The present invention relates to a mass damper for an automotive suspension. More particularly, the present invention relates to a multi-directional mass damper which is assembled to a component of an automotive suspension.
As a type of vibration damping device for reducing vibrations of a rod-shaped member, such as a shaft, a torque rod or a suspension link, used in various suspension components, there is known a mass damper having a single direction of tuned functionality. The single direction limitations of the prior art damping devices is due to their construction. Typically these prior art mass dampers consist of a rubber pad having a mass chemically bonded to one side of the rubber pad. A mounting bracket chemically bonded to the other side of the rubber pad is utilized to mount or attach the mass damper to the vibrating component. The design for the rubber pad and the mass are chosen to have a natural frequency that corresponds to the natural frequency that needs to be damped.
One problem with the prior art mass dampers is that they are limited to providing improved damping in only a single direction. When a specific application requires that vibration damping is required in multiple directions, the only option is to provide a separate single direction mass damper for each direction that requires damping.
The present invention provides the art with a multi-directional damper which effectively dampens vibrations in multiple directions. The design for the multi-directional damper also provides for a unique and uncomplicated method for assembly, saving both time and money.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
There is illustrated in
Each elastomeric bushing assembly 12 comprises an eyelet 22, a center connection fitting 24 and an elastomeric bushing 26 disposed between eyelet 22 and center connection fitting 24. Each elastomeric bushing assembly 12 is attached to an end of center rod 14 by welding or by other means known in the art. Link assembly 10 is connected between two components of a suspension system utilizing the appropriate connectors and center connection fittings 24.
Referring now to
The assembly of mass damper assembly 16 or 16′ is accomplished by stretching the inner diameter of elastomeric bushing 34 and sliding the pre-assembled mass damper assembly 16 or 16′ onto center rod 14 prior to the welding of one or both of eyelets 22 of elastomeric bushing assemblies 12. Once positioned at the proper axial and circumferential position on center rod 14, mass damper assembly 16 or 16′ is held in position by mechanically or chemically bonding elastomeric bushing 34 to center rod 14. The bonding of elastomeric bushing 34 to center rod 14 removes the need for fasteners and/or bolted joints to attach the mass damper to the suspension link. Once the mass dampers have been bonded to center rod 14, the assembly continues with the welding of the remaining eyelets 22 and the assembly of elastomeric bushing assemblies 12.
Mass damper assembly 16 or 16′ is capable of damping vibrations in multiple radial directions and thus eliminates the need for having a separate tuned damper for each direction that requires additional damping.
Referring now to
The assembly of mass damper assembly 18 is the same as that described above for mass damper assembly 16 and once assembled, mass damper assembly 18 is held in position by mechanically or chemically bonding elastomeric bushing 134 to center rod 14.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
60587895 | Jul 2004 | US |