The present invention relates to a vibration grinding technology, and more particularly, to a multi-dimensional vibration grinding cavity body capable of treating complex surfaces and complex flow paths of additive layer manufacturing.
To ensure that the surface roughness of a processed workpiece meets utilization requirements, there are many equipment and technologies for surface treatment currently, such as sandblast machine, ultrasonic lapping machine, abrasive flow machine, vibration grinding machines, etc. The object with better surface roughness may be obtained from the uneven surface produced by various grinding techniques. Before grinding, the surface of the workpiece was in a matte due to the surface roughness. After grinding, the surface roughness was significantly reduced to show a bright surface, and the detailed surface could meet the requirements of the workpiece.
Regarding surface grinding equipment, the vibration grinder is commonly applied in the art. The main structure of the vibration grinder is a cavity body. A vibration source is disposed outside the cavity, and a vibration medium (abrasive, which can be solid or liquid) and a workpiece to be ground are disposed inside the cavity. After the vibration source is turned on, the workpiece and the abrasive rub each other with the tiny relative movement therebetween, such that the protruding material on the surface of the workpiece may be removed, so as to complete grinding the surface of the workpiece.
Most of the commercial vibration grinders use a motor as the vibration source, disposed below the vibration cavity, and a vibration adjustment device, configured to adjust the amplitude. This structure of the vibration grinder makes the abrasive flow converge toward a center of the cavity body to form a single fixed flow pattern. Therefore, there is a single directional rubbing between the abrasive and the workpiece to be ground. In other words, the workpiece will be ground in another direction after the vibration direction changed, but the grinding procedure is in low efficiency because of the direction of the medium flow and the centroid of the workpiece, causing a limited efficiency for grinding improvement.
In addition, because the direction of single flow pattern is fixed, it cost a lot of time for treating complex surfaces. And, because the abrasive cannot reach the curved deep surface in single flow pattern, some position of the surface cannot be ground, which reduces the efficiency of grinding operations
Moreover, a single motor is applied as a vibration source in the prior art. Because the vibration frequency of the motor is not high, it can only make the grinding in the direction of the macroscopic flow and limit the performance of grinding.
It is therefore a primary objective of the present invention to provide a grinding cavity body of multiple vibration sources, which is more efficient than conventional vibration grinder, to improve over disadvantages of the prior art. The present invention discloses a multi-dimensional vibration grinding cavity body. By adjusting amplitudes (power) and frequencies of the multi-dimensional ultrasonic vibration source, the multi-directional macroscopic flow is formed in the cavity body while keeping the vibration medium to have the original characteristics to improve the performance of grinding of slurry.
The present invention discloses a multi-dimensional vibration grinding cavity body, comprising a cylindrical cavity body, configured to contain an abrasive slurry; at least four ultrasonic vibration sources, disposed uniformly around a sidewall of the cylindrical cavity body, wherein the plurality of ultrasonic vibration sources deliver shock waves toward an interior of the cylindrical cavity body, and directions of the plurality of shock waves, delivered by the plurality of ultrasonic vibration sources, form an angle with a direction of a tangent plane of the sidewall, on which the ultrasonic vibration sources are disposed, wherein the angle is 15°-45°, and the plurality of shock waves, delivered by the plurality of ultrasonic vibration sources, make a convolutional flow pattern of the abrasive slurry in the cylindrical cavity body; and a turntable disc, disposed inside a bottom of the cylindrical cavity body, wherein the turntable disc rotates in a direction cooperating with directions of the shock waves to enhance performance of the convolutional flow of the abrasive slurry in the cylindrical cavity body.
In an embodiment of the present invention, a multi-dimensional vibration grinding cavity body comprises a cuboid cavity body, configured to contain an abrasive slurry; at least four ultrasonic vibration sources, disposed respectively on four sidewalls of the cuboid cavity body, and not in a central axis of the sidewall, wherein the plurality of ultrasonic vibration sources deliver a plurality of shock waves toward an interior of the cuboid cavity body, and the plurality of shock waves, delivered by the plurality of ultrasonic vibration sources, make a convolutional flow pattern of the abrasive slurry in the cylindrical cavity body; and a turntable disc, disposed inside a bottom of the cuboid cavity body, wherein the turntable disc rotates in a direction cooperating with directions of the shock waves to enhance performance of the convolutional flow of the abrasive slurry in the cuboid cavity body.
In an embodiment of the present invention, the plurality of vibration frequencies of the ultrasonic vibration sources are 10 KHz-50 KHz, and the vibration frequencies and amplitudes can be adjusted during the grinding process, to meet the requirements of the different workpiece and grinding mediums.
In an embodiment of the present invention, at least one auxiliary ultrasonic vibration source is further disposed on the bottom of the cylindrical or cuboid cavity body.
In an embodiment of the present invention, the plurality of vibration frequencies of the auxiliary ultrasonic vibration sources are 10 KHz-50 KHz.
In an embodiment of the present invention, the cuboid cavity body is by replacing a polygonal cavity body with at least four sides.
In order to make the objects, technical solutions and advantages of the present invention become more apparent, the following relies on the accompanying drawings and embodiments to describe the present invention in further detail.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
The embodiments stated below are utilized for illustrating the concept of the present application. Those skilled in the art can readily understand the advantages and effects of the present invention disclosed by the application.
Please refer to
Please refer to
Please refer to
Please refer to
Please refer to
Please refer to
Therefore, the present invention provides a multi-dimensional vibration grinding cavity body. By adjusting amplitudes (power) and frequencies of the multi-dimensional ultrasonic vibration source, the multi-directional macroscopic flow is formed in the cavity body while keeping the vibration medium to have the original characteristics to improve the performance of grinding of slurry. The present invention utilizes the multi-dimensional vibration source controlling to form the multi-directional (convolutional) flow pattern of medium to meet the requirements of the different workpiece and grinding mediums and shorten the time for grinding, and control the direction precisely. Multiple vibration sources may control the direction of multi-directional macroscopic flow to help the vibration medium (the abrasive of the slurry) to enter the fine structure of the workpiece to be processed. The ultrasonic vibration sources and the turntable disc cooperate to generate the vibration in the convolutional flow pattern of slurry to grind. Not only the macroscopic flow but also the vibration of abrasive improves the performance of grinding to the workpiece to be ground.
The foregoing embodiments are not intended to limit the present application. Those skilled in the art may make modifications and alterations accordingly and not limited herein. Therefore, the scope of the present invention should be as listed in the scope of the claims mentioned below.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4171852 | Haentjens | Oct 1979 | A |
4586293 | De Spain | May 1986 | A |
5997383 | Tseng | Dec 1999 | A |
7238085 | Montierth | Jul 2007 | B2 |
20090301764 | Kawamura | Dec 2009 | A1 |
20110278231 | Nishijima | Nov 2011 | A1 |
20210187686 | Lin | Jun 2021 | A1 |
20210187699 | Lin | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
105522445 | Apr 2016 | CN |
105643375 | Jun 2016 | CN |
108673329 | Oct 2018 | CN |
110315399 | Oct 2019 | CN |
2 886 247 | Jun 2015 | EP |
3838484 | Jun 2021 | EP |
3838485 | Jun 2021 | EP |
WO-0032354 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20210187699 A1 | Jun 2021 | US |