The present disclosure concerns steerable catheter assemblies for steering an attached catheter or other transluminal device.
Transvascular techniques have been developed for introducing and implanting prosthetic devices, such as heart valves, into a patient's body using a flexible transvascular catheter in a manner that is less invasive than open heart surgery. Typical catheter control systems only allow for limited flexing of the distal end of the catheter, such as in two orthogonal axes perpendicular to the longitudinal axis of the catheter. For example, a conventional catheter control handle may include a lever or dial coupled to a pull wire running along one side of the catheter, such that actuating the lever or dial causes the distal tip of the catheter to flex radially to one side of the longitudinal axis. To cause the distal tip to flex in other directions, it is typically required to actuate additional levers/dials that are coupled to other pull wires. Thus, a plurality of actuation devices typically have to be actuated at the same time in careful combinations or sequences to generate a desired degree of radial flex in a desired circumferential direction. In this way catheter flex magnitude control and catheter flex direction control are integrated such that it can be difficult to control and not intuitive to understand.
Disclosed herein are steerable catheter assemblies that utilize various mechanisms to accomplish independent control of catheter flex magnitude and catheter flex direction of an attached catheter. Some embodiments include a catheter with two or more pull wires that flex the catheter and a control handle coupled to the catheter. The control handle can include a direction control coupled to the two or more pull wires such that adjustment of the direction control adjusts a direction of catheter flex by the two or more pull wires, and the control handle can include a magnitude control coupled to the two or more pull wires such that adjustment of the magnitude control adjusts the magnitude of catheter flex. In some embodiments, the steerable catheter assembly can include a cam member, and the magnitude control can move the cam member in an axial direction of the control handle, and the direction control can rotate the cam member.
In some embodiments, each of the two or more pull wires are coupled to a follower that moves along a cam surface of the cam member. In some embodiments, the steerable catheter assemblies include a projection, and each of the two or more pull wires are coupled to a gimbal mechanism, and movement of the projection positions the gimbal mechanism. In some embodiments, each of the two or more pull wires are coupled to a ball and socket mechanism and movement of the projection positions the ball and socket mechanism. In some embodiments, each of the two or more pull wires are coupled to a plate that is suspended by a wire and movement of the projection positions the plate. In some embodiments, each of the two or more pull wires are coupled to a plate that is supported by a deformable ball and movement of the projection positions the plate.
In some embodiments, the control handle comprises a pair of followers, wherein each follower is coupled to the direction control such that each follower moves in an opposite axial direction in response to the same adjustment of the direction control, and wherein each follower is coupled to at least one pull wire.
The application discloses methods of steering a catheter by moving a direction control to adjust a direction of catheter flex by adjusting the tension in two or more pull wires and moving a magnitude control to adjust a magnitude of catheter flex by adjusting the tension in the two or more pull wires. The magnitude of catheter flex adjustment can be independent of the catheter flex direction adjustment.
The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
As used herein, the singular forms “a,” “an,” and “the” refer to one or more than one, unless the context clearly dictates otherwise.
As used herein, the term “includes” means “comprises.” For example, a device that includes or comprises A and B contains A and B but can optionally contain C or other components other than A and B. A device that includes or comprises A or B can contain A or B or A and B, and optionally one or more other components such as C.
Referring to
In one exemplary method, starting with the attached catheter having a straightened distal tip, the user can adjust the flex magnitude control 6 a sufficient amount to cause the distal tip of the catheter to flex radially to a desired angle from the longitudinal axis of the straightened position (e.g., to a flex angle of 30 degrees from straight). This flex can be purely radial, with no circumferential motion (e.g., the radial flex can occur while the distal tip is at a fixed circumferential angle of zero degrees). Then, the user can adjust the flex direction control 7 to cause the distal tip of the catheter to gradually change the circumferential angle in which the distal tip is radially flexed. For example, adjusting the flex direction control 7 in one way can cause a clockwise change in the circumferential angle of the distal tip, while adjusting the flex direction control 7 in an opposite way can cause counter-clockwise change in the circumferential angle. This change in the circumferential angle can be made while maintaining the degree of radial flex of the distal tip. Furthermore, when the flex direction control 7 is used to change the circumferential angle of the distal tip flex, the catheter itself does not need to be rotated inside the patient. Instead, the distal tip of the catheter is simply flexed in a different circumferential direction from straight while the rest of the catheter can remain stationary.
In another exemplary method, starting with the attached catheter having a straightened distal tip, the user can first adjust the flex direction control 7 to rotate the cam 14 to a selected circumferential position corresponding with the desired flex direction of the distal tip of the catheter 2 (e.g., 270 degrees clockwise from a designated reference point). Then, the user can adjust the flex magnitude control 6 a sufficient amount to cause the distal tip of the catheter to flex radially in the desired direction to a desired angle from the longitudinal axis of the straightened position (e.g., to a flex angle of 30 degrees from straight). This flex can be purely radial, with no circumferential motion (e.g., the radial flex from zero to 30 degrees can occur while the distal tip is at the fixed circumferential angle of 270 degrees).
The handle 5 of
The handle 5 in
By rotating the flex knob 24, the user can cause the cam 14 to move axially relative to the rest of the handle 5, which causes all of the followers 22 that are engaged with the cam to move axially a corresponding distance, which in turn causes all of the pull wires attached to the followers 22 to increase or decrease in tension together, resulting in a change in the magnitude of the radial flex of the distal tip (9 in
By rotating the steering knob 25, the user can cause the cam 14 and its sloped contact surface 15 to rotate around the central longitudinal axis of the handle, causing one or more of the followers 22 to move distally in the slots 23 and one or more other sliders 22 to move proximally in the slots 23, depending on which part of the sloped contact surface 15 is in contact with each follower 22. This can cause increased tension in one or more pull wires and simultaneous reduction in tension in one or more other pull wires, which results in the flexed distal tip of the attached catheter pivoting about its longitudinal axis and changing the circumferential angle in which it is radially flexed (without rotating the whole catheter inside the patient).
Accordingly, each of the flex knob 24 and the steering knob 25 can individually adjust some or all of the followers 22 depending on which followers 22 engage the sloped contact surface 15 of cam 14. Each of the knobs 24 and 25 can generate independent, yet complimentary, resultant adjustment to the distal tip of the catheter.
