Known motor drive systems have used a variety of wiring harnesses and connectors to distribute power to and from the drive system modules. Unique connectors have been used depending upon the distance and the voltage of the power to be transmitted, and the particular drive system module to be connected. This has undesirably increased the number of unique connectors required for the system and correspondingly complicates the wiring for manufacturing the drive system components and increases the complexity of installing and servicing the drive system. Accordingly, a need has been identified for a new and improved electrical bus system and a connector system for supplying power to and receiving power from the electrical bus of a motor drive system.
In accordance with a first aspect of the present development, an electrical bus assembly includes a frame and a plurality of bus bar carriers connected to the frame. The plurality of electrically conductive bus bars are supported relative to the frame by the bus bar carriers, and the bus bars are arranged in parallel spaced-apart relation relative to each other. A first retainer cap is secured to a first one of the plurality of bus bar carriers located adjacent a first end of the frame. A second retainer cap is secured to a second one of the plurality of bus bar carriers located adjacent a second end of the frame. The first and second retainer caps limit axial movement of the bus bars relative to the plurality of carriers sufficiently to prevent escape of the bus bars from the carriers.
In accordance with another aspect of the present development, a bus bar connector is adapted to engage and electrically communicate with a plurality of parallel spaced-apart bus bars. The bus bar connector includes a base and a plurality of bus bar connectors engaged with and located on opposite sides of the base. Each of the bus bar connectors is adapted to engage and electrically connect with a bus bar, and each of the bus bar connectors includes a terminal contact for electrically connecting to an associated wire. A first keeper is secured to the base and captures a first group of the plurality of bus bar connectors adjacent the first side of the base. A second keeper is secured to the base and captures a second group of the plurality of bus bar connectors adjacent the second side of the base.
In accordance with a further aspect of the present development, an electrical bus system includes a first bus bar assembly and a second bus bar assembly, the first and second bus bar assemblies each including a frame, a plurality of bus bar carriers connected to the frame, and a plurality of electrically conductive bus bars supported relative to the frame by the bus bar carriers, the bus bars arranged in parallel spaced-apart relation relative to each other. The electrical bus system further includes a jumper connector assembly electrically connecting the first and second bus bar assemblies. The jumper connector assembly includes a first plurality of jumper connectors respectively engaged with and electrically connected to the plurality of bus bars of the first bus bar assembly. The jumper connector assembly also includes a second plurality of jumper connectors respectively engaged with and electrically connected to the plurality of bus bars of the second bus bar assembly. The jumper connector assembly further includes a plurality of jumper bars each engaged with and electrically connected to a respective one of the first jumper connectors and a respective one of the second jumper connectors.
Each bus bar carrier C preferably also comprises a projecting leg CL located between first and second ones of said feet FC and comprising first and second resilient wings LW that project outwardly from the leg CL. These wings LW are resilient and they are dimensioned such that when the carrier C is snap-fit to the frame F, the projecting leg CL is received in one of said frame mounting apertures FA and the wings LW resiliently engage frame F to stabilize the bus bar carrier relative to the frame and to bias the carrier C relative to the frame F in an outward direction such that the carrier feet FC are maintained in close contact with the frame F and incidental movement of the carrier C relative to the frame F is minimized. The leg CL and its mating frame mounting aperture can also be offset from a central location and used as a key to ensure that the carriers C are installed in the desired orientation relative to the frame F, i.e., an offset leg CL and corresponding mounting aperture FA will allow the carrier C to mate with the frame F in only a single orientation. Each of the carriers C is identical to the others and can be installed in any carrier mounting location of the frame F.
In the illustrated embodiment, the carrier slots T are closed, i.e., the slots T have a complete periphery that is continuous and uninterrupted, such that a bus bar BB must be slid axially into the slot T through one of the open ends of the slot T. The bus assembly BA comprises first and second bus bar retainer caps RC1,RC2 that capture the bus bars in the carriers C by preventing axial sliding movement of the bus bars relative to the carriers C as required for the bus bars BB to be removed, i.e., the first and second bus bar retainer caps completely prevent axial sliding movement of the bus bars BB relative to the carriers or at least limit axial sliding movement of the bus bars BB relative to the carriers C to an amount less than that required for the bus bars to escape from the carrier slots T. The retainer caps RC1,RC2 are identical to each other and are interchangeable. The retainer cap RC1 is snap-fit or otherwise releasably fixedly secured to a first carrier C1 located adjacent a first end of the frame F/bus assembly BA, and the retainer cap RC2 is snap-fit or otherwise releasably fixedly secured to a second carrier C2 located adjacent a second end of the frame F/bus assembly BA.
With particular reference to
Each bus bar carrier C further includes a U-shaped or C-shaped open recess CR defined between outwardly projecting ends of the first and second side walls CW1,CW2. Each of the bus bar carriers C further includes a third retainer cap mounting location L3 defined by first and second upper ramped engagement teeth CT3 (a third pair of ramped engagement teeth CT3) located adjacent the outer ends of the opposite first and second outer side walls CW1,CW2 of the carrier C and oriented in a third direction that is transverse to both the first and second directions so as to be adapted to engage and retain a third retainer cap RC3 mated therewith on an upper edge of the carrier C as shown in
Referring again particularly to
As shown separately in
The bus bar connector BK further comprises first and second connector keepers KP1,KP2 that are selectively releasably secured to the base BA and that capture the stacked connectors K to the base BA and to each other. Each keeper KP1,KP2 comprises a keeper main wall KPW and first and second resilient keeper legs KPL that project from the keeper main wall KPW. The connector base BA comprises keeper slots KPS that are defined in the opposite end walls BW2,BW3 adapted to slidably receive the keeper legs KPL. The connector base BA further comprises retaining teeth BT located in the keeper slots KPS that engage a slot or detent defined in the keeper legs KPL in order to releasably secure the first and second keepers KP1,KP2 to the base BA. As such, the keeper KP1,KP2 are selectively releasably connected to opposite sides of the base BA. In an alternative embodiment, the connectors K are mounted on only a face BF1,BF2 of the main wall BW1, in which case only one of the keepers KP1,KP2 is required to capture the connectors K to the base BA.
