This disclosure relates generally to an implement control system for a machine, such as a backhoe loader, that is adjustable in at least two directions for the comfort and ease of use of operators of varying heights, weights and body shapes.
Many machines have been developed for excavating. One commercially available type of machine often used for excavating is a backhoe loader. Generally, a backhoe loader includes a backhoe mounted on a tractor or other machine body that is moveable along the ground on wheels or tracks. The backhoe may be the only excavating implement on the tractor or machine body, or it may be one of a plurality of implements. For example, a backhoe loader may include a backhoe mounted at one end of a tractor and a loader bucket mounted at the other end of the tractor. Stabilizing legs may also be included to hold the tractor in place while the operator is digging with the backhoe.
A typical backhoe loader may include a boom coupled to the tractor, a stick coupled to the boom, a backhoe (or bucket) coupled to the stick and various hydraulic components and linkages for controlling the movement and position of the backhoe. In general, the boom may be pivotally mounted to the machine for movement in a generally vertical plane (this can also pivot left and right with respect to the tractor); the stick may be pivotally mounted to the boom for movement generally vertical with respect to the boom; and the backhoe may be pivotally mounted to the stick. The boom and/or the stick may be a fixed length element or it may be of the extendable, telescoping type. Each of the boom, stick, and bucket may be moved about various pivotal connections by one or more actuators, such as hydraulic cylinders. Further, the entire excavating assemblage of boom, stick, and backhoe may be mounted on the machine body that functions as a turret for swinging movement in a generally horizontal plane relative to the machine body.
Since the excavating assemblage of a backhoe loader is typically mounted at the rear of the tractor, the operator faces the rear of the machine during an excavating operation. Controls for the moving and positioning the backhoe and stabilizer legs may be located convenient to the rear-facing direction, while controls for the front loader bucket, steering, engine throttle, and brake may be located convenient to the front-facing direction.
Modern backhoe loaders typically employ a joystick-based control system for the various implements that control the movement and position of the backhoe, including the hydraulics that control movements of the backhoe, boom, stick and stabilizer legs. In fact, many backhoe loaders include dual control pods, each with a joystick disposed on top of a vertically oriented arms that are spaced apart on either side of the operator's seat.
Throughout the life of a backhoe loader, operators of different sizes and shapes will operate the implement controls. These operators of various sizes and shapes require multiple seating positions during a typical work cycle, depending upon where the work is being performed relative to the eye point of the operator. Conversely, many operators must use a variety of backhoe loaders, each with different interior dimensions and different placements of the implement control pods. As a result, consistently comfortable and ergonomic operating positions for each operator for all operating situations is difficult to provide. Further, because an operator must use both right hand and left hand control pods and because the control pods are sensitive, the comfort and ergonomics of the operator's position can directly affect both productivity and safety.
Accordingly, there is a need for backhoe control pods that are more fully adjustable than the control pods that are currently available. Such an improvement may increase the productivity of operators that use a variety of backhoe loaders and/or that feel a need to adjust the positions of the control pods or the operator seat multiple times during a work operation.
A position-adjustable, dual-pod control system for a machine is disclosed. The machine includes a fore-aft centerline that extends between the front and rear of the machine. The disclosed system may include a horizontal cross beam, a pair of brackets, a pair of bearings and a pair of pod arms. The cross beam includes two opposing ends and is disposed at least substantially perpendicular to the fore-aft centerline. Each pod arm includes a top end and a bottom end. Each end of the cross beam may be coupled to one of the brackets. Each bracket may be pivotally coupled to the bottom end of one of the pod arms about parallel first axes that are both at least substantially parallel to the fore-aft centerline. As a result, the pod arms may pivot about the first axes that are at least substantially perpendicular to the fore-aft centerline. Further, each bracket and each bottom end of each pod arm may include coaxial through holes that accommodate one of the bearings. The pair of bearings may be coaxially aligned along a second axis that is at least substantially perpendicular to the fore-aft centerline thereby enabling cross beam, brackets and pod arms to pivot about the second axis and at least substantially parallel to the fore-aft centerline. Thus, both pod arms may be pivoted in directions both parallel and perpendicular to the fore-aft centerline.