The flex knob 24 and the steering knob 25 can be rotated at the same time or individually. For example, in an exemplary method, the two knobs can be rotated at the same time (in either the same rotational direction or in opposite rotational directions). Simultaneous rotation of the two knobs can cause the cam 14 to slide axially and rotate circumferentially at the same time, which causes the distal tip of the catheter (9 in
As shown in
The threaded body 44 of the flex component 13 can be positioned around the distal body 48 of the stationary slider guide 41 and also engaged to the cam 14 such that rotation of the flex component 13 drives the cam axially relative to the stationary slider guide 41 and the cylinder 52 of the positioning component 42.
The clutch knob 26 can have an engaged position and a disengaged position. When in the engaged position, the steering knob 25 can be locked such that the circumferential angle of the distal tip of the attached catheter is fixed, while allowing the flex knob 24 to drive the cam 14 axially and change the magnitude of flex of the distal tip of the attached catheter. Clutch knob 26 can be configured in an alternate embodiment such that in an engaged position, flex knob 24 is locked holding the magnitude of flex of the attached catheter constant while allowing steering knob 25 to rotate the cam 14 circumferentially and change the circumferential angle of flex. When the clutch knob 26 is in the disengaged position, both the flex knob 24 and the steering knob 25 are functional. In another embodiment, the handle 5 includes two clutch knobs, one for locking the steering knob 25 and one for locking the flex knob 24.
Each of the followers 22 can be attached to one end of a pull wire that runs distally through the handle 5, out the distal end 20, and along the attached catheter. The handle 5 can include 2 or more followers 22 and associated pull wires. Four followers 22 are included in the illustrated embodiment, each spaced about 90 degrees apart from each other circumferentially, though as discussed further below, alternate numbers of followers arranged in different circumferential spacing arrangements can be used to affect control characteristics of the steerable catheter assembly.
With reference to
Further discussion of embodiments with alternatively shaped cams is provided below with reference to
The use of a cam member in the disclosed control handles can provide an infinite degree of choice in selecting a desired flex position of the distal tip of an attached catheter, as the cam member can provide an analog adjustment mechanism. Furthermore, with regard to the control handle 5, an increased number of sliders and/or an increased number of pull wires that are included and coupled to the followers 22 can improve the smoothness of the analog control systems described herein.
Cam rotation can also be limited to help mitigate drift.
As shown in
The radius of the socket 112 can be increased to increase the maximum tension that can be applied to the pull wires (and thus the maximum flex magnitude of an attached catheter). Pull wires can further be coupled to socket 112 via rack and pinion or pulley assemblies. As discussed further below, such mechanisms provide mechanical advantage that magnifies the relative small motions of the projection 116 and socket 112 to provide the desired flex in the catheter. The mechanism system that couples the steering and flex knobs to the pull wires can be configured and/or calibrated to provide the desired balance of fine control and range of motion of catheter flex. The ball-and-socket mechanism provides an analog, full 360 degree range of adjustability for catheter flex, without needing to rotate the catheter inside the patient.
Control handle 200 further comprises two or more pull wires 222. The gimbal plate 218 can include wire engagements 220 for each pull wire 222 of the handle. Four pull wires 222 are illustrated as an example in
In embodiments disclosed herein, the handle 200 includes a central shaft 230 that has a distal end 232 coupled to the housing 210, an intermediate portion that passes through an opening 219 in the gimbal plate 218 and through projection 234, and a proximal portion that is fixedly coupled to a flex knob 240. The distal end 232 is coupled to the housing via a rotational bearing that allows rotation of the shaft 230 and flex knob 240 relative to the housing and gimbal mechanism, but prevents longitudinal motion of the shaft 230 and flex knob 240 relative to the housing and gimbal mechanism. Although not shown, the central shaft 230 and flex knob 240 can include a central lumen extending through their entire length. The housing 210 can also include a central lumen that extends from the distal end of the shaft 230 to the distal end 212 of the handle. Combined, the central lumens of the handle 200 can provide access for other devices and/or fluids to be passed into and out of a patient through the handle and through a connecting lumen in an attached catheter. Projection 234 can be a cam as pictured in
The handle 200 also includes a steering knob 242 that can include an indicator nub 244 that is fixedly coupled to the projection 234 and positioned around the central shaft 230 distal to the flex knob 240 in
By using the flex knob 240 to drive the cam member distally or proximally, the magnitude of the flex of the catheter is adjusted. Distal motion of the cam causes the gimbal plate to tilt more, causing increased magnitude of flex, and proximal motion of the cam member allows the gimbal plate to return closer to its natural position perpendicular to the longitudinal axis of the handle, reducing the flex of the catheter. Rotating the flex knob 240 causes the catheter to flex in the circumferential direction (with respect to the longitudinal axis defined by the handle 200) determined by the position of the gimbal as a result of the rotation of the projection 234 about the longitudinal axis defined by the handle 200. The circumferential angle in which the catheter flexes is determined by the position of the steering knob 244, which rotates the projection with respect to the gimbal plate 218.
The gimbal ring 216 and gimbal plate 218 work together to allow the plate to tilt in any direction, and thus flex the attached catheter in any radial direction. In
In some embodiments, the gimbal plate can have a non-planar contact surface, with bump(s) and/or valley(s) which vary in height circumferentially and/or radially on the gimbal plate. These can compensate for any discretization effect of not using an infinite number of pull wires around the perimeter of the plate. For example, when the cam member pushes on the gimbal plate between two wires, it may need a little extra pull on the pull wires in order to get the same amount of flex at the distal end of the catheter. These bumps or valleys can achieve that extra pull by tilting the plate a little more or less at certain circumferential and radial cam contact locations. For example, if a completely planar gimbal plate is used, a slight unflexing may occur when the steering knob is adjusted such that the flex direction is between two of the pull wires. Including a gradual bump on the gimbal plate in the location between the pull wire engagements (as just one example) can compensate for that expected unflexing by tilting the gimbal plate a little more when the cam contacts that bump, thereby providing the additional pull wire motion needed to maintain a constant flex magnitude in a direction between two pull wires.
The handle 300 comprises a housing 310, a proximal end 314, and a distal end 312 at or near flex knob 322. The flex knob 322 is axially fixed relative to a central shaft 320, and a steering knob 324 is positioned around and/or within the flex knob in a threaded engagement or helical interface such that rotation of the flex knob drives the steering knob and projection 326 axially relative to the gimbal mechanism inside the housing. The gimbal mechanism includes a gimbal ring 316 pivotably mounted inside the housing about a ring axis and a gimbal plate 318 pivotably mounted inside the ring via pivots along a plate axis perpendicular to the ring axis, like with the handle 200. The handle 300 can also include a wire guide plate 330 mounted inside the housing 310 proximal to the gimbal mechanism.
