The present invention relates to machines used to separate particulate materials or mixed recyclable materials into difference fractions, and more particularly, to a disc assembly for a disc screen that allows its discs to be more easily removed and replaced.
Disc screens have long been used to separate particulate materials such as wood chips into difference fractions, according to size. More recently disc screens have been used to separate or classify mixed recyclable materials into respective streams of similar materials such as broken glass, containers, mixed paper and newspaper.
A disc screen typically includes a frame in which a plurality of rotatable shafts are mounted in parallel relationship. A plurality of discs are mounted on each shaft and a chain drive rotates the shafts in the same direction. The discs on one shaft interleave with the discs on each adjacent shaft to form screen openings between the peripheral edges of the discs. The size of the openings determines the dimension (and thus the type) of material that will fall through the screen. Rotation of the discs, which have an irregular outer contour, agitates the mixed recyclable materials to enhance classification. The rotating discs also propel the larger articles which are too big to fall between the discs across the screen. The general flow direction extends from an input area where the stream of material pours onto the disc screen to an output where the larger articles pour off of the disc screen. The smaller articles fall between the discs onto another disc screen or a conveyor, or into a collection bin.
The discs of a disc screen normally have a central opening or bore that allows them to be slid over the end of a shaft which may have a round or square cross-section. See for example U.S. Pat. No. 4,836,388 of Bielagus granted Jun. 6, 1989. Over time, the discs wear out and must be replaced. It is not practical to re-surface or repair damaged or worn discs without removing them from the shafts of the disc screen. However, it is tedious to dismount the ends of the shafts of a disc screen from their respective bearings so that the old discs can be removed and replaced by sliding the discs off the ends of the shafts. Moreover, if only single disc is worn out or broken, it is usually necessary to remove several discs before the damaged or broken disc can be slid off the shaft. In order to alleviate these problems, a split disc was developed by CP Manufacturing, Inc. of National City, Calif. See U.S. Pat. No 6,318,560 of Robert M. Davis granted Nov. 20, 2001. The split disc is comprised of two identical halves which are assembled around a shaft and tightly held together by a pair of bolt assemblies which clamp the disc to the shaft. Each disc half is made of an outer rubber portion which is stiffened with a rigid internal metal frame embedded inside the rubber portion.
While the split disc design is beneficial in removing particular discs without disturbing other discs on the shaft, typical disc screens may employ 600 or more discs. With so many discs, the process of replacing one disc at a time may still be too-time consuming. In order to alleviate these problems, multi-disc assemblies have been developed as demonstrated in U.S. Pat. No. 7,261,209 to Duncan, et. al. The multi-disc assemblies compfise multiple discs that can be replaced at the same time, reducing the amount of effort in servicing a disc screen. However, the multi-disc assembly of Duncan involves a complex mounting arrangement involving a securing hub and mounting plate between the multi-disc assembly and the shaft. Thus, it would be desirable to provide a multi-disc assembly that is even more convenient to remove and install.
In accordance with an embodiment of the present invention, a multi-disc assembly for releasable attachment to the shaft of a disc screen is provided. The multi-disc assembly includes a multi-disc hub of elastomeric material including multiple discs configured for use in the disc screen. The hub has a through bore configured for direct engagement over a shaft of the disc screen. The hub has a longitudinal separation plane which splits the hub into two separate multi-disc hub halves. The longitudinal separation plane defines first and second radial end faces in each hub half which extend along opposite sides of the through bore and oppose corresponding first and second radial end faces in the other hub half. Each hub half has at least one first connecting portion extending up to the first radial end face and at least one second connecting portion extending up to the second radial end face. The multi-disc assembly also includes a first rigid insert between the opposing first radial end faces and a second rigid insert between the opposing second radial end faces. The multi-disc assembly also includes at least two fastener devices configured to releasably secure the hub halves together around the shaft. The fastener devices include a first fastener device configured to extend through the first connecting portions of the hub halves and the first rigid insert and a second fastener device configured to extend through the second connecting portions of the hub halves and the second rigid insert.
Other features and advantages of the present invention will become more readily apparent to those of ordinary skill in the art after reviewing the following detailed description and accompanying drawings.
The multi-disc assembly 10 is basically two opposing multi-disc hub halves 12, a pair of rigid inserts 32 located between the hub halves 12, and fasteners 36 which secure the hub halves and inserts around the shaft 24, as described in more detail below. The hub halves 12 are positioned on opposing sides of the shaft 24. Each hub half 12 has a plurality of integrally formed discs 18 with spacers 20 positioned between adjacent pairs of the discs 18. The discs 18 are specially configured for use in classifying mixed recyclable materials. In particular, the discs 18 are configured for engaging materials to be classified (not illustrated) and propelling the materials in a conveying direction when the multi-disc assembly 10 is rotated. For example, if the multi-disc assembly 10 is rotated clock-wise in
A longitudinal separation plane 16 (see
Connecting portions 14 extend up to the radial end faces 34 of the hub halves 12 as best illustrated in
Rigid inserts 32 are shown in
Referring to
In one embodiment, the hub half 12 is molded from an elastomeric material. Each disc 18 has an inner surface 40 that defines a portion of an interior cavity 44 as shown in
The hub halves 12 may be integrally molded as one unitary piece of elastomeric material in a mold (not illustrated), then separated into two halves along the separation plane 18. In one embodiment, the molding occurs after the rigid inserts 32 have been positioned within the mold. The use of synthetic rubber, polyurethane or other similar durable elastomeric materials ensures that the discs 18 will have high friction impacting surfaces to maximize their propelling. The use of elastomeric material also minimizes the likelihood that glass containers be broken.
The multi-disc assembly 10 is easier to dismount and mount than prior multi-disc assemblies because it attaches directly to the shaft 24 without any intervening securing hubs or mounting plates.
While I have described alternate embodiments of my invention, variations and modifications will occur to those skilled in the art. For example, the through bore need not be rectangular, but could be circular, triangular, oval, etc. to accommodate shafts having matching outer cross-sections. The multi-disc assembly could also be made entirely of metal for the purpose of crushing glass. Therefore, the protection afforded my invention should only be limited in accordance with the scope of the following claims.
This application is a divisional of application Ser. No. 13/357,052, filed on Jan. 24, 2011, which is a continuation of application Ser. No. 13/069,925 filed Mar. 23, 2011 each of which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2743813 | Erickson | May 1956 | A |
3028957 | Conway et al. | Apr 1962 | A |
3306441 | Sanders et al. | Feb 1967 | A |
4402390 | Feeney | Sep 1983 | A |
4795036 | Williams | Jan 1989 | A |
5868036 | Salzman | Feb 1999 | A |
6250478 | Davis | Jun 2001 | B1 |
6318560 | Davis | Nov 2001 | B2 |
7261209 | Duncan et al. | Aug 2007 | B2 |
7578396 | Garzon | Aug 2009 | B1 |
7661537 | Sewell | Feb 2010 | B1 |
8517181 | Davis et al. | Aug 2013 | B1 |
8522983 | Davis | Sep 2013 | B2 |
8800781 | Carlile et al. | Aug 2014 | B1 |
Number | Date | Country | |
---|---|---|---|
20130292308 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13357052 | Jan 2012 | US |
Child | 13939802 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13069925 | Mar 2011 | US |
Child | 13357052 | US |