This application claims the priority benefit of Taiwan application serial no. 98104651, filed on Feb. 13, 2009. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
1. Technical Field
The disclosure relates to a speaker device. More particularly, relates to a multi-directional flat speaker device.
2. Background
The two most direct sensory systems of human being are visual and audible systems, so for a long time, scientists try their best to develop related elements or system techniques. The demand of providing the user with more plentiful or specific sound fields by utilizing the composition of speaker system will be consistent in the future market application. Recently, electro-acoustic speakers are mainly classified into direct and indirect radiating types, and are approximately classified into moving coil, piezoelectric, and electrostatic speakers according to driving manners. The moving coil speaker is currently the most commonly used and most mature product. However, a moving coil speaker cannot be compressed due to the physical structure thereof. Accordingly, moving coil speaker is not suitable for 3C products and home entertainment systems which have their sizes reduced constantly. A piezoelectric speaker pushes a membrane to produce sounds based on the piezoelectric effect of an electrical material (i.e., the material is deformed when an electric field is supplied thereon). Although having a compressed and small structure, the piezoelectric speaker can not be flexible as the electrical material requires sintering.
Currently, the manufacture of speakers still applies the design production method as that for a single unit as illustrated in U.S. Pat. No. 3,894,199.
As for the electrostatic speaker, for example, in U.S. Pat. No. 3,894,199, an electro-acoustic transducer structure is mainly provided, as shown in
The embodiment is a multi-directional flat speaker device, which includes a plurality of speakers having directional effects, a control mechanism, and a serial connection device. The speakers with directional effects can transmit sounds to appointed locations. The control mechanism is directed to control the rotation angles of the speakers having directional effects. The serial connection device is directed to connect the speakers having directional effects.
In one embodiment, the multi-directional flat speaker device includes a plurality of flat speakers with sound field directional characteristics, a serial connection mechanism, and a control mechanism. The serial connection mechanism is configured to connect the flat speakers serially in a parallel manner. The control mechanism controls one or more of the flat speakers to rotate respectively, and generates a directional sound field according to the rotation angle of the flat speaker.
In the multi-directional flat speaker device, wherein the control mechanism independently actuates each of the flat speakers to rotate a corresponding angle thereof, or actuates all of the flat speakers to rotate a same angle.
In the multi-directional flat speaker device, wherein the control mechanism drives the serial connection mechanism to rotate through a transmission belt. The control mechanism can apply the mechanical or electrical controlling manner.
The multi-directional flat speaker device, wherein the flat speakers are connected to an audio input interface for receiving at least one or a plurality of set(s) of audio signal inputs, and transmitting the foregoing audio signals to the corresponding flat speakers.
In the multi-directional flat speaker device, wherein the audio input interface receives a plurality of processed divided signals and transmits the processed divided signals to each of the appointed speakers with directional effects through the serial connection mechanism. Afterward, the control mechanism is utilized in cooperation to drive each of the flat speakers for transmitting the processed divided signals, which is obtained from the audio input interface, to a specific direction.
The accompanying drawings are included to provide a further understanding of the embodiment, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments and, together with the description, serve to explain the principles of the embodiment.
The electrostatic speaker includes mainly Hi-End earphone and loudspeaker in the current market. The operating principle for the conventional electrostatic speaker is that two fixed electrode plates with holes are used to clamp a conductive vibrating film to form a capacitor, and then a DC bias is applied to the vibrating film and an AC voltage is applied to two fixed electrodes, and electrostatic force generated by the positive and negative electric fields is used to drive the conductive vibrating film to vibrate and to radiate sounds. The basic structure of the thin-type flat speaker technology has a characteristic of being high directional, and this characteristic can be applied in the design of sound fields.
In one embodiment provides that by the sound field directional characteristics of the flat speaker device, accompanied with the external multi-directional control mechanism, a composite sound field is generated as desired accordingly. The design makes the applications of the flat speaker device more suitable to meet the requirement of future utilizations.