The bus bar connector BK further comprises at least one retainer hook RH connected to the base BA. In the illustrated embodiment, the base BA comprises first and second retainer hooks RH connected thereto. Each retainer hook RH comprises a bus bar engagement foot RF at its distal end that is adapted to resiliently engage a bus bar BB with a snap-fit for capturing the connector K to the bus B. To disconnect the connector BK, the hooks RH are resiliently deflected out of engagement with the bus bars BB by exerting manual force on the projecting outer/upper ends UE thereof to move the upper ends UE toward each other as indicated by the arrows A1 (
It is preferred that the bus bars BB be spaced non-uniformly relative to each other in the frame F such that the connector BK can be connected to the bus bars BB in only one orientation such that the polarity of the connector BK cannot be accidentally reversed. In other words, the slots KS if the bus bar connectors K will mate with the bus bars BB in only one orientation.
As noted above, the connector system S according to the present development also comprises a jumper connector assembly JK that provides an electrical jumper connection between the bus bars BB of both the first and second adjacent bus bar assemblies BA1,BA2.
Connectors suitable for use as jumper connectors Q (but not previously known for such use) are available commercially from PHOENIX CONTACT GmbH & Co. KG, Flachsmarktstr. 8, D-32825 Blomberg Germany (www.phoenixcontact.com), known as their Printed Circuit Board Connector (PCB)—ZEC 1.5/10-5.0-LPV—1898347 or equivalent (10-position connector version).
The jumper connector assembly JK also comprises tape segments QR that are releasably engaged with the jumper connecters Q and that retain the jumper bars JB in the second slot QS2 during assembly and/or repair. In the illustrated embodiment, the tape segments comprise a high-temperature, electrically insulative tape such as KAPTON® tapes are made from polyimide film with silicone adhesive, but other suitable tapes can alternatively be used.
The jumper connector assembly JK is retained in its operative position by being engaged with a first bus bar carrier C1 located at a first end of the first bus assembly BA1 and with a second bus bar carrier C2 located at a second end of the second bus assembly BA2. In particular, the jumper bars JB are located in the recess CR (see also
The development has been described with reference to preferred embodiments. Those of ordinary skill in the art will recognize that modifications and alterations to the preferred embodiments are possible. The disclosed preferred embodiments are not intended to limit the scope of the claims, which are to be construed as broadly as legally possible, whether literally or according to the doctrine of equivalents.
This application is a continuation of U.S. application Ser. No. 13/965,766 filed Aug. 13, 2013, now assigned U.S. Pat. No. 9,558,864 which claims priority from and benefit of the filing date of U.S. provisional application Ser. No. 61/683,197 filed Aug. 14, 2012, and the entire disclosure of each of said prior applications is hereby expressly incorporated by reference into the present specification.
Number | Name | Date | Kind |
---|---|---|---|
3922053 | Hafer | Nov 1975 | A |
5162616 | Swaffield | Nov 1992 | A |
5938461 | Biermeier | Aug 1999 | A |
7655865 | Wagener | Feb 2010 | B2 |
20070102184 | Lord et al. | May 2007 | A1 |
20080257602 | Wagener | Oct 2008 | A1 |
20110038103 | Hudgins, Jr. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
34 37 586 | Apr 1986 | DE |
1 750 342 | Feb 2007 | EP |
Entry |
---|
Siemens Sinamics S120 paper titled “DC Bus and 24V Rails” dated Mar. 22, 2012 (1 page). |
Siemens Sinamics S120 papers titled “Modular, High-Performance Drive System for Single or Multi-Axis Applications” dated Jan. 27, 2011, pp. 1 & 8. |
Phoenix Contact's catalog pages titled “PCB connector—ZEC 1,5/10-5,0-LPV—1898347” dated Jan. 13, 2013 pp. 1-4. |
Phoenix Contact's online catalog pages titled “ZEC 1,5/ 6-LPV-5,0 C2” dated Mar. 12, 2010 pp. 1-4. |
Phoenix Contact's online catalog pages titled “Printed-circuit board connector—ZEC 1.5/11-ST-5.0 C2 R1.11—1883132” dated Oct. 30, 2012 pp. 1-5. |
Phoenix Contact's pages titled “COMBICON Direct Plug Connectors ZEC 1 and ZEC 1,5 3.5 / 5.0 and 7.5 mm Pitch” date unknown pp. 1-7. |
Siemens Sinamics S120 paper titled “Modular, High-Performance Drive System for Single or Multi-Axis Applications” dated Jan. 27, 2011 pp. 1-24. |
Extended European Search Report dated Nov. 7, 2013 for Application No. EP 13 18 0432. |
Number | Date | Country | |
---|---|---|---|
20170141524 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
61683197 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13965766 | Aug 2013 | US |
Child | 15419994 | US |