A machine is also disclosed that includes a fore-aft centerline and a position-adjustable, dual-pod control system. The machine may include a floor, a horizontal cross beam, a pair of brackets, a pair of bearings, a pair of end plates and a pair of pod arms. The floor includes a top side and a bottom side. The cross beam may be disposed below the floor and has two opposing ends. The cross beam may also be disposed at least substantially perpendicular to the fore-aft centerline and is also coupled between the pair of brackets. Each pod arm may include a top and a bottom wherein the bottom of each pod arm is sandwiched between one of the brackets and one of the end plates. Each bracket may be pivotally coupled to the bottom end of its respective pod arm about parallel first axes that are at least substantially parallel to the fore-aft centerline and at least substantially parallel to each other thereby enabling the pod arms to pivot about the first axes and at least substantially perpendicular to the fore-aft centerline. Each bracket and each bottom end of each pod arm may also include coaxial through holes that accommodate one of the bearings. The pair of bearings are coaxially aligned along a second axis that is at least substantially perpendicular to the fore-aft centerline which enables the cross beam, brackets, end plates and pod arms to pivot about the second axis and at least substantially parallel to the four-aft centerline. The bearings may be disposed opposite the floor from the cross beam. In other words, the bearings may be disposed on top of the floor and the cross beam may be disposed beneath the floor.
Another machine is disclosed that also has a fore-aft centerline and a position-adjustable, dual-pod control system. The machine may include a floor, a horizontal cross beam, a pair of brackets, a pair of bearings, a pair of end plates, a pair of pod arms, a swivel, a pair of linkages, a pair of pull cables, a pair of gas struts and a foot pedal assembly. The floor includes a top side and a bottom side. The cross beam may be disposed below the floor and substantially perpendicular to the fore-aft centerline. The cross beam may also be coupled between a pair of brackets. Each pod arm may include a top and a bottom wherein the bottom of each pod arm may be sandwiched between one of the brackets and one of the end plates. Each bracket may be pivotally coupled to the bottom end of its respective pod arm about parallel first axes that are at least substantially parallel to the fore-aft centerline which thereby enables the pod arms to pivot about the first axes and at least substantially perpendicular to the fore-aft centerline. Each bracket and each bottom end of each pod arm may also include coaxial through holes that accommodate one of the bearings. The pair of bearings may be coaxially aligned along a second axis that is at least substantially perpendicular to the fore-aft centerline. As a result, the cross beam, brackets, end plates and pod arms may pivot about the second axis and at least substantially parallel to the fore-aft centerline. The bearings may be disposed opposite the floor from the cross beam. The cross beam may be pivotally coupled to the swivel about a vertical axis. The swivel may include two ends. Each end of the swivel may be coupled to one of the linkages. The linkages may extend in opposite directions from the swivel and connect one end of the swivel to one of the end plates and the other end of the swivel to the other end plate. Each strut may include a releasable locking mechanism. One of the struts may be vertically aligned with one of the pod arms and coupled between said one of the pod arms and the floor. The other strut may be coupled between the swivel and the cross beam below the floor. Each releasable locking mechanism may be coupled to a pull cable and each pull cable is coupled to a bottom portion of the foot pedal assembly, which may be disposed below the floor but which also includes a top grip portion that is disposed above the floor. As a result, depressing the top portion of the foot pedal assembly pulls the pull cables which unlock both releasable locking mechanisms. Further, pivotal movement of the top end of one of the pod arms in a first direction that is perpendicular to the fore-aft centerline (either towards or away from the fore-aft centerline) may cause the bottom end of the pod arm to pull or push its respective linkage in an opposite second direction thereby causing the swivel to pivot about the vertical axis and push the other linkage in the first direction and pivot the top end of the other pod arm in the second opposite direction. Thus, the pod arms may be moved towards or away from each other. Further, pivotal movement of one of the pod arms in a third direction that is parallel to the fore-aft centerline may cause both pod arms and brackets to pivot parallel to the third direction and parallel to the fore-aft centerline.
The backhoe loader 1 may include a loader bucket 7 at a first end 8 of the tractor 2, and suitable operating linkage 9 for manipulation of the loader bucket 7. The backhoe loader 1 may include a pair of outriggers or stabilizers 10, mounted adjacent a second end 11 of the tractor 2. The outriggers 10 may be hydraulically controlled in a relatively conventional manner to swing between a stored position, and an extended position in which they contact the ground.
The backhoe loader 1 may also include an excavating assemblage 12, for example, a backhoe mechanism, at the second end 11 of the tractor 2. The excavating assemblage 12 may include a suitable swing assembly 13 for permitting the backhoe mechanism to swing about a pivot from one side of the tractor 2 to the other. The swing assembly 13 may move under the control of one or more hydraulic cylinders, such as hydraulic cylinder 14, and may serve to move the excavating assemblage 12 from an excavating position to a dumping position.
