The present application claims priority to Chinese Patent Application No. 202110453690.6, filed on Apr. 26, 2021, the content of which is incorporated herein by reference in its entirety.
The present application relates to the field of sensing calibration, in particular to a multi-dimensional optical tweezers calibration device based on electric field quantity calibration and a method thereof.
Optical tweezers technology, as a general tool for capturing and manipulating neutral particles, has been widely studied and applied in molecular biology, nanotechnology and experimental physics since it was well-known. Optical tweezers technology can be understood by a simple harmonic oscillator model through laser beam suspended particles. Compared with traditional oscillator models, the optical tweezers has no contact mechanical dissipation. Further, unlike the optical tweezers system in a liquid or an air medium, the optical tweezers system operating in vacuum can completely isolate the suspension unit from the environment. Based on the above advantages, the optical tweezers in vacuum is applied in basic physics such as thermodynamics, quantum physics and sensing fields. Scientists in the field of physics have done a lot of researches on optical tweezers in vacuum.
In the basic physics research of precision sensing based on vacuum optical trap technology, it is often necessary to establish the corresponding relationship between the photoelectric signal of particles and the actual movement information (displacement) of the particles, that is, to establish the conversion relationship between a photoelectric voltage signal and the displacement of the particles, and the establishment of this relationship often needs an accurate dynamic model. There are two commonly used calibration methods: (1) calibration according to the thermal equilibrium movement position of microspheres in the optical trap; (2) using the characteristics that microspheres are easy to be charged, the electric field force is calibrated by applying an electric field to the microspheres.
The thermal balance position calibration uses the equipartition theorem of the vacuum light trapping balls in thermal balance and the statistical properties of the motion state to realize the calibration of the optical tweezers. Since it is difficult to calibrate the thermal balance in high vacuum, the calibration of thermal balance is usually carried out at an air pressure of above 1 mbar, and errors may be introduced into the calibration results when applied at high vacuum.
Calibration can also be implemented without being affected by the vacuum degree in the electric field quantity calibration method, but the existing technology for calibrating the triaxial motion signals of particles is realized by installing electrode plates on six cross sections around the microspheres, so that the three-dimensional electric field device formed in this way makes it difficult for particle delivery and optical monitoring.
In view of the shortcomings of the prior art, the present application provides a multi-dimensional optical tweezers calibration device based on electric field quantity calibration and a method thereof, and the specific technical solution is as follows:
A multi-dimensional optical tweezers calibration device based on electric field quantity calibration, comprising a laser, a beam splitter, a polarization modulator, a vacuum chamber, an objective lens, a parallel electric field imposing unit, an electric field quantity control unit, a first photodetector, a second photodetector, and a data processor;
the beam splitter, the polarization modulator, the objective lens, the parallel electric field imposing unit and the first photodetector are arranged on an exit light path of the laser in turn, and the objective lens and the parallel electric field imposing unit are all located in the vacuum chamber, and the parallel electric field imposing unit is externally connected with the electric field quantity control unit; the second photodetector is located on a reflection loop of the beam splitter, and both the first photodetector and the second photodetector are connected with the data processor.
Furthermore, the polarization modulator is a λ/2 glass slide.
A multi-dimensional optical tweezers calibration method based on electric field quantity calibration, wherein the method is implemented based on the above device;
Furthermore, a wavelength of the exit light of the laser is 1064 nm or 1550 nm.
Furthermore, the spherical nanoparticles are silica particles.
The present application has the following beneficial effects:
The purpose and effect of the present application will become clearer from the following detailed description of the present application according to the drawings and preferred embodiments. It should be understood that the specific embodiments described here are only used to explain, not to limit, the present application.
As shown in
The beam splitter 2, the polarization modulator 3, the objective lens 5, the parallel electric field imposing unit 7 and the first photodetector 9 are arranged on the exit light path of the laser 1 in turn, and the objective lens 5 and the parallel electric field imposing unit 7 are all located in the vacuum chamber 4, and the parallel electric field imposing unit 7 is externally connected with an electric field quantity control unit 8; the second photodetector 10 is located on the reflection loop of the beam splitter 2, and both the first photodetector 9 and the second photodetector 10 are connected with the data processor 11.
The polarization modulator 3 is preferably a λ/2 glass slide, which can conveniently adjust the polarization of the incident light field.
The laser 1 emits trapping laser, which passes through the beam splitter 2 and the polarization modulator 3 in turn and then enters the objective lens 5 located in the vacuum chamber 4, and is converged by the objective lens 5 to form an optical potential well; spherical nanoparticles are suspended in the optical potential well, the scattered light of the spherical nanoparticles in the optical potential well is recorded by the first photodetector 9, and the reference light split by the beam splitter 2 is recorded by the second photodetector 10; the data processor 11 calculate an electric signal change caused by a change of the scatter light caused by a three-dimensional movement of the spherical nanoparticles in the optical trap;
According to the common knowledge in this field, a spherical nanoparticle with a mass m is subjected to three main external forces in an optical potential well: an optical force, a damping force and a random force.
