The present invention relates to an illumination for a microscope.
Additionally, the present invention relates to microscope.
The British Patent Application GB 408899 A shows a stand in the form of a spherical dome having its centre in the surface to be examined. The dome rests with feet on the surface. A tube screwed into an aperture in the dome carries the illumination parts consisting of a lamp and lenses.
The Japanese Patent Application JP 201163954 A describes a wire surface defect detection system. The wire surface defect detection system radiates light to the surface of the wire and searches for a flaw in the wire surface with a camera. The camera is arranged perpendicularly to and above the wire surface. A dome member is disposed between the camera and the wire. The inner surface of the dome member is a reflecting surface, and light sources for radiating light toward the camera side and uniformly radiating light having been reflected on the reflecting surface to the wire surface are disposed at a constant interval inside the lower opening end of the dome member.
The US Patent Application US 2010/208980 A1 discloses an apparatus for inspecting a semiconductor wafer. A plurality of light sensors is arranged relative to a light source and the wafer inspection platform. Consequently, images of different angle views of a surface of the wafer can be received and compared with corresponding images taken of a reference wafer. The light sensors may receive superposed images of light reflected directly from the light source of the wafer surface and light indirectly reflected of the wafer surface after first reflecting on a dome with a diffusely reflecting inner surface positioned over the platform.
An illumination device for visual inspection is disclosed in the US Patent Application US 2010/246174 A1. A transmissive reflector plate that is formed of a light transmitting material and has an opening in a center. The reflector has a dome shape, a radius of which is gradually expanded downward and with an opening in a center. The dome has a lower surface formed as a reflecting surface on which fine unevenness for diffusing and reflecting light from below is formed. An upper surface is located on an opposite side of the lower surface. A first, second, and third light source unit, that irradiate light on an inspection object, wherein the first, second, and third light source units being provided on the upper surface of the transmissive reflector plate and arranged in a place below the opening. A fourth light source unit that irradiates light on the inspection object and being provided below the transmissive reflector plate.
From the discussion of the prior art above, it is evident, that in general dome illumination is used to illuminate objects with complex shapes. Image artefacts related to the topography of this kind of objects (shadows, bright and dark spots) will be reduced significantly by the dome illumination. The general concept is that light sources are located at the bottom in order to illuminate the inside of the dome. The inside of the dome is covered with a highly reflective and diffuse material which scatters the light. The scattered light will eventually illuminate the object. The imaging system looks through a hole in the center of the top of the dome towards the object. The most important property of this illumination is that it strikes the object at multiple angles hence reducing shadows and hotspots.
One disadvantage of the prior art design is that a dome cannot be used on a microscope. First of all the working distance of a microscope is short (less than 20 mm). The dome should fit between the object and the objective lens which means the height of the dome should also be less than 20 mm. All commercially available domes have larger sizes.
It is an object of the invention to provide illumination for a microscope which creates the opportunity to do inspections on objects with complex shapes, wherein due to the illumination image artefacts related to the topography of this kind of objects (shadows, bright and dark spots) are reduced.
The above object is achieved by an illumination for a microscope comprising:
A further object of the invention to provide a microscope, which has an illumination enabling inspections on objects with complex shapes, wherein due to the illumination image artefacts related to the topography of this kind of objects (shadows, bright and dark spots) are reduced.
The above object is achieved by a microscope comprising:
According to an advantageous embodiment the objective lens has a ring shaped mirror which is arranged in a dark field illumination path of the objective lens. A reflective surface of the ring shaped mirror is formed such that incident light from the at least one light source is reflected towards an inner surface of the dome. The inner surface of the dome is coated with some highly reflective diffuse material and formed such, that the light is scattered towards the object. Beside the at least one light source for providing light in the dark field mode, an additional light source is arranged such that light from the additional light source shines under the dome onto the surface of the object. It is advantageous if the additional light source is a ring light.
The material of the dome is made from a highly reflective and diffuse material.
Another embodiment of the invention is, that the at least one light source is an external light source being arranged such that an external light impinging on the dome is scattered towards the object. The dome is made of transparent diffuse material.