The multi-directional control mechanism to actuate the flat speakers can be achieved by controlling one or more of the flat speakers to rotate in a unique manner or independently. The control mechanism can be designed by a mechanical or an electrical controlling manner.
Therefore, in the application of conventional speakers, the flat speakers with directivity can be utilized so as to be apart from the design of conventional speakers. Consequently, the sound components can be utilized in many other application fields, and is becoming a major point in the development of flat speaker techniques.
The multi-directional flat speaker device includes a plurality of speakers having directional effects, a control mechanism, and a serial connection device. The speakers with directional effects can transmit sounds to preset locations. The control mechanism, such as a control unit, is directed to control the rotation angles of the speakers having directional effects. The serial connection device is directed to connect the speakers having directional effects. The audio input interface is configured to receive the external audio signal inputs.
In the multi-directional flat speaker device, wherein the control mechanism can control the speakers with directional effects to make sounds at the same direction or individual directions.
In the multi-directional flat speaker device, wherein the serial connection device can be assembled by transmission lines that are sharing transmission audio signals or by applying an external facilitating connection mechanism.
In the multi-directional flat speaker device, wherein the audio input interface can receive one or a plurality of set(s) of audio signals. If the sets of audio signals are inputted, the audio signals can be a plurality of identical signals or a plurality of processed divided signals.
In the multi-directional flat speaker device, if the audio input interface receives the processed divided signals, the signals can be transmitted to each of the preset speakers with directional effects through the serial connection device. Afterward, the control mechanism is utilized in cooperation to drive each of the speakers with directional effects for transmitting the processed divided signals, which is obtained from the audio input interface, to a specific direction.
In the multi-directional flat speaker device of the embodiment, the effect of special sound field is achieved by utilizing the directional characteristics of the flat electrostatic speaker structure. The fundamental principle of the flat electrostatic speaker utilizes the charge characteristics and the electrostatic force effect in the vibrating film material. When the vibrating film is stimulated by an external voltage, the vibrating film surface generates deformation, so as to drive the air around the vibrating film to generate sounds. As known from the electrostatic force formula and energy laws that, the force applied on the vibrating film equals to the capacitance value of the whole speaker multiplied by the intensity of the internal electric field and the externally-inputted sound voltage signal, and the larger the force applied on the vibrating film is, the louder the outputted sound is.
On the other hand, the moving coil speakers can not apply multiple sets of moving coil speakers within a suitable area for achieving the sound directional effect. Hence, the embodiment provides diagrams as illustrated in
The serial connection mechanism is driven by a control mechanism, and is configured to actuate the flat speakers to individually rotate in the same direction or different directions. The control mechanism can be achieved by a method of assembling an electrical circuit and a mechanical mechanism. In one embodiment, a method of assembling a simple mechanical mechanism, for example, applying a structure similar to the structures of shutters that are pulled manually, can be used. In addition, a method of linking serial connected thin-type flat speakers is to apply transmission lines for transmitting audio signals or an external facilitating mechanism.
Referring to
By controlling the thin-type flat speakers 210, 211, 212, 213, 214, and 215 that are serially connected, the control mechanism 230 can control the serially connected thin-type flat speakers to send sounds in a same direction by using the directional characteristics thereof. Hence, the sound sending location can receive a volume louder than the normal.
In a multi-directional flat speaker device 200, the flat speakers 210, 211, 212, 213, 214, and 215 are connected to an audio input interface 250 for receiving one or a plurality set(s) of audio signals from an external music playing device. If the sets of audio signals are inputted, then the signals can be a plurality of identical signals or a plurality of processed divided signals.
In the multi-directional flat speaker device 200, if the audio input interface receives the processed divided signals, the signals can be transmitted to each of preset speakers with directional effects through the serial connection mechanism. Afterward, the control mechanism is utilized in cooperation to drive each of the speakers with the directional effects for transmitting the processed divided signals of the audio input interface to a specific direction.
