM, an updated received signal must be divided by an element r7,7 of an upper triangular matrix R. That is, a division operation is required. The division operation increases hardware complexity.
In order to avoid the division operation, a simple comparator is used in the present embodiment instead of using a divider. That is, three bits of b0, b1, and b2 are decided in a real part and b3, b4, and b5 are decided in an imaginary part using the simple comparator.
That is,
Table 1 shows scaling factors according to a modulation scheme.
Referring to
The multi-dimensional detector for a receiver of an MIMO system and the method thereof according to the present embodiment were described under an assumption that the MIMO receiver includes eight antennas for receiving and transmitting signals. However, it is obvious that the multi-dimensional detector for a receiver of an MIMO system and the method thereof according to the present embodiment can be identically applied although the MIMO receiver includes the different number of antennas because the number of antennas is parameter of a vector Z or an upper triangular matrix R.
The present application contains subject matter related to Korean Patent Application No. 2007-0133323, filed in the Korean Intellectual Property Office on Dec. 18, 2007, the entire contents of which is incorporated herein by reference.
The above described method according to the present invention can be embodied as a program and stored on a computer readable recording medium. The computer readable recording medium is any data storage device that can store data which can be thereafter read by the computer system. The computer readable recording medium includes a read-only memory (ROM), a random-access memory (RAM), a CD-ROM, a floppy disk, a hard disk and an optical magnetic disk.
While the present invention has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0133323 | Dec 2007 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7746951 | Hwang et al. | Jun 2010 | B2 |
7844003 | Maeda et al. | Nov 2010 | B2 |
20080056396 | Li | Mar 2008 | A1 |
20100272220 | Murai et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
10-2006-0012825 | Feb 2006 | KR |
10-2007-0079448 | Aug 2007 | KR |
1020070118835 | Dec 2007 | KR |
WO2006043369 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090154604 A1 | Jun 2009 | US |