According to a further embodiment, the at least one light source is an external light source which is arranged such that an external light impinging on the dome is scattered towards the object and the dome is made of a wavelength converting material.
The external light source is a ring light with at least one LED with a wavelength band λex±Δλex. The wavelength converting material of the dome provides a wavelength band λem±Δλem for the illumination of the object, wherein λem±Δλem≢λex±Δλex.
According to a further embodiment of the invention the at least one light source is an external light source being arranged such that an external light impinging on the dome is refracted towards the object and the dome is made of a transparent material with multiple facets. Each facet has a refracting power in order to refract part of the impinging beam of external light towards the object. The facets are formed on an outside of the dome or on an inside of the dome. Here the external light source is as well a ring light.
The inventive microscope has an internal light source which provides light to a ring shaped mirror arranged in a dark field illumination path of the objective lens. A reflective surface of the ring shaped mirror is formed such that incident light from the at least one internal light source is reflected towards an inner surface of the dome. The inner surface of the dome is coated with some highly reflective diffuse material and formed such that the light is scattered towards the object. The dome is coated with some highly reflective diffuse material. An external light source, in the form of a ring light can be arranged such that light from the ring light shines under the dome onto the surface of the object.
According to another embodiment the dome is made of transparent diffuse material. The external light source is arranged such that an external light impinging on the dome of the objective lens is scattered towards the object. Another embodiment is that the dome is made of a wavelength converting material for converting a wavelength band λex±Δλex of the external light to a wavelength band λem±Δλem for the illumination of the object, wherein λem±Δλem≢λex±Δλex.
According to another embodiment the external light is arranged such that an external light impinges on the dome. The dome is made of a transparent material with multiple facets wherein each facet has a refracting power in order to refract part of the impinging beam of external light towards the object.
The invention makes it possible to provide a dome which is sufficiently small that it can be used on a microscope. Different objective lenses on the microscope turret will have different working distances and fields of view. Basically this means that each lens requires its own dome and an illumination for the dome. The only way to achieve this would be mounting the dome on the objective lens so that the dome and objective lens move together whenever the microscope turret is rotated.
All the embodiments of the dome described herein have the advantage that the light source is not integrated in the dome. Because of this it is possible to create smaller domes which can be mounted on the objective lens of a microscope. A second benefit of the light source not being integrated in the dome is that no cabling is required. This makes it possible to mount the dome on a microscope turret without ending up with bungled cables.
In case of the embodiment with multiple facets, there is an additional benefit in the available degrees of freedom for the design. This gives high control over the resulting light distribution. On top of that this dome relies on refraction rather than scattering. This makes it more efficient resulting in higher illumination levels.
The nature and mode of operation of the present invention will now be more fully described in the following detailed description of the invention taken with the accompanying drawing figures, in which
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail to not unnecessarily obscure the present invention. While the invention will be described in conjunction with the specific embodiments, it will be understood that it is not intended to limit the invention to the embodiments.
Same reference numerals refer to the same elements throughout the various figures. Furthermore, only reference numerals necessary for the description of the respective figure are shown in the figures. The shown embodiments represent only examples of how the invention can be carried out. This should not be regarded as limiting the invention.
The dome 2 according to the invention is sufficiently small so that it is feasible to use it on the microscope 10. The microscope turret 4 carries different types of objective lenses 6 each of which has different working distance and a field of view (not shown). This means that each objective lens 6 requires its own dome 2 and its own illumination. A specific dome 2 is mounted on each objective lens 6 so that the dome 2 and objective lens 6 move together in an to optical axis 14 of the microscope 10 (see
In
A further embodiment of the invention is shown in
In
The angle distribution of the light 15 provided by the at least one light source 20 (see
The embodiment shown in
The invention has been described with reference to specific embodiments. It is obvious to a person skilled in the art, however, alterations and modifications can be made without leaving the scope of the subsequent claims.
This application is a Continuation of International Patent Application Serial No. PCT/US2013/057046, filed on Aug. 28, 2013, which application claims priority of U.S. Provisional Patent Application No. 61/693,966, filed on Aug. 28, 2012, which applications are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61693966 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2013/057046 | Aug 2013 | US |
Child | 14199404 | US |