In another embodiment of the multi-directional flat speaker device, a flat speaker with characteristics of being light, thin, flexible, and the like can be applied as illustrated in
Referring to
In another embodiment of the multi-directional flat speaker device, a control mechanism can be utilized to control serially connected thin-type flat speakers for sending sounds individually to directions preset by a user. Therefore, audience at different locations can all sense the audio information as required. Referring to
The serial connection devices 520, 521, 522, 523, 524, and 525 are respectively driven by the control mechanism, so that every flat speaker can rotate at a different angle. In other words, sounds can be sent to the directions preset by the user as illustrated in
In order to achieve this goal, in one embodiment, a control mechanism 530 and a plurality of stepping motors 532 are respectively connected to the serial connection devices 520, 521, 522, 523, 524, and 525. Each of the serial connection devices 520, 521, 522, 523, 524, and 525 has, for example, gear wheels on two sides. Moreover, every gear wheel is engaged to a stepping motor 532 correspondingly, and driven by the stepping motor 532 to rotate. The driving circuit and the control mechanism 530 control each stepping motor 532 to rotate individually.
In another embodiment of the multi-directional flat speaker device, not only a control mechanism can be utilized to control serially connected thin-type flat speakers to send sounds individually to directions preset by a user, but baffles can also be added, as illustrated in
A disposition of the serial connection devices 620, 621, 622, and 623 being serially connected to the corresponding flat speakers 610, 611, 612, and 613 can be disposed in a linear manner, an annular manner or a half-annular manner with a specific radian. The disposition is designed based on demands of actual products or different disposing locations of the multi-directional flat speaker devices. For instance, referring to
A supporting mechanism between the thin-type flat speakers and the serial connection devices can be disposed at an edge or a specific location of the flat speaker. For example, referring to
In addition, an assembly of the flat speaker and the serial connection device can be referred to
A control mechanism for controlling the thin-type flat speakers can control individual speakers to face a same direction or different directions. The control mechanism can be a method of assembling an electrical circuit and a mechanical mechanism, or simply a method of assembling a mechanical mechanism. In addition, a method of linking serial connected thin-type flat speakers can apply transmission lines for transmitting audio signals, or an external facilitating mechanism.
The multi-directional flat speaker device includes an audio input interface for receiving one or a plurality set(s) of audio signals. Herein, the audio signals can be identical signals or a plurality of processed divided signals that is provided to different flat speakers. Therefore, the flat speakers with directivity can be individually driven to output the processed divided signals from an audio end to different directions. Thus, a specific sound field effect design can be achieved.
Moreover, a structure of the flat speaker aforementioned, referring to
The speaker unit structure 900 includes a vibrating film 910, an electrode layer 920 with a plurality of holes, a frame supporting body 930, and a plurality of supporting bodies 940 between the electrode layer 920 and the vibrating film 910. A sound cavity structure is present on a side that is opposite to the side of the vibrating film 910 facing the electrode layer 920. The sound cavity structure is assembled by a sound cavity substrate 960 and a plurality of sound cavity supporting bodies 970, which is disposed between the vibrating film 910 and the sound cavity substrate 960. The vibrating film 910 includes an electret layer 912 and a metal thin film electrode 914. Herein, a side surface 912a of the electret layer 912 is connected to the frame supporting body 930 and the supporting bodies 940. Moreover, another side surface 912b is electrically connected to the metal thin film electrode 914.
The electrode layer 920 having a plurality of holes can be assembled by metal material. In one embodiment, flexible material, such as paper or ultra-thin non-conductive material layer, can also be applied by plating a layer of metal thin film on a surface thereof.
When the electrode layer 920 is a non-conductive material being plated with a layer of metal thin film, the non-conductive material can be non-conductive material such as plastic, rubber, paper, non-conductive fabric (cotton fiber, high polymer fiber), etc, and the metal thin film can be pure metal material such as aluminum, gold, silver, copper, an alloy thereof, bi-metal material such as Ni/Au, one of indium tin oxide (ITO) or indium zinc oxide (IZO) or a combination thereof, or high polymer conductive material PEDOT, etc.