Each pull wire in the handle 300 can have an end 340 fixed to wire guide plate 330, a first portion extending from the wire end 340 distally to the gimbal plate 318 and around pulleys or other guides 342 in the gimbal plate, a second portion that extends back proximally from the gimbal plate to secondary pulleys or guides 344 in the wire guide plate 330, then around the pulleys or guides 344, and a third portion that extends distally through the central shaft 320 along the length of the handle and out through the distal end 312 of the handle into a catheter coupled to the handle.
As the gimbal plate 318 moves relative to the wire guide plate 330, the pull wires articulate around the wire guides 342 and 344 in the two plates, providing a mechanical advantage that magnifies the relative small motions of the cam member and gimbal plate to provide the desired flex in the catheter. Like with the handle 200, the mechanism that couples the knobs 322 and 324 to the pull wires can be configured and/or calibrated to provide the desired balance of fine control and range of motion of catheter flex. The gimbal mechanism of control handle 300 also provides an analog, full 360 degree range of adjustability for the catheter flex, without needing to rotate the catheter inside the patient. Further, as with the gimbal plate 218 of control handle 200, the radius of gimbal plate 318 can be increased to increase the maximum tension that can be applied to the pull wires (and thus the maximum flex magnitude of an attached catheter).
With reference to
The drive nut 830 rotates in response to adjustments of the flex knob 825. The rotation of the drive nut 830 causes the first and second followers 831, 832 to move in opposite axial directions. Rotating the steering knob 825 in one direction causes one follower to travel axially toward its attached pull wire and one follower to travel axially away from its attached pull wire, thereby creating greater tension in one pull wire and reducing tension in the other. This causes the attached catheter to flex in the direction of the tensed wire. Rotating steering knob 825 in the opposite direction causes the opposite effect on the axial motion of the followers 830, 831, thereby causing the attached catheter to flex in the direction of the other tensed wire. Thus, steering knob 825 controls direction of flex of an attached catheter. Embodiments of control handle 800 may further include cap 875 and housing 860.
In embodiments disclosed herein and as shown in
In
As shown in
The illustrated control handle 900 includes a first follower 931, a second follower 932, a third follower 933, and a fourth follower 934. A first driver 924 is coupled to the first and second followers 931 and 932, which are circumferentially oppositely disposed from one another. A second driver 925 is coupled to the third and fourth followers 933 and 934, which are also circumferentially oppositely disposed from one another and are positioned about 90° from the first and second followers 931, 932. Rotation of the first driver 924 moves the first and second followers 931 and 932 in opposite axial directions with respect to control handle 900. Rotation of the second driver 925 moves the third and fourth followers 933 and 934 in opposite axial directions with respect to control handle 900. Pull wires attached to followers that move proximally with respect to the housing 860 increase in tension and pull wires attached to followers that move distally relax. The attached catheter flexes in the direction of the tensed pull wires. Thus, control of magnitude and direction of flex is not independent for control handle 900. First and second drivers 924 and 925 may be rotatable drive rings with internal teeth 945.
As shown in section views with housing 960 removed in
It should be understood that the disclosed embodiments can be adapted to deliver and implant prosthetic devices in any of the native annuluses of the heart (e.g., the pulmonary, mitral, and tricuspid annuluses), and can be used with any of various approaches (e.g., retrograde, antegrade, transseptal, transventricular, transatrial, etc.). The disclosed embodiments can also be used to implant prostheses in other lumens of the body. Further, in addition to prosthetic valves, the delivery assembly embodiments described herein can be adapted to deliver and implant various other prosthetic devices such as stents and/or other prosthetic repair devices. In other embodiments, the disclosed devices can be used to perform various other transvascular surgical procedures other than implanting a prosthetic device.
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
As used in this application and in the claims, the term “coupled” generally means physically, electrically, magnetically, and/or chemically coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.
As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user/operator of the device and further away from an end or destination of the device within a patient's body (e.g., the heart). As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user/operator of the device and closer to the end or destination of the device within a patient's body. Thus, for example, proximal motion of a catheter is motion of the catheter out of the body and/or toward the operator (e.g., retraction of the catheter out of the patient's body), while distal motion of the catheter is motion of the catheter away from the operator and further into the body (e.g., insertion of the catheter into the body toward the heart). The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.
As used herein, the terms “integrally formed” and “unitary construction” refer to a one-piece construction that does not include any welds, fasteners, or other means for securing separately formed pieces of material to each other.
As used herein, operations that occur “simultaneously” or “concurrently” occur generally at the same time as one another, although delays in the occurrence of one operation relative to the other due to, for example, spacing, play or backlash between components in a mechanical linkage such as threads, gears, etc., are expressly within the scope of the above terms, absent specific contrary language.
In view of the many possible embodiments to which the principles of the disclosure may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosed technology is at least as broad as the following claims. We therefore claim as our invention all that comes within the scope of these claims as well as their equivalents.