Taking the movement of the spherical nanoparticle in one-dimensional x direction as an example, the movement equation of the spherical nanoparticle in one-dimensional optical trap can be expressed as follows:
For the optical trap system, since the motion signals of the spherical nanoparticle are indirectly measured by converting an optical signal into an electrical signal, the power spectrum signal actually measured by the test system is voltage power spectrum Sv(ω), and the calibration method of the present application is to calibrate the relationship Sv(ω)=cx2Sx(ω) between Sv(ω) and displacement power spectrum Sx(ω), that is, to calculate the calibration coefficient cx.
Assuming that the charge of the spherical nanoparticle is q, when the particle is driven by a sinusoidal electric field E0 sin(ωdrt) with an amplitude of E0 and a circular frequency of ωdr in the x direction, its motion equation is expressed as follows:
The motion spectrum of the spherical nanoparticle satisfies:
Sx1(ω) represents the power spectrum caused by the random force, and Sx2(ω) represents the power spectrum caused by a driving field, where
is the present application time of the driving field.
The following can be obtained from the second part Sx2(ω) of the motion spectrum of spherical nanoparticle:
For the fixed imposing time of a driving field and optical trap conditions, F0∝√{square root over (Sx2(ω))}, the root of the power spectrum caused by the second driving field corresponds to the displacement of the particle from the optical trap center. Therefore, the calibration coefficient cx of the force field and the displacement of the particle can be obtained by extracting Sx2(ω).
In the calculation formula of F0, the eigenfrequency Ω0, the damping coefficient Γ0 and the mass m of the spherical nanoparticle are unknown. The eigenfrequency Ω0 and the damping coefficient Γ0 can be obtained by fitting the detected voltage power spectrum caused by the movement of the spherical nanoparticle. As shown in
the eigenfrequency Ω0 and damping coefficient Γ0 can be obtained by fitting of the voltage power spectrum caused by the movement of the spherical nanoparticle.
As for the mass m≤4/3ρR3 of the spherical nanoparticle, the density of the spherical nanoparticle with a specific materials is known, and the radius R of the spherical nanoparticle is obtained by the following formula:
is a Knudsen number, and
Therefore, according to Ω0, Γ0 and m, the real Sx2(ω) of the displacement motion spectrum of the spherical nanoparticle can be directly calculated. By combining with the voltage power spectrum Sv(ω) obtained by direct detection, the calibration coefficient cx can be obtained according to Sv(ω)=c22Sx(ω).
For three-dimensional optical tweezers, the calibration process for three vector directions X, Y and Z is similar.
In order to conveniently understand the dependence of the cross section of the optical trap formed by tight focusing of the objective lens on the linear polarization direction of the incident laser, the light intensity distribution of the cross section of the optical trap at the focal plane of the objective lens is known by numerical calculation. The linearly polarized output laser beam with a wavelength of 1064 nm is expanded to a beam waist of about 4.5 mm@1/e2, and is then collimated and coupled to an objective lens with NA=0.9 and a barrel length of 200 mm. After focusing by the objective lens, a tightly focused optical tweezers optical trap is formed. The distribution of the light intensity in the focal plane calculated mathematically is shown in (a) of
Therefore, the multi-dimensional optical tweezers calibration method based on electric field quantity calibration of the present application, as shown in
In order to reduce the endothermic damage of the spherical nanoparticles in the optical trap, silica particles with weak light absorption are generally chosen as the spherical nanoparticles; considering the lower wavelength band in the absorption spectrum of silica and the more mature wavelength in the laser development level, it is preferred that the output wavelength of laser 1 is 1064 nm or 1550 nm to trap spherical nanoparticles.
It can be understood by those skilled in the art that the above description is only the preferred examples of the present application, and is not used to limit the present application. Although the present application has been described in detail with reference to the foregoing examples, those skilled in the art can still modify the technical solutions described in the foregoing examples or replace some of their technical features equivalently. The modifications, equivalent substitutions and the like made within the spirit and principle of the present application should be included within the scope of protection of the present application.
Number | Date | Country | Kind |
---|---|---|---|
202110453690.6 | Apr 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6180940 | Galstian | Jan 2001 | B1 |
8859950 | Pascoguin et al. | Oct 2014 | B2 |
20020115163 | Wang | Aug 2002 | A1 |
20020132316 | Wang | Sep 2002 | A1 |
20030012657 | Marr | Jan 2003 | A1 |
20050179904 | Larsen et al. | Aug 2005 | A1 |
20100224493 | Davalos | Sep 2010 | A1 |
20120122084 | Wagner | May 2012 | A1 |
20150192510 | Piestun | Jul 2015 | A1 |
20150346148 | Flory | Dec 2015 | A1 |
20190008388 | Ando | Jan 2019 | A1 |
20200116623 | Cooper-Roy | Apr 2020 | A1 |
20200237227 | Ando | Jul 2020 | A1 |
20210293693 | Bharadwaj | Sep 2021 | A1 |
20220344070 | Li | Oct 2022 | A1 |
20220350125 | Li | Nov 2022 | A1 |
20230135076 | Hu | May 2023 | A1 |
Number | Date | Country |
---|---|---|
102841219 | Dec 2012 | CN |
9934653 | Jul 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20220344070 A1 | Oct 2022 | US |