The present invention generally relates to various tools designed for tightening or loosening fasteners, in particular bolts and nuts. More specifically, the present invention is an anti-slip multidirectional driver bit, designed to prevent damaging or stripping fasteners during the extraction or tightening process.
Hex bolts, nuts, screws, and other similar threaded devices are used to secure and hold multiple components together by being engaged to a complimentary thread, known as a female thread. The general structure of these types of fasteners is a cylindrical shaft with an external thread and a head at one end of the shaft. The external thread engages a complimentary female thread tapped into a hole or a nut and secures the fastener in place, fastening the associated components together. The head receives an external torque force and is the means by which the fastener is turned, or driven, into the female threading. The head is shaped specifically to allow an external tool like a wrench to apply a torque to the fastener in order to rotate the fastener and engage the complimentary female threading to a certain degree. This type of fastener is simple, extremely effective, cheap, and highly popular in modern construction.
One of the most common problems in using these types of fasteners, whether male or female, is the tool slipping in the head portion, or slipping on the head portion. This is generally caused by either a worn fastener or tool, corrosion, overtightening, or damage to the head portion of the fastener. The present invention is a driving bit design that virtually eliminates slippage. The design uses a series of segmented portions that bite into the head of the fastener and allow for efficient torque transfer between the driving bit and the head portion of the fastener. The present invention eliminates the need for the common bolt extractors as they require unnecessary drilling and tools. With the development of electric screwdrivers, and drills, people have been using, power tools to apply the required torsional forces and remove various fasteners. The present invention provides a double-sided driver end bit, thus allowing for torque to applied to the fastener in both clockwise and counterclockwise directions, thus tightening or loosening the fastener. Most driver end bits have a standardized one fourth inch hex holder, and come in various configurations including but not limited to, square end, hex end, or star end.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention generally related to torque tool accessories. More specifically, the present invention is a multi-grip socket bit, also known as a screw bit or driver. The present invention allows for a higher torque to be applied to a socket fastener than a similarly sized conventional driver bit without damaging the head of the socket fastener or the bit tool. This is achieved through the use of a multitude of engagement features which effectively grip the head of the socket fastener. The present invention is a socket bit that is compatible with a variety of torque tools including, but not limited to, traditional drills, bit-receiving screwdrivers, socket wrenches, and socket drivers.
In its simplest embodiment, referring to
Referring to
The bracing surface 5 physically presses against the socket fastener, in particular the lateral sidewall of a head portion from the socket fastener. The first lateral edge 3 and the second lateral edge 4 are positioned opposite to each other across the bracing surface 5. When viewed from either the top perspective or the bottom perspective, the first lateral edge 3 and the second lateral edge 4 from each of the plurality of laterally-bracing sidewalls 2 make up the corners of the screw bit body 1. The engagement cavity 6 traverses normal and into the bracing surface 5 and creates an additional gripping point/tooth on the bracing surface 5. This gripping point is created with the engagement cavity 6 and an adjacent edge, wherein the adjacent edge is either the first lateral edge 3 or the second lateral edge 4; in particular, the adjacent edge is the edge closest to the engagement cavity 6. Additionally, the engagement cavity 6 traverses into the screw bit body 1 from the first base 11 towards the second base 12. This ensures that the additional gripping point extends along the length of the screw bit body 1 for maximum grip engagement between the screw bit body 1 and the socket fastener. In one embodiment, the engagement cavity 6 also tapers from the first base 11 to the second base 12. Referring to
The angled driving portion 7 and the bracing surface 5 may be orientated at an obtuse angle to each other. A length of the angled driving portion 7 from the second end 9 towards the first end 8 and a length of the concave portion 10 from the second end 9 towards the bracing surface 5 makes no contact with the fastener. The meeting point between the concave portion 10 and the bracing surface 5 is a pivot point when torque is applied to the bit increasing the engagement feature bite into the fastener sidewall.
The preferred proration between the concave portion 10 and the bracing surface 5 and the angled driving portion 7 is undetermined, yet also may be at a ratio of 5 for bracing surface 5, 2.5 for concave portion 10 and 2.5 for angled driving portion 7. In another proration the ratio is 6 for bracing surface 5, 2 for concave portion 10 and 2 for angled driving portion 7.
The present invention offers the ability to be used as a normal bit and a bit which provides additional gripping force. When the present invention is rotated with the additional gripping teeth engaging the socket fastener, slippage is prevented. Alternatively, when the present invention is rotated in the opposite direction, the bracing surface 5 provides enough grip to rotate the socket fastener. Resultantly, the present invention is a multi-directional driver bit.
Referring to
The present invention also incorporates an attachment feature which allows an external torque tool to attach to the screw bit body 1 and transfer torque force onto the socket fastener through the screw bit body 1. Referring to
In another embodiment, referring to
In one embodiment, referring to
In an alternative embodiment of the present invention, the screw bit body 1 is tapered from the second base 12 to the first base 11 forming a shaper end, similar to traditional screw driver heads. In an alternative embodiment, the present invention is implemented as a ball-end screw bit. In this embodiment, the bracing surface 5 of each of the plurality of laterally-bracing sidewalls 2 comprises a concave surface and a convex surface. The convex surface is positioned adjacent to the first base 11 such that the convex surface from each of the plurality of laterally-bracing sidewalls 2 forms a ball-like shape. The concave surface is positioned adjacent to the convex surface, opposite to the first base 11 such that the convex surface from each of the plurality of laterally-bracing sidewalls 2 further forms the ball-like shape and provides clearance for when the screw bit body 1 is engaged to the socket fastener at an angle. The convex surface and the concave surface are oriented along the rotation axis 13 of the screw bit body 1 to position the ball-like shape terminally on the screw bit body 1. It is preferred that the curvature, length, and height of the concave surface and the convex surface is identical. As a result, the screw bit body 1 overall has a ball-like shape. This allows the user to engage the socket fastener at an angle, an especially useful feature for fasteners located in hard to reach areas.
In yet another embodiment of the present invention, the at least one engagement cavity 6 comprises a first cavity and a second cavity. The first cavity and the second cavity are positioned opposite to each other across the bracing surface 5. Additionally, the first cavity and the second cavity are oriented towards each other, thus creating two additional gripping points on each of the plurality of laterally-bracing sidewalls 2. Resultantly, the screw bit body 1 engages the socket fastener regardless of the rotation.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
The current application is a CIP bypass of international Patent Cooperation Treaty (PCT) application PCT/US2018/050948 filed on Feb. 28, 2018. The application PCT/US2018/050948 claims a priority to the U.S. Provisional Patent application Ser. No. 62/459,371 filed on Feb. 15, 2017. The current application also claims a priority to a U.S. non-provisional application Ser. No. 16/107,842 filed on Aug. 21, 2018. The U.S. non-provisional application Ser. No. 16/107,842 claims a priority to a U.S. provisional application Ser. No. 15/650,768 filed on Jul. 11, 2017.
Number | Date | Country | |
---|---|---|---|
61986327 | Apr 2014 | US | |
62664559 | Apr 2018 | US | |
62459371 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16107842 | Aug 2018 | US |
Child | 16592018 | US | |
Parent | 14701482 | Apr 2015 | US |
Child | 16107842 | US | |
Parent | 15601864 | May 2017 | US |
Child | 16107842 | US | |
Parent | PCT/IB2018/050948 | Feb 2018 | US |
Child | 15601864 | US |