This application is a continuation of U.S. Non-Provisional patent application Ser. No. 15/815,211 filed on Nov. 16, 2017, which claims the benefit of U.S. Provisional Patent Application No. 62/560,576 filed Sep. 19, 2017, titled “Multi-Direction Steerable Handles for Steering Catheters,” and is a continuation-in-part of U.S. Non-Provisional patent application Ser. No. 15/453,735 filed on Mar. 8, 2017, titled “Cam Controlled Multi-Direction Steerable Handles,” which claims the benefit of U.S. Provisional Patent Application No. 62/311,031 filed Mar. 21, 2016, titled “Cam Controlled Multi-Direction Steerable Handles, which are all incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3874388 | King et al. | Apr 1975 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4506669 | Blake, III | Mar 1985 | A |
4590937 | Deniega | May 1986 | A |
4693248 | Failla | Sep 1987 | A |
4803983 | Siegel | Feb 1989 | A |
5125895 | Buchbinder et al. | Jun 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5195962 | Martin et al. | Mar 1993 | A |
5292326 | Green et al. | Mar 1994 | A |
5327905 | Avitall | Jul 1994 | A |
5363861 | Edwards et al. | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5389077 | Melinyshyn et al. | Feb 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5456674 | Bos et al. | Oct 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5487746 | Yu et al. | Jan 1996 | A |
5565004 | Christoudias | Oct 1996 | A |
5607462 | Imran | Mar 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5611794 | Sauer et al. | Mar 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5782746 | Wright | Jul 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5836311 | Borst et al. | Nov 1998 | A |
5843076 | Webster, Jr. et al. | Dec 1998 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5888247 | Benetti | Mar 1999 | A |
5891017 | Swindle et al. | Apr 1999 | A |
5891088 | Thompson et al. | Apr 1999 | A |
5891112 | Samson | Apr 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5921979 | Kovac et al. | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5957835 | Anderson et al. | Sep 1999 | A |
5972020 | Carpentier et al. | Oct 1999 | A |
5980534 | Gimpelson | Nov 1999 | A |
6004329 | Myers et al. | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6132370 | Furnish et al. | Oct 2000 | A |
6162239 | Manhes | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6182664 | Cosgrove | Feb 2001 | B1 |
6193732 | Frantzen et al. | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6200315 | Gaiser et al. | Mar 2001 | B1 |
6228032 | Eaton et al. | May 2001 | B1 |
6241743 | Levin et al. | Jun 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6269829 | Chen et al. | Aug 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6468285 | Hsu et al. | Oct 2002 | B1 |
6508806 | Hoste | Jan 2003 | B1 |
6508825 | Selmon et al. | Jan 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6537290 | Adams et al. | Mar 2003 | B2 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | Goar et al. | Oct 2003 | B1 |
6719767 | Kimblad | Apr 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6837867 | Kortelling | Jan 2005 | B2 |
6855137 | Bon | Feb 2005 | B2 |
6913614 | Marino et al. | Jul 2005 | B2 |
6939337 | Parker et al. | Sep 2005 | B2 |
6945956 | Waldhauser et al. | Sep 2005 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7371210 | Brock et al. | May 2008 | B2 |
7464712 | Oz et al. | Dec 2008 | B2 |
7509959 | Oz et al. | Mar 2009 | B2 |
7569062 | Kuehn et al. | Aug 2009 | B1 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7682369 | Seguin | Mar 2010 | B2 |
7731706 | Potter | Jun 2010 | B2 |
7744609 | Allen et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753932 | Gingrich et al. | Jul 2010 | B2 |
7758596 | Oz et al. | Jul 2010 | B2 |
7780723 | Taylor | Aug 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7931616 | Selkee | Apr 2011 | B2 |
7981123 | Seguin | Jul 2011 | B2 |
7988724 | Salahieh et al. | Aug 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8070805 | Vidlund et al. | Dec 2011 | B2 |
8096985 | Legaspi et al. | Jan 2012 | B2 |
8104149 | McGarity | Jan 2012 | B1 |
8133239 | Oz et al. | Mar 2012 | B2 |
8147542 | Maisano et al. | Apr 2012 | B2 |
8172856 | Eigler et al. | May 2012 | B2 |
8206437 | Bonhoeffer et al. | Jun 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8348995 | Tuval et al. | Jan 2013 | B2 |
8348996 | Tuval et al. | Jan 2013 | B2 |
8414643 | Tuval et al. | Apr 2013 | B2 |
8425404 | Wilson et al. | Apr 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
8460368 | Taylor et al. | Jun 2013 | B2 |
8470028 | Thornton et al. | Jun 2013 | B2 |
8480730 | Maurer et al. | Jul 2013 | B2 |
8540767 | Zhang | Sep 2013 | B2 |
8579965 | Bonhoeffer et al. | Nov 2013 | B2 |
8585756 | Bonhoeffer et al. | Nov 2013 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8676290 | Tegg | Mar 2014 | B2 |
8721665 | Oz et al. | May 2014 | B2 |
8740918 | Seguin | Jun 2014 | B2 |
8771347 | DeBoer et al. | Jul 2014 | B2 |
8778017 | Eliasen et al. | Jul 2014 | B2 |
8834564 | Tuval et al. | Sep 2014 | B2 |
8840663 | Salahieh et al. | Sep 2014 | B2 |
8876894 | Tuval et al. | Nov 2014 | B2 |
8876895 | Tuval et al. | Nov 2014 | B2 |
8945177 | Dell et al. | Feb 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9198757 | Schroeder et al. | Dec 2015 | B2 |
9220507 | Patel et al. | Dec 2015 | B1 |
9233227 | Akutagawa et al. | Jan 2016 | B2 |
9259317 | Wilson et al. | Feb 2016 | B2 |
9282972 | Patel et al. | Mar 2016 | B1 |
9301834 | Tuval et al. | Apr 2016 | B2 |
9308360 | Bishop et al. | Apr 2016 | B2 |
9387071 | Tuval et al. | Jul 2016 | B2 |