The excavating assemblage 12 may include a boom 15 having a first end pivotally mounted adjacent the tractor 2 for movement in a generally vertical plane. A stick 16 may have a first end pivotally mounted adjacent the second end of the boom 15 for movement in the same generally vertical plane in which the boom 15 may move. An excavating implement, for example, in the form of a bucket 17, may be pivotally mounted at a second end of the stick 16 for pivotal movement in the same generally vertical plane in which the boom 15 and stick 16 may move. Bucket 17 may be a relatively conventional backhoe bucket with a heel portion 18. The boom 15 may be pivotally moved under the control of a hydraulic cylinder 19. The stick 16 may be pivotally moved under the control of a hydraulic cylinder 26. The bucket 17 may be pivotally moved under the control of a hydraulic cylinder 27.
Turning to
Turning to
Still referring to
To facilitate pivotal movement of the pod arms 31, 32 in the fore-aft directions, a gas strut 55 or other hydraulic device may be provided. The gas strut 55 is coupled to the floor 56 by a bracket 57 and may be coupled to the pod arm 31 by another bracket 58.
To facilitate pivotal movement of the pod arms 31, 32 towards or away from the fore-aft centerline 41, an additional gas cylinder 61 may be provided as illustrated in
If utilized, the gas struts 55, 61 may be equipped with releasable locking mechanisms as shown at 75, 76 in
In operation, to adjust the positions of the pod arms 31, 32, the operator depresses the foot pedal 81 which causes the pull cables 77, 78 to be pulled, thereby releasing the locking mechanism 75, 76 of the gas cylinders 61, 55 respectively. To move the pod arms 31, 32 towards each other, the operator need only grip one of the handles 34, 35 and pull one of the pod arms 31, 32 inward towards the centerline 41 or push one of the pod arms 31, 32 outward away from the centerline 41. Inward movement of the pod arm 31 towards the centerline 41 will be matched by inward movement towards the centerline 41 of the other pod arm 32. To move the pod arms 31, 32 in the fore or aft directions, with the foot pedal 81 depressed and the locks 75, 76 released, the operator need only grip one of the handles 34, 35 and push or pull one of the pod arms 31 or 32 in the fore or aft directions. Forward or rearward movement of the one pod arm 31 will be matched by movement of the other pod arm 32 due to the connection of the two pod arms 31, 32 by way of the brackets 42, 43 and cross beam 36.
Turning to
The system 130 of
To operate the system 130, the foot pedal 181 is depressed thereby releasing the arm 98 from the gear sector 100. With the arm 98 released from the gear sector 100, the pod arms 131, 132 may be pushed either towards or away from each other. When pushed towards each other, the swivel 162 is twisted in the direction illustrated in
Turning to
Thus, multi-directionally adjustable pod control systems 30, 130 are disclosed. The pod arms 31, 32, 131, 132 may be pivotally coupled to the floor 56, 156 or machine (not shown) in two different directions. Specifically, cross beams 36, 136 are used, which are connected to end brackets 42, 43, 142, 143. The end brackets are pivotally coupled to bearings 53, 54, 153, 154. Because the brackets 42, 43, 142, 143 are not pivotally coupled to the pod arms 31, 32, 131, 132, movement of either pod arm 31, 32, 131, 132 in the fore or aft directions or about an axis defined by the bearings 53, 54, 153, 154 moves both pod arms 31, 32, 131, 132 simultaneously. Further, to move the pod arms 31, 32, 131, 132 either towards or away from the fore-aft centerline 41, 141, the arms 31, 32, 131, 132 may simply be moved towards or away from each other by way of the pivotal connection about axes that are parallel to the centerline 41, 141 and that may be represented by the pins 48, 49, 148, 149 that pivotally couple the pod arms 31, 32, 131, 132 to the end brackets 44, 45 or secondary brackets 144, 145. Movement of either pod arm 31, 32, 131, 132 in either the fore or aft or laterally inward or laterally outward directions results in a like movement of the other pod arm 31, 32, 131, 132.
While the disclosed control system and method have been disclosed in connection with a typical backhoe loader, it should be understood that other types of excavating assemblages, such as a hydraulic excavator, for example, may benefit from employing the disclosed control system and method.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed control system and method without departing from the scope of the disclosure. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed embodiments. It is intended that the specification and examples be considered as exemplary only with the true scope of protection being indicated by the following claims.