In another embodiment, when the electrode layer 920 is assembled by conductive material, the electrode layer 920 can be assembled by one of metal (iron, copper, aluminum, etc, or an alloy thereof) and conductive fabric (metal fiber, metal oxide fiber, carbon fiber, graphite fiber).
A material of the electret layer 912 can be dielectric material. The dielectric material can maintain static charges for a long time after being electrized, and can generate ferroelectric effect therein after being charged, and is thus called the electret vibrating film layer. The electret layer 912 can be fabricated by mono-layer or multi-layer dielectric material, and the dielectric material can be, for example, fluorinated ethylenepropylene (FEP), polytetrafluoethylene (PTFE), polyvinylidene fluride (PVDF), some Fluorine Polymer, and other suitable materials. Additionally, the interior of the dielectric material includes micro or micro nano-pores. The electret layer 912 is a vibrating film capable of maintaining the static charges and piezoelectricity for a long time after the dielectric material is electrized, and includes micro nano-pores to increase the transmittance and piezoelectric characteristics. Thus, after being charged by corona, dipolar charges are generated in the material to generate the ferroelectric effect. In order not to affect the tension and vibration effects of the vibrating film 910, the metal thin film electrode 914 may be an ultra-thin metal thin film electrode. The thickness of the defined “ultra-thin” herein is between about 0.2 μm (micrometer, μm) and 0.8 mm (millimeter, mm), and the preferred thickness is between about 0.2 μm and 0.4 μm in an embodiment, which may be approximately 0.3 μm.
The electret layer 912 that is fully injected with negative charges is set as an example for illustration. The input audio signals are respectively connected to the electrode layer 920 having the plurality of holes and the metal thin film electrode 914. When the input audio signal is a positive voltage, it generates an attractive force with the negative charges of the electret vibrating film on the speaker unit. When the audio signal is a negative voltage, it generates a repulsive force with the positive charges on the speaker unit, so as to cause the movement of the vibrating film 910.
On the contrary, when the voltage-phase input of the audio signal has changed, the positive voltage similarly generates an attractive force with the negative charges of the electret vibrating film on the speaker unit while the negative voltage generates a repulsive force with the positive charge on the unit, and the vibrating film 910 moves towards an opposite direction. When the electret vibrating film 910 moves towards different directions, it generates sound output by means of compressing the surrounding air.
As for the speaker unit structure 900 in this embodiment, a thin film 950 with air-permeable and water-proofing characteristics may be wrapped on one or two sides thereof, for example, GORE-TEX thin film made of expanded PTFE (ePTFE) material, which can prevent influences caused by water and oxidation that may result in the leakage of the charges of the electret layer 912 and thus affecting the ferroelectric effect.
A working region of the vibrating membrane 910 is formed between the electrode layer 920 and the vibrating membrane 910 through the adjacent supporting bodies 940, that is, a cavity space 942 of the speaker for generating a resonant sound field is formed. A working region of the vibrating membrane 910 is formed between the electrode layer 960 and the vibrating membrane 910 through the adjacent supporting bodies 970, that is, a cavity space 972 of the speaker for generating a resonant sound field is formed. No matter for the supporting bodies 940 or the sound cavity supporting bodies 970, the disposing manner, the height, and other designs may be adjusted according to the requirements on design. In addition, the number of the sound cavity supporting bodies 970 may be equal to, less than, or more than that of the supporting bodies 940. The supporting bodies 940 or the sound cavity supporting bodies 970 may be respectively fabricated on the electrode layer 920 or the sound cavity substrate 960.
The sound cavity structure provided in the embodiment is disposed on a surface of the metal thin film electrode 914 of the vibrating film 910. The optimal design of supporting bodies or material of disposing sound absorbing cotton are disposed according to the consideration of the frequency design of the speaker. Here, the disposing manner, the height, and other designs may be adjusted, and the configuration thereof can be of random shapes. Moreover, the cavity space formed by the frame supporting body at the location of the sound cavity structure may optionally include a sound releasing hole 972 for releasing the pressure from generating sounds to produce a better sound field effect.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the embodiment without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the embodiment cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
98104651 | Feb 2009 | TW | national |