9427327 | Parrish | Aug 2016 | B2 |
9439763 | Geist et al. | Sep 2016 | B2 |
9498112 | Stewart et al. | Nov 2016 | B1 |
9510837 | Seguin | Dec 2016 | B2 |
9510946 | Chau et al. | Dec 2016 | B2 |
9572660 | Braido et al. | Feb 2017 | B2 |
9642704 | Tuval et al. | May 2017 | B2 |
9700445 | Martin et al. | Jul 2017 | B2 |
9775963 | Miller | Oct 2017 | B2 |
D809139 | Marsot et al. | Jan 2018 | S |
9889002 | Bonhoeffer et al. | Feb 2018 | B2 |
9949824 | Bonhoeffer et al. | Apr 2018 | B2 |
10076327 | Ellis et al. | Sep 2018 | B2 |
10076415 | Metchik et al. | Sep 2018 | B1 |
10099050 | Chen et al. | Oct 2018 | B2 |
10105221 | Siegel | Oct 2018 | B2 |
10105222 | Metchik et al. | Oct 2018 | B1 |
10111751 | Metchik et al. | Oct 2018 | B1 |
10123873 | Metchik et al. | Nov 2018 | B1 |
10130475 | Metchik et al. | Nov 2018 | B1 |
10136993 | Metchik et al. | Nov 2018 | B1 |
10159570 | Metchik et al. | Dec 2018 | B1 |
10226309 | Ho et al. | Mar 2019 | B2 |
10231837 | Metchik et al. | Mar 2019 | B1 |
10238493 | Metchik et al. | Mar 2019 | B1 |
10238494 | McNiven et al. | Mar 2019 | B2 |
10238495 | Marsot et al. | Mar 2019 | B2 |
10299924 | Kizuka | May 2019 | B2 |
10376673 | Van Hoven et al. | Aug 2019 | B2 |
10537348 | Rodriguez-Navarro et al. | Jan 2020 | B2 |
10575841 | Paulos | Mar 2020 | B1 |
10799677 | Khuu et al. | Oct 2020 | B2 |
11110251 | Khuu et al. | Sep 2021 | B2 |
11219746 | Khuu et al. | Jan 2022 | B2 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020173811 | Tu et al. | Nov 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030144573 | Heilman et al. | Jul 2003 | A1 |
20030144670 | Pavcnik | Jul 2003 | A1 |
20030187467 | Schreck | Oct 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20040003819 | St. Goar et al. | Jan 2004 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040034365 | Lentz et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040127981 | Rahdert et al. | Jul 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040147943 | Kobayashi | Jul 2004 | A1 |
20040181135 | Drysen | Sep 2004 | A1 |
20040181206 | Chiu et al. | Sep 2004 | A1 |
20040181238 | Zarbatany et al. | Sep 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040220593 | Greenhalgh | Nov 2004 | A1 |
20050010287 | Macoviak et al. | Jan 2005 | A1 |
20050049618 | Masuda et al. | Mar 2005 | A1 |
20050070926 | Ortiz | Mar 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050143767 | Kimura et al. | Jun 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050251183 | Buckman et al. | Nov 2005 | A1 |
20050288786 | Chanduszko | Dec 2005 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060089671 | Goldfarb et al. | Apr 2006 | A1 |
20060100649 | Hart | May 2006 | A1 |
20060122647 | Callaghan et al. | Jun 2006 | A1 |
20060142694 | Bednarek et al. | Jun 2006 | A1 |
20060173251 | Govari et al. | Aug 2006 | A1 |
20060178700 | Quinn | Aug 2006 | A1 |
20060224169 | Weisenburgh et al. | Oct 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20070010800 | Weitzner et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070021779 | Garvin et al. | Jan 2007 | A1 |
20070032807 | Ortiz et al. | Feb 2007 | A1 |
20070093857 | Rogers et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070156197 | Root et al. | Jul 2007 | A1 |
20070191154 | Genereux et al. | Aug 2007 | A1 |
20070197858 | Goldfarb et al. | Aug 2007 | A1 |
20070198038 | Cohen et al. | Aug 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070282414 | Soltis et al. | Dec 2007 | A1 |
20070293943 | Quinn | Dec 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20070299424 | Cumming et al. | Dec 2007 | A1 |
20080039743 | Fox et al. | Feb 2008 | A1 |
20080039953 | Davis et al. | Feb 2008 | A1 |
20080065149 | Thielen et al. | Mar 2008 | A1 |
20080077144 | Crofford | Mar 2008 | A1 |
20080091169 | Heideman et al. | Apr 2008 | A1 |
20080140089 | Kogiso et al. | Jun 2008 | A1 |
20080147093 | Roskopf et al. | Jun 2008 | A1 |
20080147112 | Sheets et al. | Jun 2008 | A1 |
20080149685 | Smith et al. | Jun 2008 | A1 |
20080167713 | Bolling | Jul 2008 | A1 |
20080177300 | Mas et al. | Jul 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080255427 | Satake et al. | Oct 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080287862 | Weitzner et al. | Nov 2008 | A1 |
20080294247 | Yang et al. | Nov 2008 | A1 |
20080312506 | Spivey et al. | Dec 2008 | A1 |
20080319455 | Harris et al. | Dec 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090024110 | Heideman et al. | Jan 2009 | A1 |
20090131880 | Speziali et al. | May 2009 | A1 |
20090156995 | Martin et al. | Jun 2009 | A1 |
20090163934 | Raschdorf, Jr. et al. | Jun 2009 | A1 |
20090166913 | Guo et al. | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090234280 | Tah et al. | Sep 2009 | A1 |
20090270896 | Sullivan et al. | Oct 2009 | A1 |
20090275902 | Heeps et al. | Nov 2009 | A1 |
20090287304 | Dahlgren et al. | Nov 2009 | A1 |
20100022823 | Goldfarb et al. | Jan 2010 | A1 |
20100057192 | Celermajer | Mar 2010 | A1 |
20100069834 | Schultz | Mar 2010 | A1 |
20100094317 | Goldfarb et al. | Apr 2010 | A1 |
20100106141 | Osypka et al. | Apr 2010 | A1 |
20100121434 | Paul et al. | May 2010 | A1 |
20100145430 | Wubbeling | Jun 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20100324595 | Linder et al. | Dec 2010 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110137410 | Hacohen | Jun 2011 | A1 |
20110245855 | Matsuoka et al. | Oct 2011 | A1 |
20110257723 | McNamara | Oct 2011 | A1 |
20110295281 | Mizumoto et al. | Dec 2011 | A1 |
20120022633 | Olson et al. | Jan 2012 | A1 |
20120089125 | Scheibe et al. | Apr 2012 | A1 |
20120109160 | Martinez et al. | May 2012 | A1 |
20120116419 | Sigmon, Jr. | May 2012 | A1 |
20120203169 | Tegg | Aug 2012 | A1 |
20120209318 | Qadeer | Aug 2012 | A1 |
20120277853 | Rothstein | Nov 2012 | A1 |
20130030519 | Tran et al. | Jan 2013 | A1 |
20130035759 | Gross et al. | Feb 2013 | A1 |
20130041314 | Dillon | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130066342 | Dell et al. | Mar 2013 | A1 |
20130072945 | Terada | Mar 2013 | A1 |
20130073034 | Wilson et al. | Mar 2013 | A1 |
20130110254 | Osborne | May 2013 | A1 |
20130190798 | Kapadia | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130268069 | Zakai et al. | Oct 2013 | A1 |
20130282059 | Ketai et al. | Oct 2013 | A1 |
20130304197 | Buchbinder et al. | Nov 2013 | A1 |
20130325110 | Khalil et al. | Dec 2013 | A1 |
20140031928 | Murphy et al. | Jan 2014 | A1 |
20140046433 | Kovalsky | Feb 2014 | A1 |
20140046434 | Rolando et al. | Feb 2014 | A1 |
20140052237 | Lane et al. | Feb 2014 | A1 |
20140058411 | Soutorine et al. | Feb 2014 | A1 |
20140067048 | Chau et al. | Mar 2014 | A1 |
20140067052 | Chau et al. | Mar 2014 | A1 |
20140094903 | Miller et al. | Apr 2014 | A1 |
20140135685 | Kabe et al. | May 2014 | A1 |
20140194975 | Quill et al. | Jul 2014 | A1 |
20140200662 | Eftel et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140236198 | Goldfarb et al. | Aug 2014 | A1 |
20140243968 | Padala | Aug 2014 | A1 |
20140251042 | Asselin et al. | Sep 2014 | A1 |
20140277404 | Wilson et al. | Sep 2014 | A1 |
20140277411 | Bortlein et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140316428 | Golan | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140330368 | Gloss et al. | Nov 2014 | A1 |
20140336751 | Kramer | Nov 2014 | A1 |
20140371843 | Wilson et al. | Dec 2014 | A1 |
20150039084 | Levi et al. | Feb 2015 | A1 |
20150057704 | Takahashi | Feb 2015 | A1 |
20150094802 | Buchbinder et al. | Apr 2015 | A1 |
20150100116 | Mohl et al. | Apr 2015 | A1 |
20150105808 | Gordon et al. | Apr 2015 | A1 |
20150148896 | Karapetian et al. | May 2015 | A1 |
20150157268 | Winshtein et al. | Jun 2015 | A1 |
20150196390 | Ma et al. | Jul 2015 | A1 |
20150223793 | Goldfarb et al. | Aug 2015 | A1 |
20150230919 | Chau et al. | Aug 2015 | A1 |
20150231366 | Davies et al. | Aug 2015 | A1 |
20150238313 | Spence et al. | Aug 2015 | A1 |
20150257757 | Powers et al. | Sep 2015 | A1 |
20150257877 | Hernandez | Sep 2015 | A1 |
20150257883 | Basude et al. | Sep 2015 | A1 |
20150313592 | Coillard-Lavirotte et al. | Nov 2015 | A1 |
20150351904 | Cooper et al. | Dec 2015 | A1 |
20150366666 | Khairkhahan et al. | Dec 2015 | A1 |
20160008129 | Siegel | Jan 2016 | A1 |
20160008131 | Christianson et al. | Jan 2016 | A1 |
20160022970 | Forcucci et al. | Jan 2016 | A1 |
20160051796 | Kanemasa et al. | Feb 2016 | A1 |
20160074164 | Naor | Mar 2016 | A1 |
20160074165 | Spence et al. | Mar 2016 | A1 |
20160106539 | Buchbinder et al. | Apr 2016 | A1 |
20160113762 | Clague et al. | Apr 2016 | A1 |
20160113764 | Sheahan et al. | Apr 2016 | A1 |
20160113766 | Ganesan et al. | Apr 2016 | A1 |
20160155987 | Yoo et al. | Jun 2016 | A1 |
20160174979 | Wei | Jun 2016 | A1 |
20160174981 | Fago et al. | Jun 2016 | A1 |
20160242906 | Morriss et al. | Aug 2016 | A1 |
20160287387 | Wei | Oct 2016 | A1 |
20160302811 | Rodriguez-Navarro et al. | Oct 2016 | A1 |
20160317290 | Chau et al. | Nov 2016 | A1 |
20160331523 | Chau et al. | Nov 2016 | A1 |
20160354082 | Oz et al. | Dec 2016 | A1 |
20170020521 | Krone et al. | Jan 2017 | A1 |
20170035561 | Rowe et al. | Feb 2017 | A1 |
20170035566 | Krone et al. | Feb 2017 | A1 |
20170042456 | Budiman | Feb 2017 | A1 |
20170042678 | Ganesan et al. | Feb 2017 | A1 |
20170049455 | Seguin | Feb 2017 | A1 |
20170100119 | Baird et al. | Apr 2017 | A1 |
20170100236 | Robertson et al. | Apr 2017 | A1 |
20170143940 | Flygare et al. | May 2017 | A1 |
20170224955 | Douglas et al. | Aug 2017 | A1 |
20170239048 | Goldfarb et al. | Aug 2017 | A1 |
20170252154 | Tubishevitz et al. | Sep 2017 | A1 |
20170266413 | Khuu et al. | Sep 2017 | A1 |
20170281330 | Liljegren et al. | Oct 2017 | A1 |
20170348102 | Cousins et al. | Dec 2017 | A1 |
20180008311 | Shiroff et al. | Jan 2018 | A1 |
20180021044 | Miller et al. | Jan 2018 | A1 |
20180021129 | Peterson et al. | Jan 2018 | A1 |
20180021134 | McNiven et al. | Jan 2018 | A1 |
20180071488 | Khuu et al. | Mar 2018 | A1 |
20180071489 | Khuu et al. | Mar 2018 | A1 |
20180078271 | Thrasher, III | Mar 2018 | A1 |
20180078361 | Naor et al. | Mar 2018 | A1 |
20180092661 | Prabhu | Apr 2018 | A1 |
20180126124 | Winston et al. | May 2018 | A1 |
20180133008 | Kizuka et al. | May 2018 | A1 |
20180146964 | Garcia et al. | May 2018 | A1 |
20180146966 | Hernandez et al. | May 2018 | A1 |
20180153552 | King et al. | Jun 2018 | A1 |
20180161159 | Lee et al. | Jun 2018 | A1 |
20180168803 | Pesce et al. | Jun 2018 | A1 |
20180185154 | Cao | Jul 2018 | A1 |
20180221147 | Ganesan et al. | Aug 2018 | A1 |
20180235657 | Abunassar | Aug 2018 | A1 |
20180243086 | Barbarino et al. | Aug 2018 | A1 |
20180256851 | Edminster et al. | Sep 2018 | A1 |
20180258665 | Reddy et al. | Sep 2018 | A1 |
20180263767 | Chau et al. | Sep 2018 | A1 |
20180296326 | Dixon et al. | Oct 2018 | A1 |
20180296327 | Dixon et al. | Oct 2018 | A1 |
20180296328 | Dixon et al. | Oct 2018 | A1 |
20180296329 | Dixon et al. | Oct 2018 | A1 |
20180296330 | Dixon et al. | Oct 2018 | A1 |
20180296331 | Dixon et al. | Oct 2018 | A1 |
20180296332 | Dixon et al. | Oct 2018 | A1 |
20180296333 | Dixon et al. | Oct 2018 | A1 |
20180296334 | Dixon et al. | Oct 2018 | A1 |
20180325661 | Delgado et al. | Nov 2018 | A1 |
20180325671 | Abunassar et al. | Nov 2018 | A1 |
20180333259 | Dibie | Nov 2018 | A1 |
20180344457 | Gross et al. | Dec 2018 | A1 |
20180353181 | Wei | Dec 2018 | A1 |
20190000613 | Delgado et al. | Jan 2019 | A1 |
20190000623 | Pan et al. | Jan 2019 | A1 |
20190008642 | Delgado et al. | Jan 2019 | A1 |
20190008643 | Delgado et al. | Jan 2019 | A1 |
20190015199 | Delgado et al. | Jan 2019 | A1 |
20190015200 | Delgado et al. | Jan 2019 | A1 |
20190015207 | Delgado et al. | Jan 2019 | A1 |
20190015208 | Delgado et al. | Jan 2019 | A1 |
20190021851 | Delgado et al. | Jan 2019 | A1 |
20190021852 | Delgado et al. | Jan 2019 | A1 |
20190029498 | Mankowski et al. | Jan 2019 | A1 |
20190029810 | Delgado et al. | Jan 2019 | A1 |
20190029813 | Delgado et al. | Jan 2019 | A1 |
20190030285 | Prabhu et al. | Jan 2019 | A1 |
20190053810 | Griffin | Feb 2019 | A1 |
20190060058 | Delgado et al. | Feb 2019 | A1 |
20190060059 | Delgado et al. | Feb 2019 | A1 |
20190060072 | Zeng | Feb 2019 | A1 |
20190060073 | Delgado et al. | Feb 2019 | A1 |
20190060074 | Delgado et al. | Feb 2019 | A1 |
20190060075 | Delgado et al. | Feb 2019 | A1 |
20190069991 | Metchik et al. | Mar 2019 | A1 |
20190069992 | Delgado et al. | Mar 2019 | A1 |
20190069993 | Delgado et al. | Mar 2019 | A1 |
20190105156 | He et al. | Apr 2019 | A1 |
20190111239 | Bolduc et al. | Apr 2019 | A1 |
20190117113 | Curran | Apr 2019 | A1 |
20190142589 | Basude | May 2019 | A1 |
20190159782 | Kamaraj et al. | May 2019 | A1 |
20190167197 | Abunassar et al. | Jun 2019 | A1 |
20190183644 | Hacohen | Jun 2019 | A1 |
20190192296 | Schwartz et al. | Jun 2019 | A1 |
20190209323 | Metchik et al. | Jul 2019 | A1 |
20190261995 | Goldfarb et al. | Aug 2019 | A1 |
20190261996 | Goldfarb et al. | Aug 2019 | A1 |
20190261997 | Goldfarb et al. | Aug 2019 | A1 |
20190314155 | Franklin et al. | Oct 2019 | A1 |
20190321166 | Freschauf et al. | Oct 2019 | A1 |
20200113683 | Dale et al. | Apr 2020 | A1 |
20200138569 | Basude et al. | May 2020 | A1 |
20200205979 | O'Carroll et al. | Jul 2020 | A1 |
20200237512 | McCann et al. | Jul 2020 | A1 |
20200337842 | Metchik et al. | Oct 2020 | A1 |
20200352717 | Kheradvar et al. | Nov 2020 | A1 |
20200360054 | Walsh et al. | Nov 2020 | A1 |
20200360132 | Spence | Nov 2020 | A1 |
20200368016 | Pesce et al. | Nov 2020 | A1 |
20210022850 | Basude et al. | Jan 2021 | A1 |
20210059680 | Lin et al. | Mar 2021 | A1 |
20210169650 | Dai et al. | Jun 2021 | A1 |
20210186698 | Abunassar et al. | Jun 2021 | A1 |
20210251757 | Siegel et al. | Aug 2021 | A1 |
20210259835 | Tyler, II et al. | Aug 2021 | A1 |
20210267781 | Metchik et al. | Sep 2021 | A1 |
20210307900 | Hacohen | Oct 2021 | A1 |
20210330456 | Hacohen et al. | Oct 2021 | A1 |
20210338418 | Feld | Nov 2021 | A1 |
20210361416 | Stearns | Nov 2021 | A1 |
20210361422 | Gross et al. | Nov 2021 | A1 |
20210361428 | Dixon | Nov 2021 | A1 |
20210378818 | Manash et al. | Dec 2021 | A1 |
20210401434 | Tien et al. | Dec 2021 | A1 |
20220039943 | Phan | Feb 2022 | A1 |
20220039954 | Nia et al. | Feb 2022 | A1 |
20220071767 | Dixon et al. | Mar 2022 | A1 |
20220133327 | Zhang et al. | May 2022 | A1 |
20220142780 | Zhang et al. | May 2022 | A1 |
20220142781 | Zhang et al. | May 2022 | A1 |
20220226108 | Freschauf et al. | Jul 2022 | A1 |
20220233312 | Delgado et al. | Jul 2022 | A1 |
20220257196 | Massmann | Aug 2022 | A1 |
20220287841 | Freschauf et al. | Sep 2022 | A1 |
20220296248 | Abunassar et al. | Sep 2022 | A1 |
20220313433 | Ma et al. | Oct 2022 | A1 |
20230014540 | Metchik et al. | Jan 2023 | A1 |
20230149170 | Giese et al. | May 2023 | A1 |
20230218291 | Zarbatany et al. | Jul 2023 | A1 |
20230270549 | Guidotti et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
1142351 | Feb 1997 | CN |
103565518 | Sep 2015 | CN |
106175845 | Dec 2016 | CN |
106491245 | Mar 2017 | CN |
107789017 | Mar 2018 | CN |
109953779 | Jul 2019 | CN |
110338857 | Oct 2019 | CN |
110495972 | Nov 2019 | CN |
110537946 | Dec 2019 | CN |
110664515 | Jan 2020 | CN |
209996540 | Jan 2020 | CN |
211243911 | Aug 2020 | CN |
211723546 | Oct 2020 | CN |
111870398 | Nov 2020 | CN |
111904660 | Nov 2020 | CN |
112120831 | Dec 2020 | CN |
112168427 | Jan 2021 | CN |
112190367 | Jan 2021 | CN |
212346813 | Jan 2021 | CN |
212415988 | Jan 2021 | CN |
212490263 | Feb 2021 | CN |
113476182 | Oct 2021 | CN |
113855328 | Dec 2021 | CN |
215019733 | Dec 2021 | CN |
0098100 | Jan 1984 | EP |
2146050 | Feb 1973 | FR |
9711600 | Mar 1997 | FR |
2014064694 | May 2014 | WO |
2017015632 | Jan 2017 | WO |
2018013856 | Jan 2018 | WO |
2018050200 | Mar 2018 | WO |
2018050203 | Mar 2018 | WO |
2018195015 | Oct 2018 | WO |
2018195201 | Oct 2018 | WO |
2018195215 | Oct 2018 | WO |
2019139904 | Jul 2019 | WO |
2020106705 | May 2020 | WO |
2020106827 | May 2020 | WO |
2020112622 | Jun 2020 | WO |
2020167677 | Aug 2020 | WO |
2020168081 | Aug 2020 | WO |
2020172224 | Aug 2020 | WO |
2020176410 | Sep 2020 | WO |
2021196580 | Oct 2021 | WO |
2021227412 | Nov 2021 | WO |
2022006087 | Jan 2022 | WO |
2022036209 | Feb 2022 | WO |
2022051241 | Mar 2022 | WO |
2022052506 | Mar 2022 | WO |
2022068188 | Apr 2022 | WO |
2022101817 | May 2022 | WO |
2022140175 | Jun 2022 | WO |
2022153131 | Jul 2022 | WO |
2022155298 | Jul 2022 | WO |
2022157592 | Jul 2022 | WO |
2022212172 | Oct 2022 | WO |
2023003755 | Jan 2023 | WO |
2023004098 | Jan 2023 | WO |
2023278663 | Jan 2023 | WO |
2023288003 | Jan 2023 | WO |
Entry |
---|
Al Zaibag et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis”, British Heart Journal, vol. 57, No. 1, Jan. 1987. |
Al-Khaja et al., “Eleven years' experience with Carpentier-Edwards biological valves in relation to survival and complications”, European Journal of Cardio-Thoracic Surgery, vol. 3, No. 4, pp. 305-311, Jul. 1, 1989, Springer-Verlag, Berlin, Germany. |
Almagor et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits”, Journal of the American College of Cardiology, vol. 16, No. 5, pp. 1310-1314, Nov. 15, 1990. |
Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs”, European Heart Journal, vol. 13, No. 5, pp. 704-708, May 1, 1992, The European Society of Cardiology, Oxford University Press, United Kingdom. |
Andersen, H.R. “History of Percutaneous Aortic Valve Prosthesis,” Herz, vol. 34., No. 5, pp. 343-346, Aug. 2009, Urban & Vogel, Germany. |
Batista RJ et al., “Partial left ventriculectomy to treat end-stage heart disease”, Ann Thorac Surg., vol. 64, Issue—3, pp. 634-8, Sep. 1997. |
Beall AC Jr. et al., “Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis”, Ann Thorac Surg., vol. 5, Issue 5, pp. 402-10, May 1968. |
Benchimol et al., “Simultaneous left ventricular echocardiography and aortic blood velocity during rapid right ventricular pacing in man”, The American Journal of the Medical Sciences, vol. 273, No. 1, pp. 55-62, Jan.-Feb. 1977, Elsevier, United States. |
Dake et al., “Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms”, The New England Journal of Medicine, vol. 331, No. 26, pp. 1729-1734, Dec. 29, 1994. |
Dotter et al., “Transluminal Treatment of Arteriosclerotic Obstruction: Description of a New Technic and a Preliminary Report of Its Application”, Circulation, vol. XXX, No. 30, pp. 654-670, Nov. 1, 1964, Lippincott Williams & Wilkins, Philadelphia, PA. |
Fucci et al., “Improved results with mitral valve repair using new surgical techniques”, Eur J Cardiothorac Surg. 1995;Issue 9, vol. 11, pp. 621-627. |
Inoune et al., “Clinical application of transvenous mitral commissurotomy by a new balloon catheter,” The Journal of Thoracic and Cardiovascular Surgery, vol. 87, No. 3, pp. 394-402, Mar. 1984, Elsevier, United States. |
Kolata, Gina “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study”, The New York Times, Janurary 3,1991, pp. 1-2 [online], [retrieved on Jul. 29, 2009]. Retrieved from the Internet <URL:http://www.nytimes.com. |
Lawrence, Jr., et al., “Percutaneous Endovascular Graft: Experimental Evaluation”, Cardiovascular Radiology 163, pp. 357-360, May 1987. |
Maisano F et al., 'The edge-to-edge technique: a simplified method to correct mitral insufficiency', Eur J Cardiothorac Surg., vol. 13, Issue-3, pp. 240-245, Mar. 1998. |
Pavcnik et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Radiology, vol. 183, No. 1, pp. 151-154, Apr. 1, 1992. Elsevier, United States. |
Porstmann et al., “Der Verschluß des Ductus Arteriosus Persistens Ohne Thorakotomie”, Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203. |
Praz et al., “Compassionate use of the PASCAL transcatheter mitral valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study,” Lancet, vol. 390, pp. 773-780, Aug. 19, 2017, Lancet, United States. |
Reul RM et al., “Mitral valve reconstruction for mitral insufficiency”, Prog Cardiovasc Dis., vol. 39, Issue-6, May-Jun. 1997. |
Rösch et al., “The Birth, Early Years and Future of Interventional Radiology,” Journal of Vascular and Interventional Radiology, vol. 14, No. 7, pp. 841-853, Jul. 1, 2003, Elsevier, United States. |
Sabbah et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview”, Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989. |
Selby et al., “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems”, Radiology, vol. 176, No. 2, pp. 535-538, Jul. 31, 1990, Radiological Society of North America, Oak Brook, IL. |
Serruys et al., “Stenting of coronary arteries. Are we the sorcerer's apprentice?”, European Heart Journal, vol. 10, No. 9 pp. 774-782, Sep. 1, 1989, The European Society of Cardiology, Oxford University Press, United Kingdom. |
Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Textbook of Interventional Cardiology, Second Edition, chapter 48, pp. 803-815, © 1994, W.B. Saunders Company, Philadelphia, PA. |
Uchida et al., “Modifications of Gianturco Expandable Wire Stents”, Technical Note, American Roentgen Ray Society, pp. 1185-1187, May 1988. |
Umaña JP et al., “Bow-tie' mitral valve repair: an adjuvant technique for ischemic mitral regurgitation”, Ann Thorac Surg., vol. 66, Issue-6, pp. 1640-1646, Nov. 1998. |
Urban, Philip MD, “Coronary Artery Stenting”, pp. 5-47, © 1991, ISBN: 2-88049-054-5, Editions Medecine et Hygiene, Geneva, Switzerland. |
Watt et al., “Intravenous adenosine in the treatment of supraventricular rachycardia: a dose-ranging study and interaction with dipyridamole”, British Journal of Clinical Pharmacology, vol. 21, No. 2, pp. 227-230, Feb. 1986, British Pharmacological Society, London, United Kingdom. |
Wheatley, David J., “Valve Prosthesis”, Rob & Smith's Operative Surgery-Cardiac Surgery, vol. 91, No. 2, pp. 415-424, Feb. 1, 1987, Butterworth Scientific, London, UK. |
Grasso et al., “The PASCAL transcatheter mitral valve repair system for the treatment of mitral regurgitation: another piece to the puzzle of edge-to-edge technique”, Journal of Thoracic Disease, vol. 9, No. 12, pp. 4856-4859, Dec. 2017, doi: 10.21037/jtd.2017.10.156, AME Publishing Company, Hong Kong, China. |
Number | Date | Country | |
---|---|---|---|
20220096799 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62560576 | Sep 2017 | US | |
62311031 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15815211 | Nov 2017 | US |
Child | 17548971 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15453735 | Mar 2017 | US |
Child | 15815211 | US |